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Abstract: This study investigates the effect of an orthogonal-shaped reflecting breakwater on the
hydrodynamic characteristics of a vertical cylindrical body. The reflecting walls are placed behind
the body, which can be conceived as a floater for wave energy absorption. Linear potential theory is
assumed, and the associated diffraction and motion radiation problems are solved in the frequency
domain. Axisymmetric eigenfunction expansions of the velocity potential are introduced into properly
defined ring-shaped fluid regions surrounding the floater. The hydrodynamic interaction phenomena
between the body and the adjacent breakwaters are exactly taken into account by using the method
of images. Results are presented and discussed concerning the exciting wave forces on the floater and
its hydrodynamic coefficients, concluding that the hydrodynamics of a vertical cylindrical body in
front of an orthogonally shaped breakwater differ from those in unbounded waters.

Keywords: Orthogonal-shaped breakwater; wave reflections; vertical cylindrical floater; exciting forces;
hydrodynamic coefficients

1. Introduction

Coastal environments are the most economically important and intensely used among all areas
inhabited by humans [1]. In fact, it has been estimated that nearshore segment is expected to be the
largest and fastest growing wave energy market from 2020 to 2025 at a compound annual growth rate of
19.3% [2]. Despite the high energy potential available in offshore waves, several wave energy systems
have struggled to commercialize due to their: (a) high costs implicit in the installation, maintenance
and connection to the electrical grid; (b) low reliability due to harsh offshore ocean climates; (c) lack
of insurability surrounding offshore systems; and (d) potential negative environmental impact at the
installation location [3]. Thus, nearshore installations have been happening in almost all the European
regions and is a preferred choice by manufacturers owing to the fact that these installations offer better
efficiency than onshore ones and easier installations when compared with offshore locations.

To protect and maintain the boundaries of coastal regions, a common practice is to transform,
alter and armor shorelines or nearshore areas with a variety of structures, such as seawalls and
breakwaters. Breakwaters are widely used structures to reduce the intensity of wave action on the
shore. They are barriers that are frequently displaced perpendicularly to the dominant wave direction,
which absorb, diffract and reflect part of the wave energy, therefore reducing the amount of energy that
reaches shoreline. Within the framework of installing Wave Energy Converters (WECs) nearshore and
onshore, so as to use the already developed electric grid, cost efficient solutions may arise by installing
WECs in front and/or on existing coastal structures, such as breakwaters.

Previous studies on WEC-breakwater systems highlight how the presence of a breakwater as a
sea bottom mounted vertical wall can efficiently enhance the efficiency of the converter. For example,
the performance characteristics of an array of five wave energy heaving converters placed in front of a
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fully reflecting vertical breakwater have been numerically studied in [4], whereas the performance of
an array of heaving WECs, coupled with DC generators, in front of a breakwater, were numerically and
experimentally investigated in [5]. Similar studies concerning the solution of the corresponding wave
diffraction and radiation problems for the case of an arbitrary-shaped floater, in front of a vertical wall,
in regular and irregular seas have been presented in the literature [6–11]. Furthermore, breakwaters are
typically considered as the most suitable and, subsequently, the most researched maritime structures
for WEC integration. A number of reviews have been conducted regarding integrated WEC-breakwater
systems [12–15].

With respect to WEC-breakwater system, also floating breakwaters are favored for advantageous
reasons such as their relatively low construction costs, reduced dependencies on marine geological
conditions, low environmental impact, aesthetic considerations and flexibility [16]. A hybrid system
comprising of a WEC arranged in front of a floating pontoon-type breakwater, indicating its amplified
efficiency compared to the isolated case has been presented in [17–19]. To broaden the effective
frequency range of the breakwater-WEC system, a dual pontoon-WEC system consisting of two floating
pontoons and two Power Take Off (PTO) systems has been proposed in [20]. In addition, in [21,22] a
WEC has been examined, integrated into a floating breakwater, which is supported by a bottom seated
structure, moving in heave mode and driving a PTO system to produce power. In [23], a modular
floating breakwater system is studied combining the relative motions of the WEC and the breakwater
to increase system’s efficiency. Indicative, relevant reviews on other floating WEC-breakwater systems
are [24–27].

As an alternative to reflecting fully protecting breakwaters, permeable breakwaters have already
been implemented in the literature, in the form of a pile series [28,29]. Pile breakwaters comprising
of one or multiple rows of piles partially attenuate the wave energy due to turbulences and eddies
created around piles, preventing also effectively the shore from sediment siltation. The efficiency
of pile breakwaters was numerically and experimentally studied by many researchers, e.g., [30–32].
Permeable breakwaters also consist of perforated and slotted structures. These porous protection
structures are usually bottom seated, operating as permeable breakwaters increasing wave reflection as
their porosity decreases [33,34]. As far as WEC-permeable breakwater systems are concerned, the Wave
Star [35] can be considered as a WEC-pile breakwater. The machine, a prototype of which has been
placed at Nissum Bredning site [36], is equipped with a number of floats which are moved by the
waves to activate pumps, the pressure of which drives a hydraulic motor.

In recent decades, apart from vertical fully reflecting—and permeable—breakwaters, semicircular
breakwaters have aroused interest in the scientific community based on their advantages compared
to conventional vertical walls. Semicircular breakwaters reflect less and transmit more energy than
vertical ones at the same relative submerged depth [37,38]. Furthermore, the efficiency of submerged
plate breakwaters has been studied parametrically in [39,40]. Parameters such as the effect of wave
steepness, the relative depth, the relative submergence and angle of inclination affect the performance
of the breakwater. However, these types of breakwaters, to the authors’ knowledge, do not represent
wave energy conversion solutions.

In the present study, an orthogonal breakwater type is examined towards, nearshore or onshore
wave power absorption efficiency. Two bottom-fixed, vertical, fully reflecting walls of infinite length
are assumed, joined at a right angle (i.e., 90 degrees with each other), in an orthogonal configuration.
In the area formed by the walls’ angle, an array of WECs can be placed, receiving the benefits from
wave reflections on the breakwaters’ walls towards energy performance amplification. The V-shaped
arrangements of floaters have been presented in [41–43], integrated with Oscillating Water Column
devices in the outer and inner area of the formed corner, whereas, in [44,45], a sea-bottom-fixed vertical
cylinder in front of two orthogonal walls was studied in terms of its horizontal hydrodynamic forces.
In the present contribution the examined vertical cylindrical body can be conceived as a floater for
wave energy absorption, based on the heaving device principle. Several distances between the floater
and the vertical walls and wave heading angles are studied to investigate the effect of the walls on
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the body’s hydrodynamic characteristics. The presented theoretical model takes exactly into account
the hydrodynamic interaction phenomena between the floater and the reflecting fluid flow in front of
the vertical walls, and numerical results are presented in the frequency domain. The corresponding
diffraction and motion radiation problems are solved by applying the method of images (i.e., for the
effect of the vertical walls) and the method of ‘matched’ eigenfunction expansions (i.e., for the velocity
potentials in the fluid domains surrounding the body). The numerous presented results in the form
of figures, indicate the significant effect of the reflecting waves from the two walls on the floater’s
hydrodynamics. The latter are compared with the corresponding hydrodynamic forces on an isolated
WEC (i.e., without the presence of the breakwater) and on a WEC placed in front of a single vertical
fully reflecting wall (i.e., single breakwater).

This work is structured as follows: Section 2 describes the applied image method to simulate the
effect of the orthogonal breakwater on the floater; Section 3 formulates the diffraction and motion
radiation problems, while Section 4 presents the calculation of the hydrodynamic forces on the vertical
cylindrical floater based on the image method. In Section 5, numerical results are presented in terms of
exciting wave forces and hydrodynamic coefficients. Finally, the conclusions are drawn in Section 6.

2. Breakwater Simulation

A rigid, vertical cylindrical floater, placed in front of two fully reflecting vertical walls, forming a
right angle (i.e., 90 degrees), is considered. The walls are rigid, fixed on the sea bottom, with infinite
length, extending beyond the undisturbed free surface. The floater is exposed to the action of
monochromatic incident waves of linear amplitude H/2 and of circular frequencyω, that propagate
at angle β, relative to the horizontal axis x (see Figure 1). In order to describe the fluid flow around
the floater in front of the orthogonal breakwaters, the method of images is applied. According to this
method, the problem under investigation is equivalent to the one of an array of four floaters consisting
of the initial and its image bodies with respect to the two walls that are exposed to the action of surface
waves without the presence of the vertical walls. Thus, an equivalent problem of four-directional
incident waves is considered: one propagating at angle β, a second one at angle 180-β, a third one at
angle 180 + β and a fourth one at angle of 360-β, on an array of four floats, without the presence of the
breakwater (see Figure 2). For the solution of the diffraction problem the corresponding results of the
four incident wave trains are properly added to produce relevant exciting forces and moments. This is
similar for the solution of the radiation problem, where the effect of the image devices on the initial
floater’s hydrodynamics is properly taken into consideration (see Section 4).

The method of images has been applied in the past to tackle the diffraction and radiation problems
of a single or array of cylindrical bodies in channels [46–48]. In the present article, it is applied to
simulate the effect of two “pure” reflecting walls (i.e., infinite length) on the WEC’s hydrodynamics.
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Figure 1. 2-D and 3-D representation of a vertical cylindrical floater in front of an orthogonal 
breakwater: (a) plan view in 2-D; (b) side view −xz in 2-D; (c) side view −yz in 2-D; (d) plan view −xyz 
in 3-D; (e) side view −xzy in 3-D. 

Figure 1. 2-D and 3-D representation of a vertical cylindrical floater in front of an orthogonal breakwater:
(a) plan view in 2-D; (b) side view −xz in 2-D; (c) side view −yz in 2-D; (d) plan view −xyz in 3-D;
(e) side view −xzy in 3-D.
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Figure 2. 2-D and 3-D representation of the floaters in the image method: (a) plan view in 2-D; (b) 
side view −xz in 2-D; (c) side view −yz in 2-D. The image devices are denoted dashed; (d) side view 
−xyz in 3-D. The image devices are depicted in gray color. The dashed lines in black denote the 
location of the orthogonal breakwater. 
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angle of the two breakwaters. The floater is assumed to move only in heave direction; small 
amplitude heave motions are assumed. The water depth is denoted by d and it is constant, assuming 
that the sea bottom is flat and horizontal, whereas, the distance between the bottom of the floater 
and the sea bottom is denoted by h. A global, right-handed Cartesian co-ordinate system O-xyz is 
introduced with origin located at the sea bottom on the connection point of the two walls, with its 
vertical axis Oz directed upwards. Moreover, local cylindrical co-ordinate systems ൫ݎ௤, ,௤ߠ ,௤൯ݖ ݍ =1, . . ,4 are defined with origins at the intersection ൫ܺ௤, ௤ܻ൯ of the sea bottom with the vertical axis of 
symmetry of each body (i.e., the initial floater and its image devices—see Section 2). The distance 
between the walls and the center of the floater is denoted by L1 and L2 (see Figures 1 and 2). The flow 
is assumed to be incompressible, inviscid and irrotational, whereas, second- or higher-order 
phenomena are neglected. 

In the framework of the linearized potential theory, the fluid flow around the q floater of the 
arrangement (q = 1, 2, 3, 4, including the initial and its image floaters) can be described by the 
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Figure 2. 2-D and 3-D representation of the floaters in the image method: (a) plan view in 2-D; (b) side
view −xz in 2-D; (c) side view −yz in 2-D. The image devices are denoted dashed; (d) side view −xyz in
3-D. The image devices are depicted in gray color. The dashed lines in black denote the location of the
orthogonal breakwater.

3. Theoretical Modeling

In the present article, a floater of a radius a is considered placed at the inner area formed by the
angle of the two breakwaters. The floater is assumed to move only in heave direction; small amplitude
heave motions are assumed. The water depth is denoted by d and it is constant, assuming that the
sea bottom is flat and horizontal, whereas, the distance between the bottom of the floater and the sea
bottom is denoted by h. A global, right-handed Cartesian co-ordinate system O-xyz is introduced with
origin located at the sea bottom on the connection point of the two walls, with its vertical axis Oz
directed upwards. Moreover, local cylindrical co-ordinate systems

(
rq,θq, zq

)
, q = 1, . . . , 4 are defined

with origins at the intersection
(
Xq, Yq

)
of the sea bottom with the vertical axis of symmetry of each

body (i.e., the initial floater and its image devices—see Section 2). The distance between the walls
and the center of the floater is denoted by L1 and L2 (see Figures 1 and 2). The flow is assumed to be
incompressible, inviscid and irrotational, whereas, second- or higher-order phenomena are neglected.

In the framework of the linearized potential theory, the fluid flow around the q floater of the
arrangement (q = 1, 2, 3, 4, including the initial and its image floaters) can be described by the potential
function [4,5,44],

Φq
(
rq,θq, zq

)
= Re

[
ϕq

(
rq,θq, zq

)
e−iωt

]
(1)

where

ϕq
(
rq,θq, zq

)
= ϕ0

(
rq,θq, zq

)
+ ϕ

q
s

(
rq,θq, zq

)
︸                              ︷︷                              ︸

ϕ
q
D

+
4∑

p=1

.
xp

30ϕ
qp
3

(
rq,θq, zq

)
(2)
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In Equation (2), ϕ0 is the undisturbed incident wave component; ϕq
s is the scattered components

originating by all floaters of the arrangement, expressed in the co-ordinate system of body q; ϕq
D are the

diffraction components; ϕqp
3 is the radiation component induced around anybody q of the configuration

due to the forced oscillation of the p float in the heave direction with unit velocity amplitude; and
.
xp

30 is
the velocity amplitude in heave direction of body p.

The fluid domain is denoted by Ω and extends to infinity, the undisturbed free surface is denoted
by SF, which also extends to infinity. The volume of the cylinders is excluded from Ω as well as their
cross sections on the undisturbed free surface are excluded from SF. The mean wetted surface of the
q body q = 1, . . . , 4 is denoted by Sq. The underlying boundary value problem is described by the
following equations:

∇
2ϕq = 0, in Ω, (3)

−Kϕq +
∂ϕq

∂z
= 0, z = d, on SF (4)

∂ϕq

∂z
= 0, z = 0, in Ω (5)

∂ϕ
q
D

∂np = 0, on SP (6)

∂ϕ
qp
3

∂np = −iωδp,qxq
30nq

3, on SP (7)

where K = ω2

g ,. and g is the gravitational acceleration; ∂
∂np is the derivative in the direction of the

outward unit normal vector np. to the mean wetted surface Sp of the p cylinder; δp,q is the Kronecker’s
symbol; xq

30 is the amplitude of the linear heave motion of the q cylinder; and nq
3 is the generalized

normal component.
Furthermore, a radiation condition must be imposed stating that propagating disturbances must

be outgoing.
By applying the method of matched axisymmetric eigenfunctions expansions, the flow field

around the floaters (i.e., the initial and its image devices) is subdivided in two coaxial ring-shaped
fluid regions I, II, i.e., I: r ≥ a; 0 ≤ z ≤ d and II: 0 ≤ r ≤ a; 0 ≤ z ≤ h, in which different series expansions
of the velocity potential can be established. These series representations are solutions of the Laplace
equation (see Equation (3)) and satisfy the linearized conditions at the free surface (see Equation (4));
the kinematic condition at the sea bed (see Equation (5)); the kinematic boundary condition at the walls
of the floater (see Equations (6) and (7)); and the radiation condition at infinity. Furthermore, the velocity
potentials and their derivatives must be continuous at the vertical boundaries of neighboring fluid
regions. The associated continuity relations can be written as:

∂ϕq,I

∂rq
=
∂ϕq,II

∂rq
, rq = a; 0 ≤ θq ≤ 2π; 0 ≤ z ≤ h (8)

ϕq,I = ϕq,II, rq = a; 0 ≤ θq ≤ 2π; 0 ≤ z ≤ h (9)

Here, ϕq,I,ϕq,II are the velocity potentials of the q cylinder of the array at the I and II fluid
regions, respectively.

The velocity potential of the undisturbed incident wave ϕ0 propagating at angles β, 180- β, 180+ β
and 360- β can be written as:

ϕ0
(
rq,θq, zq

)
= −iω

H
2

∞∑
m=−∞

imΨ q
0,m

(
rq, zq

)
e−imθq (10)
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with
1
d
Ψ

q
0,m

(
rq, zq

)
= e−ikl0q cos (θ0q−β)

Z0
(
zq

)
dŹ0

(
zq

) Jm
(
krq

)
e−imβ (11)

Here, Jm
(
krq

)
is the m-th order Bessel function of first kind, k is the wave number related toω by the

dispersion equation; l0q is the distance between the center of the q floater and the origin of the global
co-ordinate system; θ0q is the angle formed by l0q and the horizontal axis; Z0 is defined by

Z0
(
zq

)
=

[
1
2

[
1 +

sin h(2kd)
2kd

]]−1/2

cosh
(
kzq

)
(12)

and Ź0
(
zq

)
is its derivative at zq= d.

In accordance with Equation (10) the diffraction, ϕq
D, and the radiation, ϕqp

3 , potentials can be
obtained as:

ϕ
q
D

(
rq,θq, zq

)
= −iω

H
2

∞∑
m=−∞

imΨ q
D,m

(
rq, zq

)
eimθq (13)

ϕ
qp
3

(
rq,θq, zq

)
= −iωxp

30

∞∑
m=−∞

Ψ
q
3,m

(
rq, zq

)
eimθq . (14)

The functions Ψ q
D,m, Ψ q

3,m are the principal unknowns of the diffraction and radiation problems.
In order to express the potentials in the form of Equations (13) and (14), Twerky’s multiple

scattering approach is implemented, taking into consideration the interaction phenomena between the
floaters of the array. The method which is applicable to arrays consisting of an arbitrary number of
vertical axisymmetric bodies, having any geometrical arrangement and individual body geometry,
has been described exhaustively in previous publications [49,50]; thus, it is not further elaborated
upon here.

Combining the above, the wave field outside the q cylinder can be written in the below extended form:

ϕq,I
(
rq,θq, zq

)
= −iω

H
2

d
∞∑

m=−∞

Rq
m0Z0

(
zq

)
eimθq − iω

H
2

d
∞∑

m=−∞

∞∑
n=1

Rq
mnZn

(
zq

)
eimθq (15)

Here, Z0 is defined by Equation (12), whereas Zn reads

Zn
(
zq

)
=

1
2

1 + sin
(
2a jd

)
2a jd



−1/2

cosh
(
a jzq

)
, j ≥ 1 (16)

where a j. are the real roots of
ω2 + a jg tan

(
a jd

)
= 0 (17)

The terms Rq
m0, Rq

mn of Equation (15) are presented in Appendix A.
Next, as far as the velocity potential in the lower region II is concerned, ϕq,II, can be written as:

ϕq,II
(
rq,θq, zq

)
= −iω

H
2

d
∞∑

m=−∞

δp,q
xq

30

H/2

z2
q −

(
1
2

)
r2

q

2hd

+ FII,q
m,0Λ

q
m0 + 2

∞∑
n=1

FII,q
m,nΛ

q
mncos

(nπzq

h

)eimθq (18)

The terms Λq
m0, Λq

mn and FII,q
m,0, FII,q

m,n are presented in Appendix B.
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4. Hydrodynamic Forces

Following the solution of the first-order boundary value problem, the exciting wave forces and
the hydrodynamic reaction forces acting on the q floater, q = 1,..,4 can be obtained by:

Fq
D,i = −iωρ

x

Sp

ϕ
q
DnidS (19)

Fqp
i,3 = −iωρ

x

Sp

ϕ
qp
3 nidS = iω

(
α

q,p
i,3 +

i
ω

bq,p
i,3

)
.
xp

30 (20)

Here , Sp is the mean wetted surface of the p floater; ρ is the water density; αq,p
i,3 , bq,p

i,3 are the added mass
and damping coefficients, respectively, of the q floater in the i-th direction due to the forced oscillation
of the p floater in heave direction.

Based on the method of images the exciting forces acting on a vertical cylindrical body in front of
an orthogonal breakwater exposed to the action of waves propagating at an angle β, equal to the sum
of the exciting forces acting on the initial body, for wave angles β, 180-β, 180+β and 360-β, assuming
the presence of image bodies, with respect to the breakwaters, without the presence of the vertical
walls. Table 1 summarizes the exciting forces and moments on a vertical cylindrical body in front of an
orthogonal breakwater, exposed to the action of a wave train of angle β.

Table 1. Exciting forces and moments on a vertical cylindrical body in front of an orthogonal breakwater.

F1
D,1 = F1

D,1,β + F1
D,1,180−β + F1

D,1,180+β + F1
D,1,360−β

F1
D,2 = F1

D,2,β + F1
D,2,180−β + F1

D,2,180+β + F1
D,2,360−β

F1
D,3 = F1

D,3,β + F1
D,3,180−β + F1

D,3,180+β + F1
D,3,360−β

F1
D,4 = F1

D,4,β + F1
D,4,180−β + F1

D,4,180+β + F1
D,4,360−β

F1
D,5 = F1

D,5,β + F1
D,5,180−β + F1

D,5,180+β + F1
D,5,360−β

In Table 1 the subscripts j = β, 180-β, 180+β, 360-β denote the wave heading angles for each
calculated exciting force F1

D,i, j, i = 1,2, . . . ,5.

Furthermore, the hydrodynamic coefficients A1,1
i,3 , B1,1

i,3 in the i-th direction of the initial cylindrical
floater due to its own forced oscillation in the heave direction can be derived by summing up properly
the motion dependent hydrodynamic coefficients α1,1

i,3 , b1,1
i,3 of the initial floater in the i-th direction

(i = 1,..,5) due to its forced oscillation in heave direction with the corresponding hydrodynamic
coefficients α1,p

i,3 , b1,p
i,3 on the initial floater in the i-th direction due to the forced oscillation in heave

direction of the image floaters (p = 2,3,4). In Table 2, the formulation for the added mass coefficients is
given. The same formula is applied to the damping coefficients.

Table 2. Hydrodynamic added mass of a vertical cylindrical body in front of an orthogonal breakwater.

A1,1
1,3 = a1,1

1,3 + a1,2
1,3 + a1,3

1,3 + a1,4
1,3

A1,1
2,3 = a1,1

2,3 + a1,2
2,3 + a1,3

2,3 + a1,4
2,3

A1,1
3,3 = a1,1

3,3 + a1,2
3,3 + a1,3

3,3 + a1,4
3,3

A1,1
4,3 = a1,1

4,3 + a1,2
4,3 + a1,3

4,3 + a1,4
4,3

A1,1
5,3 = a1,1

5,3 + a1,2
5,3 + a1,3

5,3 + a1,4
5,3
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5. Numerical Results

5.1. Validation of Results

In order to validate the accuracy of the presented theoretical model, a sea-bottom-fixed vertical
cylindrical body located in front of an orthogonal vertical wall is considered in order to compare
the results of the present method with the results from Ning et al. [44]. The examined cylinder of
radius α is placed at a water depth d/α = 1.0. The distances of the cylinder’s center from the vertical
walls are L1 = L2 = 1.5α (see Figure 1, assuming h = 0). Herein, the wave heading angle is β = π/6
(see Figure 1). The dimensionless horizontal exciting forces at x and y direction acting on the vertical
cylinder are presented in Figure 3, versus kα. The results are non-dimensionalized by the term of:
ρgdαH/2 (i.e., ρ is the water density; g is the acceleration due to gravity; H/2 is the wave amplitude).
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Figure 3. Horizontal-exciting forces on a bottom fixed cylindrical body placed in front of an orthogonal
breakwater using the method of images: (a) horizontal-exciting force on x-axis; (b) horizontal-exciting
force on y-axis.

In Figure 3, the outcomes obtained from the present theoretical method are compared with the
results from [44] with a very good agreement. More specifically, Figure 3a depicts the exciting forces
on the examined bottom fixed cylinder on x-axis, whereas, in Figure 3b, the corresponding forces
on the y-axis are depicted. The results from the present analysis concerning the horizontal-exciting
forces correlate excellent with the corresponding ones presented in the literature. Therefore, it can be
concluded that the present theoretical model can effectively simulate the effect that an orthogonal wall
has on the hydrodynamic characteristics of a vertical cylindrical body placed in front of it.

5.2. Test Cases

The method developed herein is applied for a floating vertical cylindrical body in front of an
orthogonal (right angle) breakwater (i.e., two bottom-fixed, vertical, reflecting, walls of infinite length
is assumed, joined at a right angle, in an orthogonal configuration). The cylindrical floater of radius α,
is floating at a water depth d = 3α, whereas, the distance between the floater’s lower surface from the
sea bottom equals h = 2α. The distances between the center of the floater and the vertical walls are
assumed equal, i.e., L1 = L2 (see Figure 1).

5.2.1. Effect of the Distance between the Walls and the Floater

In this section, the effect of the distance between the walls and the floater is presented, in terms
of its exciting forces and hydrodynamic coefficients. The considered distances equal to L1 = L2 = 2α,
4α, 6α, 8α, whereas the wave heading angle is assumed equal to β = π/6 (see Figure 1). The exciting
forces, F1

D,1, F1
D,2, F1

D,3 (see Equations (21)–(23)), are non-dimensionalized by the term of ρgα2H/2;
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the hydrodynamic coefficients, A1,1
1,3, A1,1

3,3 (see Equations (26)–(28)) by the term of ρα3 and the damping

coefficient B1,1
1,3, B1,1

3,3. are non-dimensionalized by the term ofωρα3.
In Figure 4, the dimensionless wave-exciting forces in surge, sway and heave directions

(i.e., F1
D,1, F1

D,2, F1
D,3) acting on the floater in front of an orthogonal breakwater are plotted against

the corresponding values acting on the same floater but in isolation condition (i.e., without the existence
of the vertical walls). It is evident that the presence of the vertical walls affects the exciting wave forces
at every examined wave number, irrespective of the distance between the floater and the breakwaters,
since the forces’ values do not follow the smooth decrease pattern as in the isolated floater’s case. It is
depicted that due to the reflected waves from the vertical walls the values of the exciting forces oscillate
around those on an isolated floater. Furthermore, it can be seen that, as the distance of the floater
from the vertical walls increases, the earlier (i.e., with respect to the wave numbers) the oscillatory
behavior of the exciting forces occur. More specifically, when the floater is placed near the walls
(i.e., L1 = L2 = 2α) the exciting forces attain higher values, than those of the isolated case, in a wider
range of wave numbers (i.e., for the L1 = L2 = 2α case the surge-exciting force have higher values than
the isolated case at kα ∈ [0,1.2] and [2.2, 3]). On the other hand, as the distance between the floater and
the wall increases, the exciting forces attain local maxima more often but in a narrow wave number
range (i.e., for the L1 = L2 = 8α case the surge-exciting force have higher values than the isolated case
at kα ∈ [0,0.3]; [0.5,0.85]; [0.95,1.1]; [1.4,1.8]; [2,2.2]; [2.3,2.6]; [2.8,3]). In addition, it is depicted that the
exciting forces tend to zero at several wave numbers. This behavior does not appear in the isolated
floater case. The zeroing of the exciting forces can be traced back to the interaction phenomena between
the floater and the vertical walls. It is also evident from the results that the presence of the vertical walls
quadruplicates the heave-exciting forces for wave number tending to zero, regardless the distance
between the floater and the vertical walls.
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Figure 4. Exciting forces on a floating cylindrical floater placed in front of an orthogonally shaped 
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on z-axis. The results are also compared with the corresponding values of the same isolated floater 
(i.e., without the presence of the walls). 

Figure 4. Exciting forces on a floating cylindrical floater placed in front of an orthogonally shaped
(right angle) breakwater using the method of images for L1 = L2 = 2α, 4α, 6α, 8α: (a) horizontal-exciting
force on x-axis; (b) horizontal-exciting force on y-axis; (c) vertical-exciting force on z-axis. The results
are also compared with the corresponding values of the same isolated floater (i.e., without the presence
of the walls).
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In Figure 5, the dimensionless hydrodynamic coefficients A1,1
3,3 and B1,1

3,3 are presented, against the
corresponding values of the same floater but in isolation condition. The differences between the
hydrodynamic coefficients of the floater with and without the presence of the orthogonal walls are
evident in the values of the heave hydrodynamic mass and damping coefficients. It is also notable that
the hydrodynamic coefficients of the body in front of the orthogonally shaped walls oscillate more
rapidly around the corresponding values referred to the isolated body when the distance between
the floater and the vertical walls is increasing. A similar conclusion was made for the case of the
exciting forces (see Figure 4, and related discussion). Furthermore, in compliance with the behavior of
the heave-exciting force in the low wave number regime (Figure 4c), the heave damping coefficients
have four times the value of the damping term of an isolated floater for kα tending to zero, regardless
the distance between the floater and the walls. As far as the zeroing of the damping coefficients is
concerned, this occurs at the same wave numbers where the heave-exciting forces vanish as well.
This can be explained on the basis of the Newman-Haskind [51] relations between the damping
coefficient and the exciting wave force on a floating body.Fluids 2020, 5, x FOR PEER REVIEW 11 of 22 
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Figure 5. Hydrodynamic coefficients of a floating cylindrical floater placed in front of an orthogonally
shaped (right angle) breakwater using the method of images for L1 = L2 = 2α, 4α, 6α, 8α: (a) heave
added mass due to motion of the body in heave; (b) heave damping due to motion of the body in heave.
The results are also compared with the corresponding values of the same isolated floater (i.e., without
the presence of the walls).

5.2.2. Effect of the Wave Heading Angle

In this section, the effect of the wave heading angle on the floater’s exciting forces is presented.
The considered wave heading angles equal to: β = π/6; π/4; π/3; π/2, whereas the distance between
the floater and the breakwaters is assumed L1 = L2 = 2α (see Figure 1). For the non-dimensionalizing
factor of the exciting forces, the reader is referred to Section 5.2.1.

In Figure 6, the dimensionless wave-exciting forces in surge, sway, heave directions(i.e., F1
D,1, F1

D,2, F1
D,3)

acting on the floater, when placed in front of an orthogonally shaped breakwater, for several examined
wave heading angles β are plotted. Due to symmetry, the surge-exciting force for β = π/6 equals the
sway-exciting force for β = π/3 (and vice versa). Similarly, the heave-exciting forces for β = π/6; π/3 are
equal. The results of Figure 6 depict that for kα < 1, the surge horizontal-exciting forces increase as the
wave heading angle decreases. On the other hand, for the same wave number range (i.e., kα < 1) the
sway-exciting forces evidently increase as the wave train angle also increases. It can be also seen that
the sway-exciting forces attain their maximum values for β = π/2 at 0 < kα < 1.2 and 1.8 < kα < 2.8
(i.e., due to symmetry the surge-exciting forces attain their maximum values, also for the same wave
number ranges, but for β = 0). As far as the wave heading angle β = π/3 is concerned, it can be seen
that the surge-exciting forces attain maximum values at 1.2 < kα < 1.8 (i.e., similar due to symmetry
for the wave heading angle β = π/6 and the sway-exciting values).
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In Figure 7, the horizontal and vertical-exciting forces applied on the examined floater are 
presented for several floater’s draughts α/h. From the depicted results, it is obvious that the 
increase of the floater’s draught leads to an increase of the horizontal-exciting forces (in surge and 
sway direction). This increase is strongly dependent on the floater’s wetted surface. In particular, 
the larger the draught of the floater is, the more pronounced are the horizontal-exciting forces. It is 
noted that the exciting forces in surge direction increase quite rapidly up to kα ≈ 0.6, where they 
attain their global maximum, and then decrease attaining their minimum values at 1.6 < kα < 1.9, 
regardless of the examined draught values. Similar, the sway-exciting forces attain two local 
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the draught increases, the observed minimization of the sway-exciting force is shifted at slightly 
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On the other hand, the heave-exciting forces decrease with the increase of the floater’s draught 
(see Figure 7c). For all the examined draughts the heave-exciting forces have a value four times 
higher than the corresponding one of the no-wall case (see also Figure 4 and related discussion) at 
small wave numbers (i.e., for kα tending to zero). A rapid decrease is also observed up to 0.6 < kα < 
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Figure 8 depicts the heave added mass and the heave hydrodynamic damping coefficients of 
the examined floater due to its motion in heave direction for several examined draughts. It can be 

Figure 6. Exciting forces on a floating cylindrical floater placed in front of an orthogonally (right angle)
breakwater using the method of images for β = π/6; π/4; π/3; π/2: (a) horizontal-exciting force on x-axis;
(b) horizontal-exciting force on y-axis; (c) vertical-exciting force on z-axis.

Concerning the heave-exciting forces it can be seen that they attain similar values at 0 < kα < 0.6,
regardless the examined wave heading angles, whereas, at 0.6 < kα < 2, the heave forces maximize for
wave angle β = π/2 (i.e., also for β = 0 for symmetry reasons). The heave-exciting forces minimize at
kα ≈ 0.775. This wave number corresponds to a wavelength equal to twice the distance between the
initial and the image floater [52].

5.2.3. Effect of the Floater’s Draught

The effect of the floater’s draught on its hydrodynamic characteristics is examined in the present
section. Several floater’s draughts are examined i.e.,α/h = 0.4; 0.5; 0.66; 1.0 (see Figure 1). The considered
distance between the floater and the vertical walls equals L1 = L2 = 2α, whereas the wave heading
angle is assumed equal to β = π/6. For the non-dimensionalizing factor of the exciting forces and
hydrodynamic coefficients, the reader is referred to Section 5.2.1.

In Figure 7, the horizontal and vertical-exciting forces applied on the examined floater are
presented for several floater’s draughts α/h. From the depicted results, it is obvious that the increase of
the floater’s draught leads to an increase of the horizontal-exciting forces (in surge and sway direction).
This increase is strongly dependent on the floater’s wetted surface. In particular, the larger the draught
of the floater is, the more pronounced are the horizontal-exciting forces. It is noted that the exciting
forces in surge direction increase quite rapidly up to kα ≈ 0.6, where they attain their global maximum,
and then decrease attaining their minimum values at 1.6 < kα < 1.9, regardless of the examined draught
values. Similar, the sway-exciting forces attain two local maxima at kα ≈ 0.5; 1.6 and a global minimum
at 0.75 < kα < 0.85. It is worthwhile to note that, as the draught increases, the observed minimization
of the sway-exciting force is shifted at slightly lower values of kα.
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Figure 7. Exciting forces on a floating cylindrical floater placed in front of an orthogonally shaped 
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Figure 7. Exciting forces on a floating cylindrical floater placed in front of an orthogonally shaped
(right angle) breakwater using the method of images for a/h = 0.4; 0.5; 0.66; 1.0: (a) Horizontal-exciting
force on x-axis; (b) Horizontal-exciting force on y-axis; (c) Vertical-exciting force on z-axis.

On the other hand, the heave-exciting forces decrease with the increase of the floater’s draught
(see Figure 7c). For all the examined draughts the heave-exciting forces have a value four times higher
than the corresponding one of the no-wall case (see also Figure 4 and related discussion) at small
wave numbers (i.e., for kα tending to zero). A rapid decrease is also observed up to 0.6 < kα < 0.8,
where the heave force attains minimum values. The observed minimum values are shifted to lower
wave numbers as the floater draughts increase.

Figure 8 depicts the heave added mass and the heave hydrodynamic damping coefficients of
the examined floater due to its motion in heave direction for several examined draughts. It can
be seen that the draught of the floater affects the added mass of the heaving device since higher
values of added mass are obtained for larger floater’s draughts. As far as the heave hydrodynamic
damping coefficients is concerned, their values increase as the draught of the floater decreases.
Furthermore, the damping coefficients values are four time larger than those of the no wall case
(see also Figure 5c and relative discussion) for small wave numbers. In addition, the wave numbers
where the heave damping coefficients minimize are the same with those that minimize the heave-exciting
forces (see also Figure 7c).
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floater in heave. 
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Figure 9. Hydrodynamic coefficients of a floating cylindrical floater placed in front of an 
orthogonally shaped breakwater using the method of images for a/h = 0.4; 0.5; 0.66; 1.0: (a) 
surge-added mass due to motion of the body in heave (b) surge damping coefficient due to motion of 
the body in heave. 

5.2.4. Effect of the Breakwater Type 

In the present section the results of the examined configuration (i.e., a floater in front of an 
orthogonally shaped breakwater) are compared with the corresponding ones of the same floater 
placed in front of a linear bottom mounted, fully reflecting, vertical wall [8,9]. Concerning the 
orthogonally shaped breakwater case, the floater is assumed to have a draught equals α/h = 0.5, 
whereas its distance from the vertical walls equals L1 = L2 = 2α (see Figure 1). As far as the 
linear-breakwater case is concerned, the same floater is considered in front of an infinite length 
wall, which is placed along the y axis. The distance between the floater and the vertical wall equals 
L = 2α (see Figure 10). In both examined configurations, the wave heading angle, relative to the 
horizontal axis x, equals β = π/6. The non-dimensionalizing factor of the exciting forces and 
hydrodynamic coefficients is presented to Section 5.2.1. 

Figure 8. Hydrodynamic coefficients of a floating cylindrical floater placed in front of an orthogonally
shaped (right angle) breakwater using the method of images for a/h = 0.4; 0.5; 0.66; 1.0: (a) heave added
mass due to motion of the floater in heave (b) heave damping due to motion of the floater in heave.

In Figure 9, the surge-added mass, A1,1
1,3, and the surge hydrodynamic damping coefficients, B1,1

1,3,
of the examined floater due to its motion in heave direction are presented for the examined draughts.
Regarding the surge-added mass (Figure 9a), it can be seen that it attains negative values at small
wave numbers, whereas, from kα > 0.5 its values are increased up to kα ≈ 0.6 where the surge-added
mass attains its maximum value. As far as the surge damping coefficient is concerned, it can be seen
that irrespectively of the floater’s draught the surge damping receives negative values at small wave
numbers (i.e., kα < 0.75), whereas, a rapid decrease of the damping values is noted up to kα ≈ 0.5.
This decrease is more pronounced in the large-draught cases (i.e., α/h = 1.0; 0.66). For all the examined
floater’s draught, the surge damping coefficients attain positive maximum values at kα > 0.75 with
successively decreasing values towards higher wave numbers. This maximum is shifted at slightly
lower values of kα as the floater’s draught increases.
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motion of the body in heave (b) surge damping coefficient due to motion of the body in heave.

5.2.4. Effect of the Breakwater Type

In the present section the results of the examined configuration (i.e., a floater in front of an
orthogonally shaped breakwater) are compared with the corresponding ones of the same floater placed
in front of a linear bottom mounted, fully reflecting, vertical wall [8,9]. Concerning the orthogonally
shaped breakwater case, the floater is assumed to have a draught equals α/h = 0.5, whereas its distance
from the vertical walls equals L1 = L2 = 2α (see Figure 1). As far as the linear-breakwater case is
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concerned, the same floater is considered in front of an infinite length wall, which is placed along the
y axis. The distance between the floater and the vertical wall equals L = 2α (see Figure 10). In both
examined configurations, the wave heading angle, relative to the horizontal axis x, equals β = π/6.
The non-dimensionalizing factor of the exciting forces and hydrodynamic coefficients is presented to
Section 5.2.1.
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breakwater cases (i.e., orthogonally shaped and linear). However, at small wave numbers, the 
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corresponding forces on the same floater in front of a single breakwater. As far as the heave 
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isolated case up to kα ≈ 0.2 and 0.6 for the added mass and damping coefficients, respectively. 

  
(a) (b) 

Figure 10. 2-D representation of a vertical cylindrical floater in front of a linear vertical breakwater:
(a) plan view of the floater-breakwater system; (b) floaters’ representation in the image method
(the image device is denoted dashed).

Figures 11 and 12 depict the surge, sway, heave-exciting forces and heave hydrodynamic
coefficients, respectively, of the described floater when the latter is placed in front of a linear breakwater.
The results are compared with the corresponding values of the right-angle breakwater case and the
isolated case.
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Figure 11. Exciting forces on a floating cylindrical floater placed in front of a linear breakwater using
the method of images: (a) horizontal-exciting force on x-axis; (b) horizontal-exciting force on y-axis;
(c) vertical-exciting force on z-axis. The results are compared with the corresponding values of the
same floater placed in front of a right-angle-shaped breakwater and in isolation condition (i.e., without
the presence of the breakwater).
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Figure 12. Hydrodynamic coefficients of a floating cylindrical floater placed in front of a linear
breakwater using the method of images: (a) heave added mass due to motion of the floater in heave
(b) heave damping coefficient due to motion of the floater in heave. The results are compared with the
corresponding values of the same floater placed in front of an orthogonal breakwater and in isolation
condition (i.e., without the presence of the breakwater).

The results of Figure 11 demonstrate clearly that when the floater is placed in front of an orthogonal
breakwater, the oscillatory behavior of the horizontal-exciting forces is more pronounced. In particular,
the values of the surge and sway-exciting forces are oscillating around the corresponding values of
the single-breakwater case. This is not the case for the heave-exciting forces since a similar variation
pattern is observed for the values of the heave forces in both breakwater cases (i.e., orthogonally shaped
and linear). However, at small wave numbers, the heave-exciting forces on the floater in front of an
orthogonal breakwater attain twice values than the corresponding forces on the same floater in front of
a single breakwater. As far as the heave hydrodynamic coefficients are concerned, it can be seen in
Figure 12 that, for the small wave numbers, the hydrodynamic coefficients in both breakwaters cases
attain larger values than the isolated case up to kα ≈ 0.2 and 0.6 for the added mass and damping
coefficients, respectively.

However, by successively increasing the wave number, the hydrodynamic coefficients decrease
up to kα ≈ 1, where both the breakwater cases and the isolated case depict comparable results.

5.2.5. Effect of the Length of the Walls

In the applied image method, the orthogonal breakwater is assumed as a pure reflecting wall of
infinite length. Thus, the effect of the length of the walls on the exciting forces and hydrodynamic
coefficients of the floater in front of an orthogonal breakwater is presented herein. The theoretical
outcomes from the method of images for an orthogonal breakwater of infinite length are compared
with the corresponding numerical results derived from the analysis of an orthogonal breakwater of
finite length. For the latter analysis, a panel numerical software HAQi [53] has been applied to the
cylinder breakwater system. The examined floater is assumed to have a radius α; draught equals
α/(d − h) = 2, whereas, its distance from the vertical walls equals L1 = L2 = 2α (see Figure 1). The water
depth equals d = 1.5α. As far as the length of each vertical wall in the finite orthogonal breakwater
case, it is assumed equal to 40α. In both examined configurations (i.e., infinite and finite breakwater)
the wave heading angle equals β = π/6. The non-dimensionalizing factor of the exciting forces and
hydrodynamic coefficients is presented to Section 5.2.1.

Figures 13 and 14 depict the surge, sway, heave-exciting forces and heave and surge hydrodynamic
coefficients, respectively, of the described floater when the latter is placed in front of an orthogonal
breakwater of finite length. The results are compared with the corresponding values of the orthogonal
breakwater case of infinite length.
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Figure 13. Exciting forces on a floating cylindrical floater placed in front of an orthogonal breakwater
of finite length: (a) horizontal-exciting force on x-axis; (b) horizontal-exciting force on y-axis;
(c) vertical-exciting force on z-axis. The results are compared with the corresponding values of
the same floater placed in front of an infinite length orthogonal breakwater.

Fluids 2020, 5, x FOR PEER REVIEW 17 of 22 

Fluids 2020, 5, x; doi: FOR PEER REVIEW www.mdpi.com/journal/fluids 

Figures 13 and 14 depict the surge, sway, heave-exciting forces and heave and surge 
hydrodynamic coefficients, respectively, of the described floater when the latter is placed in front of 
an orthogonal breakwater of finite length. The results are compared with the corresponding values 
of the orthogonal breakwater case of infinite length. 

  
(a) (b) 

 
(c) 

Figure 13. Exciting forces on a floating cylindrical floater placed in front of an orthogonal breakwater 
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Figure 14. Hydrodynamic coefficients of a floating cylindrical floater placed in front of an orthogonal
breakwater of finite length: (a) heave added mass due to motion of the floater in heave (b) heave
damping coefficient due to motion of the floater in heave (c) surge-added mass due to motion of
the floater in heave (d) surge damping coefficient due to motion of the floater in heave. The results
are compared with the corresponding values of the same floater placed in front of an infinite length
orthogonal breakwater.
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It can be seen from Figure 13 that the surge and sway-exciting forces for finite-length breakwaters
agree quite well with the ones obtained for the infinite-length vertical walls. It should be noted,
however, that discrepancies between these two cases do appear and, therefore, the infinite wall
assumption simulated theoretically by the method of images should be used with care. As far as the
heave-exciting forces is concerned, the consideration of a “pure” wave reflection in the infinite-length
case causes an overestimation of the values of the forces at small wave frequencies. More specifically,
for the examined finite-length wall case, the values of Fz start their variation close to the limiting
value of π (at ω = 0.05 rad/s). On the other hand, the heave-exciting forces on the floater, using the
image method (i.e., infinite wall-length), attain four times higher values at small wave frequencies
(i.e.,ω = 0.05 rad/s).

Regarding the heave and surge-added mass of the floater presented in Figure 14a,c and the surge
damping coefficient depicted in Figure 14d, both cases (i.e., finite and infinite wall length) attain similar
results. Few discrepancies do appear (i.e., atω < 0.2 rad/s). However, discrepancies are more intense
in the case of the heave damping coefficients (see Figure 14b) and especially for small wave frequencies
(i.e.,ω < 0.4 rad/s), where the infinite wall assumption overestimates the results of the corresponding
heave damping coefficient compared to the ones of the finite length case.

6. Conclusions

This study deals with the determination of the hydrodynamic loads on a vertical cylindrical
floater placed in front of an orthogonal breakwater. The image method is applied, assuming walls of
infinite length, to simulate the effect of the breakwater on the floater’s characteristics. Furthermore, the
multiple scattering approach has been used to evaluate the interaction phenomena between the initial
floater and its image bodies.

Several distances between the floater and the vertical walls; floater’s draughts and wave heading
angles have been investigated. Based on the theoretical computations shown and discussed in the
dedicated sections, the main findings of the present research contribution concern the effect of the
breakwater on the exciting wave forces and the hydrodynamic coefficients of the floater at every
examined wave number, which should not be neglected when designing a WEC in front of an orthogonal
breakwater. This effect—the significance of which is depending on the distance of the floater’s from
the vertical walls, its draught and the angles of the wave train—causes an increase or decrease of
the floater’s hydrodynamic forces at specific wave numbers compared to their isolated body results.
Additionally, it is shown that the effect of the examined orthogonal breakwater affects considerably the
device’s hydrodynamics compared to their corresponding values for the linear breakwater case and
the no-wall case.

Furthermore, from the comparisons between the finite length breakwater case and its infinite
counterpart, it can be obtained that the accuracy of the hydrodynamic forces on a floater in front
of an infinite length breakwater has limitations, especially in the low wave number band. These
discrepancies between the two configurations (i.e., finite and infinite breakwater length) can be traced
back to the pure wave reflecting assumption of the applied image method for the infinite breakwater
length which leads to an overestimation of the aforementioned physical quantities.

In conclusion, the effect of an orthogonal breakwater on the exciting wave forces and hydrodynamic
coefficients of a floater, when the latter is placed in front of the walls, increases or decreases depending
on the distance of the floater from the walls, the geometric characteristics of the floater, the wave
heading angle and the length of the vertical walls. Nevertheless, the present research will be continued
further by determining in detail the power efficiency of a WEC placed in front of a V-shaped breakwater
of an arbitrary forming angle between the vertical walls.
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Appendix A

The terms Rq
m0, Rq

mn of Equation (15) for the outer fluid domain I: r ≥ a; 0 ≤ z ≤ d read

Rq
m0 =
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)
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 (A1)

Rq
mn =

GI,q
m,n

Im
(
anrq

)
Im(ana)

+ FI,q
m,n

Km
(
anrq

)
Km(ana)

 (A2)

where
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 (A4)

In (A1), Jm is the mth order Bessel function of first kind; Hm is the mth order Hankel function of
first kind, whereas, in (A2) Im is the mth order modified Bessel function of first kind; and Km is the
modified Bessel function of the second type. Also, a j are the real roots of Equation (17) and k is the
wave number.

In (A4), FI,qp
3,m,0, FI,qp

3,m,n are Fourier coefficients of the q converter for the outer fluid domain I,

determined by the solution of p converter’s forced oscillation. The terms FI,p
3,m,n, FI,p

3,m,0 are Fourier
coefficients in the I fluid domain, when the converter p is assumed isolated in the water field, determined
by the solution of its forced oscillation problem. Furthermore, FI,q

D,m,0, FI,q
D,m,n are Fourier coefficients

derived by the diffraction problem in the outer fluid domain [49,50,54]. The GI,q
m,n term is presented

in [50] (Equation (31))[M1] ; p. 495).

Appendix B

The terms Λq
m0, Λq

mn presented in Equation (18) can be written as

Λ
q
m0 =

( rq

a

)m
, m , 0 (A5)

Λ
q
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Im
(nπrq

h

)
Im

(
nπa

h

) , m, n , 0 (A6)

Here, Im is the mth order modified Bessel function of first kind.
The terms FII,q

m,0, FII,q
m,n of Equation (18) equal to

FII,q
m,n = imFII,q

D,m,n +
4∑
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xp
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Fluids 2020, 5, 135 20 of 22

Here, FII,qp
3,m,0, FII,qp

3,m,n are Fourier coefficients of the q converter for the lower fluid domain II, determined

by the solution of p converter’s forced oscillation. Additionally, FII,p
3,m,n, FII,p

3,m,0 are Fourier coefficients in
the II fluid domain, when the converter p is assumed isolated in the water field, determined by the
solution of its forced oscillation problem. Furthermore, FII,q

D,m,0, FII,q
D,m,n are Fourier coefficients derived

by the diffraction problem in the lower fluid domain [49,50,54].
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