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Abstract: In this paper we study the buoyancy driven flow of a particulate suspension between
two inclined walls. The suspension is modeled as a non-linear fluid, where the (shear) viscosity
depends on the concentration (volume fraction of particles) and the shear rate. The motion of the
particles is determined by a convection-diffusion equation. The equations are made dimensionless
and the boundary value problem is solved numerically. A parametric study is performed, and
velocity, concentration and temperature profiles are obtained for various values of the dimensionless
numbers. The numerical results indicate that due to the non-uniform shear rate, the particles tend
to concentrate near the centerline; however, for a small Lewis number (Le) related to the size of the
particles, a uniform concentration distribution can be achieved.

Keywords: non-linear fluids; variable viscosity; natural convection; convection-diffusion;
buoyancy force

1. Introduction

Fluid flow can occur for various reasons such as applications of external forces, presence of
pressure or temperature gradients, natural convection (buoyancy driven flow), etc. The latter type
is when the density of the fluid is a function of temperature and as a result due to a temperature
dependent buoyancy (body) force the fluid can move (see Turner (1979) [1]). Natural convection and
heat transfer in a suspension composed of solid particles and a fluid occur in thermal storage systems,
chemical industry or food industry [2,3]. Studying the natural convection and flow of suspensions can
provide better understanding of the complex mechanisms involved in these flows [4,5]. Particulate
suspensions usually show some of the non-Newtonian features, such as shear-thinning, yield stress,
thixotropy, dilatancy, normal stress effects, and even anisotropic thermal or momentum diffusivity.
Metivier et al. (2017) [6] experimentally studied the onset of the Rayleigh-Bénard convection of a
concentrated suspension of microgels subject to a temperature gradient. They focused their studies on
the no-slip condition and found that the main control parameters for this flow is the ratio between
the yield stress and the buoyancy force. Sun et al. (2019) [3] investigated the natural convection and
heat transfer of a ferro-nanofluid with anisotropic thermal conductivity under a magnetic field. The
numerical results show that the isotherms become elliptic and deviate from the circular pattern which
is the typical pattern with isotropic thermal conductivity.

In general, due to certain effects such as the presence of lift force or drag force, the suspension
can exhibit certain multi-component features, such as particle migration or particle sedimentation;
moreover, in many situations, due to the presence of gravity or some other body forces (such as
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electro-magnetic forces) the solid particles can redistribute themselves and cause a change in the
rheological properties of the suspension. Okada and Suzuki (1997) [7] experimentally investigated the
natural convection of particulate suspension in a rectangular cell where the central part of the lower
wall was heated. They found that the suspension forms different layers during the sedimentation
of particles, and these layers disappear as the flow evolves; they attributed this phenomenon to the
double diffusive convection caused by the volume fraction and the temperature gradient. Using
Particle Tracking Velocimetry (PTV), Chen et al. (2005) [2] measured the velocity and the particle
distributions in a square section with the bottom wall heated; they noticed that the flow patterns of the
particulate suspension, such as sedimentation driven convection, is distinct from the flow of fluid with
no particles.

Natural convection problems related to meteorology (see Batchelor (1954) [8]) and non-Newtonian
fluids have been studied extensively (see Shenoy and Mashelkar (1982) [9]). For example, Rajagopal and
Na (1985) [10] studied the natural convection of grade fluids between two vertical walls. Massoudi and
Christie (1990) [11] considered the flow due to natural convection of a thermodynamically compatible
third grade fluid between two vertical cylinders. Later, Massoudi et al. (2008) [12] studied the natural
convection of a generalized second grade fluid with a temperature dependent and shear-rate dependent
viscosity. In these studies, the fluid was not considered to be a suspension of particles in a fluid and as
a result the effect of volume fraction was ignored.

In this paper we do consider the effect of volume fraction of the particles and we will look at the
buoyancy driven flow of a particulate suspension between two inclined walls with variable transport
properties. In Sections 2 and 3 we present the governing equations and the constitutive relations,
respectively. In Section 4, we look at the simplified equations for the natural convection flow and
present the governing equations and the boundary conditions along with our assumptions. In Section 5,
the results are analyzed. Finally, in Section 6 we present the conclusions.

2. Governing Equations

As mentioned earlier, in general, most suspensions behave as multi-component fluids. They can be
modeled using the techniques of suspension rheology or the techniques of multi-component materials
(mixture theory). While the former method is easier to handle computationally (fewer equations),
it also has the disadvantage that it cannot predict many of the interesting phenomena observed in
multicomponent flows, such as the various possible interactions between different components, such
as lift forces, drag forces, etc. For example, for a two-component system, the governing equations are
written for each component (phase) and constitutive relations are needed for the two stress tensors,
the interaction forces, the flux vectors, etc. Clearly, this approach, while more accurate, will be
computationally more intensive. For a recent discussion of the multi-component approach we refer the
reader to Rajagopal and Tao (1995) [13]; Massoudi (2003, 2008, 2010) [14–16]. As a compromise, one
can look at the suspension which does have some type of structure (in this case solid particles which
can be re-arranged and move with the velocity of the suspension), as a single component non-linear
fluid, allowing for the presence of the particles through the introduction of a concentration (volume
fraction) field φ. In this paper, we take this approach and model the suspension as a (single component)
non-linear fluid; in this case the governing equations of motion are the conservation of mass, linear
and angular momentum, and the energy equations. These equations are (see for example, Slattery
(1999) [17]):

2.1. Conservation of Mass

∂ρ

∂t
+ div(ρv) = 0 (1)
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where ρ = φρs +(1−φ)ρ f is the density of the suspension,φ is the concentration of the particles, ρs and
ρ f are the density of particles and the fluid, respectively, ∂/∂t is the partial derivative with respect to
time, “div” is the divergence operator, and v is the velocity vector. For an incompressible fluid,

div v = 0 (2)

2.2. Conservation of Linear Momentum

ρ
dv
dt

= div T + ρb (3)

where b is the body force vector, T is the Cauchy stress tensor, and d/dt is the total time derivative,
given by d(.)/dt = ∂(.)/∂t + [grad(.)]v. The balance of angular momentum indicates that in the
absence of couple stresses, the stress tensor is symmetric.

2.3. Conservation of Energy

ρ
dε
dt

= T : L− div q + ρr (4)

where ε is the specific internal energy, L is the velocity gradient, q is the heat flux vector, and r is
the radiant heating. Thermodynamical considerations require the application of the second law of
thermodynamics (the entropy inequality); in this paper, we do not consider the entropy law (see Liu
(2002) [18]). The specific internal energy, ε, is related to the specific Helmholtz free energy (Dunn and
Fosdick, 1974 [19]) ε = Ψ + θη where η is the specific entropy. The internal energy may in some ways
depend on other parameters such as concentration. Nevertheless, in this paper, due to the nature of
the kinematical assumptions for the flow field, ε drops out of the energy equation. Furthermore, we do
not consider the effects of radiation in this paper.

2.4. Convection-Diffusion Equation for Particles

Here we assume that the particles do not have their own independent velocity, as is the case
in two-phase flows; instead we assume that they flow with the velocity of the suspension where a
convection-diffusion equation is used to describe the volume fraction field φ (see Probstein (2005) [20]):

∂φ

∂t
+ v·gradφ = div N (5)

where N is the flux determining the motion of the particles. In this approach as the particles are
re-distributed, through φ, they influce the fluid motion via the shear viscosity of the fluid (which
depends on φ).

3. Constitutive Relations

In looking at Equations (1)–(5), we can see that we need constitutive relations for T, q, N and the
body force ρb. We will now discuss the constitutive relations needed for the closure in this problem.

3.1. Stress Tensor

Primarily, what distinguishes a non-Newtonian fluid from a Newtonian fluid, is its ability to
exhibit one or many of the following characteristics: (1) shear-thinning or shear-thickening effects;
(2) yield-stress; (3) normal stress effects; (4) creep; (5) relaxation; (6) thixotropy, etc. (see Macosko
(1994) [21]; Schowalter (1978) [22]). In this paper, we focus on the shear-thinning (or shear-thickening)
aspects and assume that the Cauchy stress tensor for the suspension is given by,

T = −pI + µ(φ, A1)A1 (6)
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where p is the pressure (the mean normal stress), I is the identity tensor, A1 = L + LT (L = grad v) and
the shear viscosity is assumed to be given by

µ(φ, A1) = µ∗(φ)
(
1 + αtr

(
A1

2
))n

(7)

where “tr” is the trace of a 2nd order tensor and n determines whether the fluid is shear-thinning
(n < 0), or shear-thickening (n > 0). The second law of thermodynamics indicates that the constant
α ≥ 0 [Bridges and Rajagopal (2006) [23]]. In this paper, the viscosity is assumed to also depend on φ.
Following the works of [24,25], we assume,

µ∗(φ) = µr(1−φ/φi)
−1.82 (8)

where φi is the volume fraction at which the relative viscosity µ∗ tends to infinity. This value is around
0.68 for hard spheres [24,25]. For a recent discussion of a more general model of this type, see Tao, et al.
(2019) [26]. Substituting Equations (7) and (8) in (6), we obtain the expression for T:

T = −pI + µr(1−φ/φi)
−1.82

(
1 + αtr

(
A1

2
))n

A1 (9)

where µr is constant (also referred to as the reference viscosity). We use this equation in our analysis.

3.2. Heat Flux Vector

For the heat flux vector, we use the traditional Fourier’s assumption where,

q = −kgradθ (10)

where θ is the temperature, k is the (constant) thermal conductivity. In general, thermal conductivity of
a non-linear fluid (suspension) is not constant; it can be a function of shear rate, concentration, etc. (see
Miao and Massoudi (2015) [27], Yang, et al. (2013) [28], Yang and Massoudi (2018) [29]). For a recent
review of the heat flux vector for granular-type fluids, see Massoudi (2006a, b) [30,31] and Massoudi
and Kirwan (2016) [32].

3.3. Body (Buoyancy) Force

The body (buoyancy) force is given by ρb = ρ(θ)g; in general, for a suspension composed of a
fluid and particles, the density will also depend on the volume fraction. In this paper, we ignore this
effect. Here we use the usual Boussinesq-assumption (see Rajagopal et al. (1996) [33] and Rajagopal et
al. (2009) [34], for detailed discussion), where the density is expressed as

ρ = ρre f
(
1− ζ

(
θ− θre f

))
(11)

where ζ = − 1
ρ
∂ρ
∂θ

∣∣∣∣
θre f

is the coefficient of thermal expansion which is assumed to be a constant here,

and ρre f is the density of the suspension at the reference temperature θre f .

3.4. Particle Flux

We assume that the particle transport flux is given by [25,35]:

N = −a2φKcgrad
( .
γφ

)
− a2φ2 .

γKµgrad(lnµ) −Dgradφ+ φ(1−φ)tp

(
1−

ρ f

ρs

)
g (12)

where the terms on the right-hand side are fluxes due to particle collision, changes in viscosity,

Brownian motion and gravity, respectively. The last term Ng = 2
9φ(1−φ)

a2(ρs−ρ f )
µ(φ,A1)

g, is the particle flux
attributed to gravity, and has been used in studying several different problems in flows of solid-fluid
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suspensions [36,37]. In the above equation, a is the particle radius,
.
γ is the shear rate [

.
γ =

√
1/2tr(A1

2)],
µ is the viscosity, Kc, Kµ are empirical coefficients, D is the diffusivity of the Brownian motion and tp is
the particle response time. To model N, a similar approach, although from a different perspective, was
provided by Bridges and Rajagopal (2006) [23] for chemically reacting fluids (see also Massoudi and
Uguz (2012) [38]).

4. Flow Due to Natural Convection between Two Walls

We assume that a fluid-partilces suspension with density ρ and viscosity µ (which is a function of
concentration and shear-rate) is situated between two walls (which are at different temperatures) titled
at an angle β from the vertical direction; the heated wall is at y = −H and the cooler wall is at y = H,
i.e., θ1 > θ2. The physical setting of the problem is shown in Figure 1. Because of the temperature
gradient and the assumption that the density depends upon the temperature, the momentum and the
energy equations are coupled; as a result, we expect that the fluid near the warmer wall would rise
(due to the buoyancy effects) and near the cooler wall, the fluid would descend.
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Figure 1. Physical sketch of the system.

This is the type of flow which can occur in double wall panels in buildings and in the operations of
the Clusius-Dickel column, used for separating isotopes in liquid mixtures (see Bird et al. (2007) [39]).
A relevant and related problem, though more complicated, is the natural convection in rectangular
enclosures or cavities. Dawson and McTigue (1985) [40] provide a good overview of this problem,
where they studied natural convection in fluid-saturated porous media.

For this idealized problem, we assume

v = u(x)ey (13)

θ = θ(x) (14)

φ = φ(x) (15)

With the above, Equation (12), conservation of mass is automatically satisfied. We should mention
that an implicit assumption made in many buoyance driven flows, including our paper, is that while the
fluid is mechanically incompressible, i.e., div v = 0, thermally the fluid is assumed to be compressible,
via the Boussinesq approximation. For an excellent discussion of this issue, see Prusa and Rajagopal
(2013) [41]. Additionally, the linear momentum equation in component form in (x,y,z) direction
reduces to

0 = −
∂p
∂x
− ρre f gsinβ

(
1− ζ

(
θ− θre f

))
(16)

0 = −
∂p
∂y

+
d
dx

µ∗(φ)
1 + 2α

(
du
dx

)2n
du
dx

− ρre f gcosβ
(
1− ζ

(
θ− θre f

))
(17)
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0 = −
∂p
∂z

(18)

Let p̂ = p + ρre f gsinβ
(
1− ζ

(
θ− θre f

))
, then ∂p̂

∂x =
∂p̂
∂z = 0, then,

∂p̂
∂y

=
∂p
∂y

(19)

We can now re-write Equation (18) as,

dp̂
dy

=
d
dx

µ∗(φ)
1 + 2α

(
du
dx

)2n
du
dx

− ρre f gcosβ
(
1− ζ

(
θ− θre f

))
(20)

Now, since the right-hand side of the above equation is not a function of y, we assume dp̂
dy = constant = C.

If we choose C = −ρre f gcosβ, then the momentum equation in the y-direction reduces to

0 =
d

dx

µ∗(φ)
1 + 2α

(
du
dx

)2n
du
dx

+ ρre f gζ
(
θ− θre f

)
cosβ (21)

For the concentration flux, for steady-state condition, Equation (5) reduces to

0 = div
(
−a2φKcgrad

( .
γφ

)
− a2φ2 .

γKµgrad(lnµ) −Dgradφ
+φ(1−φ)tp

(
1−

ρ f
ρs

)
g
) (22)

Notice that at the solid boundaries, since we are assuming non-porous walls, we must ensure that there
are no particles moving across the surfaces; this implies that the particle flux normal to the direction of
flow should be zero [25]. That is,

0 = n·
(
−a2φKcgrad

( .
γφ

)
− a2φ2 .

γKµgrad(lnµ) −Dgradφ
+φ(1−φ)tp

(
1−

ρ f
ρs

)
g
)
|wall

(23)

Integrating Equation (22) and using Equation (23), we have,

0 = −a2φKcgrad
( .
γφ

)
− a2φ2 .

γKµgrad(lnµ) −Dgradφ
+φ(1−φ)tp

(
1−

ρ f
ρs

)
g

(24)

The above equation implies that the total flux should be zero everywhere in the flow. For unsteady
or multi-dimensional flows, this condition is not applicable. As a result, the expanded form of the
convention-diffusion equation becomes,

0 = a2Kc

(
φ2 d

dx

(∣∣∣ du
dx

∣∣∣)+ φ
∣∣∣ du

dx

∣∣∣ dφ
dx

)
+ a2Kµ

(
φ2 1

µ
dµ
dφ

∣∣∣ du
dx

∣∣∣ dφ
dx

)
+ D

(
dφ
dx

)
+ 2

9φ(1−φ)
a2(ρs−ρ f )

µ gsinβ
(25)

Using Equations (13) and (14), the energy equation, Equation (4), becomes

0 = µ∗(φ)

1 + 2α
(

du
dx

)2n(
du
dx

)2

+ k
d2θ

dx2 . (26)

We now make the equations dimensionless by using the following reference quantities,

x =
x
H

; u =
uH
k

; θ =
θ− θre f

∆θ
=
θ− θre f

θ1 − θ2
(27)
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where H is half the distance between the two walls, k is the thermal conductivity, ν = µr/ρre f is the
kinematic viscosity. The mean value of the two temperatures at the walls is taken as the reference
temperature; i.e., θre f = 0.5(θ1 + θ2). The resulting dimensionless parameters are,

Pr =
ν
k

; δ =
2αk2

H4
; Ra =

gζ∆θH3

νk
; Br =

µrk
∆θH2 Γc =

a2Kc

H2 ; Γµ =
a2Kµ
H2 ; Γg =

a2
(
ρs − ρ f

)
gH

k
; Le =

k
D

(28)
where Pr and Ra are the Prandtl and the Rayleigh numbers, Le is known as the Lewis number which is a
measure of the ratio of thermal diffusivity to mass diffusivity and Br is the Brinkman number which is a
measure of the ratio between heat produced by viscous dissipation and heat transported by molecular
conduction. Notice that the Pr number can be canceled out without affecting Equation (29) below.

The dimensionless governing equations are then given as, (dropping the overbar symbol
for simplicity),

0 = Pr
d
dx

(1−φ/φi)
−1.82

1 + δ

(
du
dx

)2n
du
dx

+ PrRaθcosβ (29)

0 = Γc

(
φ2 d

dx

(∣∣∣ du
dx

∣∣∣)+ φ
∣∣∣ du

dx

∣∣∣ dφ
dx

)
+ Γµ

(
φ2 1

µ
dµ
dφ

∣∣∣ du
dx

∣∣∣ dφ
dx

)
+

2φ(1−φ)

9(1−φ/φi)
−1.82

(
1+δ( ∂u

∂x )
2
)n Γgcosβ+ 1

Le
dφ
dx

(30)

0 = Br(1−φ/φi)
−1.82

1 + δ

(
du
dx

)2n(
du
dx

)2

+
d2θ

dx2 (31)

Looking at the above equations, we can see that we need two boundary conditions for u, one for φ,
and two for θ. The non-dimensional forms of the boundary conditions are given by

u(±1) = 0 (32)

θ(−1) = 0.5;θ(1) = −0.5 (33)

where we have used the no-slip boundary condition for the velocity. Also, Equation (33) indicates
that the temperature is higher at the left wall. For particle concentration the appropriate boundary
condition may be given as an average value in an integral form (See Massoudi (2007) [42]):

φavg =
1
2

∫ 1

−1
φdx (34)

The above equations can be solved for the three field variables, namely, velocity, volume fraction and
temperature.

5. Results and Discussions

In this paper, the system of the non-linear ordinary differential Equations (29)–(31) with the
boundary conditions (32)–(34) are solved numerically using the MATLAB solver bvp4c, which is a
collocation boundary value problem solver [43]. The step size is automatically adjusted by the solver.
The default relative tolerance for the maximum residue is 0.001. The boundary conditions for the
average/bulk concentration is numerically satisfied by using the shooting method.

Table 1 lists the values of the dimensionless numbers and other parameters used in Sections 5.1
and 5.2.
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Table 1. The dimensionless parameters used in our study.

Section 5.1 Section 5.2
Ra 0.1, 1.0, 2.0 Ra. 1.0, 2.0, 3.0

Γc 0.1, 1.0, 2.0 Γc 0.1, 1, 2.5

Γµ 1, 10, 100 Γµ 1, 10, 100

Le 0.1, 2.5, 10 Le 0.1, 10, 30

n 0.5, 0.0, 1 n NA

δ 0.1, 0.5, 0.8 δ NA

Br 1, 3, 4 Br NA

φavg 0.05, 0.1, 0.2 φavg 0.05, 0.1, 0.15

β NA β 0
◦

, 15
◦

, 30
◦

Γg NA Γg 0, 2.5, 5

5.1. Natural Convection with Neutrally Buoyant Particles

We first perform a parametric study for the case of natural convection of a suspension composed
of neutrally buoyant particles in a fluid in a vertical channel; in this case, Γg = 0 and β = 0

◦

. Notice
that according to Equation (12) the small size particles can lead to a negligible Γg. Figure 2 shows the
effect of the buoyancy force term, Ra. We can observe two approximately parabolic velocity profiles
where near the hotter wall the velocity is positive and near the colder wall the velocity is negative; the
particles tend to concentrate near the region with the maximum and minimum velocity (low shear
rates) due to the effect of the particle flux term Γc; the temperature shows higher values in the interior
of the flow due to the effect of viscous dissipation. As the buoyancy force (Ra) increases, the magnitude
of the velocity seems to increase, resulting in an increase in temperature. We also notice that more
particles accumulate near the region with the maximum and minimum velocity, perhaps due to the
higher values of the shear rate, see Equation (12). Figure 3 shows the effect of the shear-dependent
viscosity. From Figure 3a, we can see that as the fluid changes from shear-thinning to shear-thickening
(n changing from −1 to 1), the magnitude of the velocity tends to decrease; and the temperature and
volume fraction profiles change a little for the range of parameters studied here. From Figure 3b, we
notice that as δ increases, implying that the shear-thinning effect is stronger (notice n = −0.5), the
magnitude of the velocity increases, while the concentration and temperature profiles do not change
that much.
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Figure 2. Effect of the buoyancy force term, the Rayleigh number (Ra) on the velocity, concentration
and temperature profiles, when Γc = 2.5, Γµ = 0.1, Le = 10, n = −0.5, δ = 1, Br = 5 and φavg = 0.1.
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Figure 3. Parametric studies for shear-dependent viscosity. (a) Effect of n on the velocity, concentration
and temperature profiles, when Γc = 2.5, Γµ = 0.1, Le = 10, δ = 1, Ra = 2, Br = 5 and φavg = 0.1.
(b) Effect of δ on the velocity, concentration and temperature profiles, when Γc = 2.5, Γµ = 0.1, Le = 10,
n = −0.5, Ra = 3, Br = 5 and φavg = 0.1.

In Figure 4, we can see the effects of particle flux terms, Γc and Γµ, and the dimensionless number,
Le. Recall that Γc represents the particle flux responsible for variable shear rates. As Figure 4a indicates,
increasing Γc causes the particles to move towards the region with low shear rate, and a small value of
Γc (0.1) leads to a uniform distribution of the particles; the velocity seems to increase as Γc increases,
since the particle concentration near the region with low shear rate seems to produce a “lubrication”
region near the wall. Figure 4b indicates that the effect of Γµ is opposite to that of Γc, implying that for
the type of suspension considered here, Γµ tends to make the particles to be distributed more uniformly.
Notice that the viscosity is proportional to the particle concentration, while according to Equation (12)
Γµ forces the particle to move towards the region with lower viscosity. 1/Le is proportional to the
coefficient of the flux due to the Brownian effects, therefore from Figure 4c, we see that a small value of
Le leads to a uniform distribution of the particles; overall the effect of Le is similar but opposite to the
effect of Γµ.
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an increase in the buoyancy force. The effect of 𝐵𝑟 on the concentration profile is moderate, but we 
see that the position of the maximum concentration moves slightly. Figure 6 shows that as the bulk 
(average) concentration of the particles, 𝜙𝑎𝑣𝑔, increases, the magnitude of the velocity decreases, 

perhaps due to an increase in the viscosity; for particle concentration, a smaller 𝜙𝑎𝑣𝑔 leads to a more 
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Figure 4. (a) Effect of Γc on the velocity, and concentration, when Γµ = 0.1, Le = 10, n = −0.5, δ = 1,
Ra = 3, Br = 5 and φavg = 0.1. (b) Effect of Γµ on the velocity, and concentration, when Γc = 2.5,
Le = 10, n = −0.5, δ = 1, Ra = 3, Br = 5 and φavg = 0.1. (c) Effect of Le on the velocity, and
concentration, when Γc = 2.5, Γµ = 0.1, n = −0.5, δ = 1, Ra = 3, Br = 5 and φavg = 0.1.

Figure 5 shows the effect of the Brinkman number (Br). A larger value of Br indicates an increase in
the temperature in the interior region; as a result, the velocity seems to increase indicating an increase
in the buoyancy force. The effect of Br on the concentration profile is moderate, but we see that the
position of the maximum concentration moves slightly. Figure 6 shows that as the bulk (average)
concentration of the particles, φavg, increases, the magnitude of the velocity decreases, perhaps due
to an increase in the viscosity; for particle concentration, a smaller φavg leads to a more uniform
distribution of the particles.
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Figure 8 shows the effect of 𝛤𝑐. Unlike the case with the neutrally buoyant particles, when 𝛤𝑐 
has a small value (0.1), the concentration now seems to decrease almost linearly in the X-direction. 
As 𝛤𝑐 increases, the pattern of high particle concentration near the region with larger magnitude of 

Figure 6. Effect of bulk (average) concentration (φavg) on the velocity and concentration profiles,
when Γc = 2.5, Γµ = 0.1, Le = 10, n = −0.5, δ = 1, Ra = 2 and Br = 5.

5.2. Natural Convection with Particle Sedimentation

Now we look at a more general situation by considering two parallel walls which are tilted at an
angle, giving rise to the possibility that particles may deposit. Figure 7 shows the effect of the particle
flux due to gravity. Figure 7a indicates that as Γg increases, more particles tend to move and concentrate
near the left wall (X = −1, see Figure 1); the particle concentration near the right wall decreases faster
as Γg increases, and when Γg = 5 there are almost no particles at the right wall. For the velocity profile,
the position of the maximum velocity tends to move slightly toward the left wall, perhaps due to an
increase in the particle concentration in that region. Figure 7b shows that as β increases, indicating an
increase or decrease in the X and Y component of the gravity, the velocity decreases and the particles
tend to concentrate near the left wall; the temperatures seem to decrease a little.
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Figure 7. Effect of particle flux due to gravity. (a) Effect of Γg on the velocity, concentration and
temperature profiles, when Γc = 1.0, Γµ = 0.1, β = 10

◦

, Le = 10, n = −0.5, δ = 1, Ra = 3, Br = 5
and φavg = 0.1. (b) Effect of β on the velocity, concentration and temperature profiles, when Γc = 1.0,
Γµ = 0.1, Γg = 1, Le = 10, n = −0.5, δ = 1, Ra = 3, Br = 5 and φavg = 0.1.

Figure 8 shows the effect of Γc. Unlike the case with the neutrally buoyant particles, when Γc

has a small value (0.1), the concentration now seems to decrease almost linearly in the X-direction.
As Γc increases, the pattern of high particle concentration near the region with larger magnitude of
velocity re-appears. Similar to the previous section, the effect of Γµ is opposite to that of Γc, as shown
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in Figure 8b. From Figure 8c, we can see that when Le is small, that is when the Brownian motion is
strong, the particles are more uniformly distributed.
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Figure 8. Effect of particle fluxes, Γc, Γµ and Le. (a) Effect of Γc on the velocity and concentration
profiles, when Γµ = 0.1, Γg = 1, β = 10

◦

, Le = 10, n = −0.5, δ = 1, Ra = 3, Br = 5 and φavg = 0.1.
(b) Effect of Γµ on the velocity and concentration profiles, when Γc = 1.0, Γg = 1, β = 10

◦

, Le = 10,
n = −0.5, δ = 1, Ra = 3, Br = 5 and φavg = 0.1. (c) Effect of Le on the velocity and concentration
profiles, when Γc = 1.0, Γµ = 0.1, Γg = 1, β = 10

◦

, n = −0.5, δ = 1, Ra = 3, Br = 5 and φavg = 0.1.

Figure 9 indicates that as Ra decreases, that is as the effect of the buoyancy force becomes less
noticeable, particle sedimentation under gravity becomes more significant; meanwhile the values of
the velocity and the temperature decrease. It should be noticed that the parametric studies of the
Brinkman number (Br), and the terms related to the shear-dependent viscosity (n and δ) are not shown
in this section, because the effects are similar to the Section 5.1. Figure 10 shows the effect of the bulk
(average) concentration (φavg). With a small value of φavg (0.05), the concentration profile decreases
monotonically along the X-direction, indicating that the particle distribution is dominated by the flux
term due to gravity. We can also notice that increasing φavg results in a higher viscosity, causing a
decrease in the velocity, viscous dissipation and the temperature.
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6. Conclusions

In this paper we study the buoyancy driven flow of a suspension between two long vertically
inclined walls. The suspension is modeled as a non-linear fluid, where the viscosity depends on the shear
rate and the particle concentration. The motion of the particles is modeled by a convection-diffusion
equation, where the particle transport flux is assumed to depend on the body force (gravity), and the
variation of the shear rate and viscosity. The numerical results indicate that natural convection flow
shows certain multi-component features noticed in flow of solid-fluid suspensions where the solid
particles tend to move and concentrate near the region with low shear rate. Furthermore, under the
effect of gravity, the particles tend to move and concentrate near the lower (left) wall; however, a small
Lewis number (stronger Brownian diffusion) can generate a more uniform concentration distribution.

Author Contributions: C.T. and W.-T.W. did the numerical simulations. W.-T.W. and M.M. derived all the
equations. M.M. supervised this work. All of the authors have provided substantial contributions to the
manuscript preparation.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Symbol Explanation
ρ Density
ε Specific internal energy
r Radiant heating
η Specific entropy density
g Gravity
H Characteristic length
k Thermal conductivity
ζ Coefficient of thermal expansion
.
γ Shear rate
Kc, Kµ Coefficients of particle flux
tp Particle response time
n Power-law index
a Particle radius
D Diffusion coefficient
µ Viscosity
θ Temperature
φ Volume fraction
p Pressure
β Inclination angle
x Spatial position
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v Velocity
b Body force vector
q Heat flux vector
N Particle flux
T Cauchy stress tensor
L Gradient of the velocity vector
D Symmetric part of the velocity gradient
I Identity tensor
grad or ∇ Gradient symbol
div Divergence operator
tr Trace operator
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