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Abstract: The release of available potential energy by growing baroclinic instability requires the
slope of the eddy fluxes to be shallower than that of mean density surfaces, where the amount of
energy released depends on both the flux angle and the distance of fluid parcel excursions against
the background density gradient. The presence of a lateral potential vorticity (PV) gradient is known
to affect the growth rate and energy release by baroclinic instability, but often makes the mathematics
of formal linear stability analysis intractable. Here the effects of a lateral PV gradient on baroclinic
growth are examined by considering its effects on the slope of the eddy fluxes. It is shown that the PV
gradient systematically shifts the unstable modes toward higher wavenumbers and creates a cutoff
to the instability at large scales, both of which steepen the eddy flux angle and limit the amount
of energy released. This effect may contribute to the severe inhibition of baroclinic turbulence in
systems dominated by barotropic jets, making them less likely to transition to turbulence-dominated
flow regimes.
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1. Introduction

Lateral gradients of potential vorticity (PV) are responsible for several of the most remarkable
features studied in the field of geophysical fluid dynamics. This “β-effect” (so named because
it often refers to the meridional gradient of planetary vorticity via a linear approximation to the
Coriolis parameter) is in many ways paradoxical, in that it implicates many fundamental concepts
from different branches of fluid dynamics in a somewhat opaque fashion. The effect is associated
with the development of laterally sheared jets which simultaneously suppress cross-stream mixing
(e.g., [1–3]) while enhancing the mixing in the streamwise direction (e.g., [4]), establishes fundamental
length scales where both waves and turbulence are of leading-order dynamical importance (e.g., [5]),
imparts anisotropy into the inverse cascade of kinetic energy (e.g., [6]), and reinforces its own flow
structures through upgradient momentum fluxes (e.g., [7]). These dynamics are most readily observed
on gas planets (e.g., [8,9]), but also have terrestrial analogs (e.g., [10,11]) which can play important
roles in weather and climate [12,13].

The β-effect is known to exert a strong influence on the energetics of chaotic flows, in both the
transition from linear instabilities to nonlinear turbulence (e.g., [14]) and in the “arrest” phase where the
upscale energy cascade is either steered into predominantly zonal motions (e.g., [15]) or dissipated by
large-scale friction (e.g., [16]). The zonation caused by β results in the appearance of persistent coherent
structures that can emerge even without an upscale cascade [17–19] and can be studied based on their
statistical equilibria (e.g., [20–22]). The most well-recognized of these coherent structures are laterally
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sheared jets that can suppress or completely eliminate baroclinic instabilities (hereafter BCI; [23–26]).
Recent studies of BCI suppression (e.g., [14,27]) noted that the suppression process tends to occur
in distinct stages, where linear instability first begets the onset of baroclinic turbulence, followed by
evolution of the flow’s shear and stratification that stabilizes the flow and prevent further significant
changes. References [24,28] attribute the suppression partly to meridional confinement of normal
modes of instability, wherein the PV gradient restricts the horizontal displacement of fluid parcels
and thus limits their ability to tap available potential energy. The suppression is also partly due to
a positive feedback loop in which upgradient momentum fluxes reinforce the jet, both enhancing
its PV gradient and distorting the normal modes so that they become less coherent. The role of β in
this process is to generate a horizontally convergent momentum flux that begins the process of jet
reinforcement [28].

Though much interest in β-plane dynamics has justifiably tended toward these later-stage,
nonlinear effects, PV gradients were also shown to have an effect on the linear stability of flows
(e.g., [14,29–31]). Linear stability has been shown to be key for understanding the tendency of β-plane
jets to be organized into flow states that are marginally stable to baroclinic instability (“baroclinically
adjusted”, e.g., [14,32]), and may also influence how flows transition from turbulent- to jet-dominated
states (e.g., [33]). It was recognized in [34] that the linear instability of baroclinic flows can be attributed
mechanistically to the release of available potential energy when fluid parcels follow trajectories that
are shallower than density surfaces, where the amount of potential energy released depends on the
angle the trajectory follows [29,35]. This simple geometric description of baroclinic instability has
become a commonly used tool for teaching the basics of instabilities and turbulence (cf. [31]).

The purpose of this study is to examine the effect of β on baroclinic instability using the above
geometric interpretation; that is, how β affects the angle of fluid parcel trajectories for growing
baroclinic modes. A combination of theory and numerical modeling will be used to demonstrate that β

suppresses baroclinic growth by forcing parcels to follow trajectories that are suboptimal for potential
energy release. The article concludes with perspectives on these results with regard to the behavior of
more realistic flows, and opportunities for future work.

2. Theory

Consider a Boussinesq fluid under the quasigeostrophic (QG) approximation, and for simplicity
assume a doubly periodic domain in the horizontal bounded by rigid surfaces in the vertical. The set
of state variables that will be sufficient for this study include the horizontal geostrophic velocity,
u = (u, v), the ageostrophic vertical velocity, w, buoyancy perturbation, b, and QG potential
vorticity, q (QGPV). The Coriolis parameter, f = f0 + βy, will consist of a fixed reference value,
f0, and meridionally varying component with β = ∂ f /∂y > 0. The buoyancy frequency associated
with the Boussinesq background state will be denoted N2, and will be treated as a positive constant.

Following Taylor and Ferrari [36], the buoyancy and velocity fields will include a background
state which is assumed to be in thermal wind balance, such that the total buoyancy and velocity are
given by

bT(x, y, z, t) = b(x, y, z, t) + M2y (1)

uT(x, y, z, t) = u(x, y, z, t) + U(z)i,
∂U
∂z

= −M2

f0
, (2)

and are related via a constant lateral buoyancy gradient, M2. The prognostic equations will solve for
the perturbations away from this background state. Of primary interest in this study are the budgets
for the buoyancy and QGPV, which for simplicity will use no diffusivity or viscosity,
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Db
Dt

+ vM2 + wN2 = 0 (3)

Dq
Dt

+ βv = 0, (4)

and where the QGPV is related to the state variables via the QG streamfunction, ψ:

q = ∇2
hψ +

f 2
0

N2
∂2ψ

∂z2 (5)

−∂ψ

∂y
= u ;

∂ψ

∂x
= v ; f0

∂ψ

∂z
= b. (6)

Here D/Dt = ∂t + uT · ∇h is the material derivative using the horizontal gradient operator
∇h =

(
∂x, ∂y

)
, which will be distinct from the three dimensional gradient operator, ∇ =

(
∂x, ∂y, ∂z

)
,

used further on. With the doubly periodic domain a Reynolds averaging will be employed, indicated by
(·), such that the overbar indicates a horizontal average in both directions and primes indicate
deviations from this average. Please note that with this flow and domain configuration the case where
β = 0 essentially constitutes the classic Eady problem [34]. The emergent dynamics when β > 0 will
be the focus of this study.

Consider a scenario of growing baroclinic instabilities, which are marked by a temporal increase
in the magnitude of the eddy available potential energy, b′2/2N2 (EPE), and eddy potential enstrophy,
q′2/2. The budgets for these variables can be obtained through multiplication and averaging of
Equations (3) and (4), and are given by

1
2N2

∂b′2

∂t
= −v′b′

M2

N2 − w′b′ (7)

1
2

∂q′2

∂t
= −βv′q′. (8)

Please note that the periodicity of the domain and horizontal averaging has allowed the advection
and triple correlation terms to be eliminated from these budgets. We first observe that in order for
the eddy potential enstrophy to grow in time we must have a QGPV flux that is directed down the
background QGPV gradient, which for β > 0 implies that v′q′ < 0. Furthermore, assuming w′b′ is
positive (indicating an increase in the eddy kinetic energy, whose budget is not shown here), in order
for the EPE to grow in time we must have v′b′M2 < 0, so that the horizontal eddy buoyancy flux is
also downgradient. Finally, we must have

w′b′

v′b′
= −Cb

M2

N2 , with 0 < Cb < 1. (9)

The parameter Cb describes the slope of the eddy buoyancy fluxes, which for growing instabilities
must fall between the horizontal (Cb = 0) and the mean isopycnal slope, Sb = −M2/N2 (Cb = 1).
These bounds on Cb establish the concept of the “wedge of instability” (e.g., [29,34,35,37]), inside which
the buoyancy force performs positive work on the parcel and tends to vertically accelerate the parcel
away from its initial position, increasing the growth of the instability. The seminal work of Eady [34]
established the well-known result that the EPE release is maximized when Cb = 1/2, though this
value must be interpreted with caution because it is based on a heuristic argument concerning the
displacement of individual fluid parcels rather than the fluid as a whole. Note also that Cb must be
zero at the vertical boundaries in order to satisfy the zero flux boundary conditions, implying that Cb
varies with z.
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The concept of the eddy flux slope optimizing (or limiting) potential energy release is a useful
tool for teaching the mechanics of baroclinic instability and its energetics. Here the intent is to take
this concept a step further to explore how β modulates this energy release through its influence on Cb.
To this end, note that one can solve for Cb directly by substituting (9) into (7), which leads to

Cb = 1 +
1
2

∂b′2
∂t

v′b′M2
. (10)

This expression is consistent with the assumption laid out in (9)—assuming a growing mode the
numerator of the second term on the right is positive and (as mentioned previously) its denominator is
negative, so that their ratio is negative. Thus, the role of this term is to decrease Cb below one, so that
the buoyancy flux slope remains within the wedge of instability.

A lesser-known budget can be obtained by multiplying (3) by q and (4) by b, and after application
of the Reynolds averaging one arrives at a prognostic equation for the eddy covariance of the buoyancy
and QGPV,

∂q′b′

∂t
= −v′b′β− v′q′M2 − w′q′N2. (11)

In similar fashion to (9), one may define the slope of the eddy QGPV flux in terms of the mean
isopycnal slope,

w′q′

v′q′
= −Cq

M2

N2 , (12)

which can in turn be substituted back into (11) to obtain

Cq = 1 +
∂q′b′

∂t

v′q′M2
+

v′b′β
v′q′M2

. (13)

Please note that there is no a priori expectation that the tendency of q′b′ must be positive (e.g., q′

and b′ could be anticorrelated), or that Cq would have the same bounds as Cb.
The significance of Cq can be seen by using thermal wind balance and leveraging the double

periodicity and Reynolds averaging to derive a relationship between the slope of the eddy QGPV and
buoyancy fluxes,

w′q′

v′q′
=

∂w′b′
∂z

∂v′b′
∂z

− N2

f0

∇w′ · D′
∂v′b′

∂z

, (14)

where the term on the right involves the dot product of the three-dimensional gradient of w with the
QGPV induction vector, D = (v,−u, f0

N2 b) [38]. Assuming v′b′ varies rapidly in the vertical compared
to Cb, one may substitute (9) and (12) into this expression to obtain

Cq ≈ Cb +
N4

M2 f0

∇w′ · D′
∂v′b′

∂z

. (15)

This solution for Cq may then be substituted into (13), yielding

Cb = 1− N4

M2 f0

∇w′ · D′
∂v′b′

∂z︸ ︷︷ ︸
1

+
∂q′b′

∂t

v′q′M2︸ ︷︷ ︸
2

+
v′b′β

v′q′M2︸ ︷︷ ︸
3

. (16)



Fluids 2020, 5, 142 5 of 10

The terms of this equation are labeled with circled numbers for easy reference here and in Section 3.
Within this expression for Cb consider specifically term 3 . By the discussion following (7)–(9), both the
numerator and denominator of this term are negative for growing instabilities, implying that the full
term is guaranteed to be positive as long as β > 0. The effect of this term is thus to always increase
the slope of the eddy buoyancy flux. Assuming that Cb tends toward the optimal value of 1/2 for the
β = 0 case, the hypothesis pursued here is that the effect of β is thus to drive the slope of the buoyancy fluxes
steeper than their optimal value, limiting the generation of EPE. This hypothesis is tested, and the role of
each term in (16) evaluated, using the numerical experiments discussed next.

3. Numerical Simulations and Results

The spectral flow solver Dedalus [39] was used to create a 20-layer quasigeostrophic (QG) model
with which to test the behavior of Cb and the growth of eddy energy due to changes in β. Since the focus
here is on the growth phase of baroclinic instabilities, the linearized QG potential vorticity (QGPV)
equations are solved within each layer, which prevents both nonlinear energy transfers between
wavenumbers and the formation of jets. To be consistent with (7) and (8), the equations are inviscid
and employ no bottom drag. The model is doubly periodic in the horizontal directions, with each
layer containing 512× 512 gridpoints and featuring a deformation radius of Ld = 4.5 km. The primary
advantage of this domain geometry is that the Dedalus solver allows the QGPV equation for each layer
to be defined independently from one another, so that no explicit discretization or spectral basis for the
vertical direction is required (the layers are coupled via the vortex stretching terms by defining algebraic
equations for q corresponding to each layer—see the Supplemental Materials). The grid spacing is
set to be ∆x = 2.5 Ld, and the background velocity in each layer n is Un = 0.025− (n− 1)/19 m s−1.
The strength of the background PV gradient is measured by defining the nondimensional variable
β∗ = βL2

d/U1. Five simulations were run, spanning choices of β∗ = {0, 0.5, 1.0, 1.5, 2.0}.
The simulations were initially seeded with random noise at all wavenumbers in the QGPV field

in each layer. Only a relatively small subset of the wavenumbers resolved by the grid were linearly
unstable and exhibited exponential growth (e.g., [31]), and these modes quickly became distinguishable
from the ambient noise. The models were run for 20,000 timesteps, with an initial timestep ∆t = 3600 s.
Since Dedalus uses an adaptive timestep, the actual simulated time for each run varied between 1600
and 1800 days, or approximately 40 to 45 times the Eady growth timescale. Snapshots of the model
output were taken every 100 timesteps (for 200 snapshots in total).

At each output time t the linear growth rate for each zonal wavenumber k was measured as

σt(k) =
1

2∆t
log

(
u′t(k) · u′t(k)

u′t−1(k) · u′t−1(k)

)
, (17)

which essentially measures the ratio of the eddy kinetic energies at successive snapshots (for details
see [14], Equations (11) and (12)). Because there is no dissipation or bottom drag the fields grow
exponentially until the simulation is terminated, and would continue to grow in this way if the
simulations were not stopped. Thus, the simulations were stopped after the diagnostics exhibited a
steady growth rate, which comprised approximately the final 150 snapshots. The model output was
averaged over the final 100 snapshots to produce the results shown here. To be consistent with the
averaging operation defined previously, the values of each variable at each gridpoint are treated as
“prime” quantities, which are multiplied and averaged over the full horizontal domain to produce
the mean eddy covariances. The first and last layers are ignored in this analysis to avoid the QGPV
gradient associated with the temperature gradient at the boundaries (e.g., [31]), and one more layer
is sacrificed from the output in order to calculate b′ via the vertical derivative of ψ′. Other layerwise
quantities such as q′ and u′ are averaged to the layer interfaces so that they are colocated with b′.
Thus, only output from the remaining seventeen interior layers is considered.
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Figure 1 shows the time-averaged values of Cb (panel a), Cq (panel b), and the terms comprising the
solution for Cb in (16) (panel c) as a function of the model layer. Please note that values for the β∗ = 0
case (blue line) are only shown in panel (a), since there is negligible potential enstrophy generation
and the theory for Cq becomes invalid with no background QGPV gradient. The average of each
curve over all layers is shown using the colored dots on the left side of each panel. It is immediately
clear that the slope of the eddy buoyancy fluxes varies significantly across layers, changing by around
a factor of two for Cb and up to a factor of three for Cq at larger values of β∗. This supports the
aforementioned cautionary note about using parcel excursion theory to interpret the behavior of the
full fluid continuum, as the layerwise values of Cb in the β∗ = 0 case deviate significantly from the
predicted optimal value of 1/2 even though the domain average is relatively close (0.4, blue dot).
Both Cb and Cq decrease toward the vertical boundaries because the vertical eddy fluxes must tend to
zero to satisfy the no-flux boundary conditions, while the horizontal fluxes do not. It is also evident
that increasing β∗ serves to increase the mean value of both Cb and Cq, consistent with the hypothesis
following (16).

10 10 10 151515 555
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1.6

2.0
Cb Cq Cb termsa b c
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a b c

Legend
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Figure 1. Values of (a) Cb, (b) Cq, and (c) the component terms of Cb in (16), across the interior model
layers. Mean values for each curve are shown by the dots on the left side of each panel.

Of more significant interest is the behavior of the terms contributing to Cb in (16), namely how
each of them is affected by changes in β∗ (Figure 1c). In this panel both terms 2 and 3 are calculated
directly from the model output, and term 1 is shown to be the residual from subtracting the other
terms from the calculation of Cb. The gross behavior of these terms is consistent with the predictions
from theory; term 3 is positive definite and has mean values which increase with larger β∗, and term
2 must be negative to offset the positive values from 3 to keep the eddy flux slope within the wedge

of instability. Term 1 also provides a negative-definite contribution to this budget, whose magnitude
increases with larger β∗. Perhaps the most interesting feature of these terms is that increases in Cb with
increasing β∗ are not driven only by the explicit dependence of β∗ in 3 , which increases relatively
little as β∗ grows. Rather, Cb is also affected by a decrease in the magnitude of 2 , which is partially
offset by an increase in the magnitude of 1 . Thus, all three labeled terms in (16) play a role in the
steepening of the buoyancy fluxes as β∗ becomes larger.

To investigate further, each output snapshot was Fourier transformed to obtain the values of each
term in as a function of zonal (k) and meridional (l) wavenumber. Since the fastest growing mode in
the linear instability problem corresponds to the gravest meridional mode, only the time-averaged
results for l = 0 are shown here. Figure 2a shows the diagnosed growth rates from layer 10,
following the method described in (17) for calculating σt. The curve for the β∗ = 0 case, corresponding
to the Eady model, matches the theory shown by [31], where the short-wave cutoff occurs at the
normalized (nondimensional) wavenumber µ = kLd = 2.4 and maximal nondimensional growth rate
σ = 0.31 occurs at µ = 1.61. The curves for β > 0 are shifted and tail off toward higher wavenumbers,
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akin to solutions of the Charney problem [40,41]; however, modes smaller than µ ≈ 3 failed to
demonstrate steady growth rates and featured erratic behavior of Cb, and are thus excluded from
this analysis.

µ

a

0

0.1

0.2

0.3

0

µ
0 01 12 23 3

0.5

1.0

0

0.5

1.0

1.0
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�2.0

+�
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Change in slope due to limiting �y
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c d

e

Figure 2. (a) Diagnosed growth rates, (b) behavior of the terms in (16), (c) values of Cb, and (d) values
of Cb weighted by growth rate, as functions of the nondimensional wavenumber µ. The gray dashed
lines indicate the most unstable Eady wave at µ = 1.61. The legend for these plots is the same as in
Figure 1. (e) Schematic showing the steepening of the buoyancy flux slope when meridional parcel
excursions δy are limited as β∗ increases.

Figure 2b shows the behavior of the terms in (16) as a function of µ. As predicted, the values of
3 (solid lines) are always positive and become greater as β∗ increases. These curves bend upward

toward smaller wavenumbers, unlike those of 1 and 2 , which appear to be constant and to trend
linearly at small wavenumbers, respectively. Conversely, at large wavenumbers the effect of 3 tends
to zero, and the tendency for the slope to remain in the wedge of instability becomes a competition
between 1 (negative values) and 2 (positive values). As shown in (14) the presence of the gradient
operator in the numerator of 1 suggests that this term should trend linearly with µ, which appears
to be approximately the case for larger wavenumbers. Interestingly, 2 transitions from negative
to positive as one moves toward higher wavenumbers, with the transition point occurring near the
short-wave cutoff for the Eady problem. Investigation of these behaviors at large wavenumbers are
beyond the scope of this study, but are certainly worthy of further consideration.

Panel (c) shows values of Cb as a function of µ, where the slope of the unstable modes essentially
overlap each other regardless of the value of β∗ except at large wavenumbers. This suggests that near
the deformation radius the slope of the modes becomes set by their physical size (i.e., distance of
their meridional oscillations) rather than by β∗. In the Eady case (blue line) where β∗ imposes no
constraint, the slope of the modes transitions smoothly from the isopycnal slope (Cb = 1) at small
scales to horizontal (Cb = 0) at the domain scale. The gray vertical dashed lines indicate the most
unstable Eady mode at µ = 1.6, at which conversion of EPE to eddy kinetic energy is maximized.
This corresponds to the optimal buoyancy flux slope of Cb = 0.5 (horizontal dashed line), affirming
that energy conversion is maximized along the direction of the most unstable linear mode (e.g., [35]).
This behavior stands in contrast to the cases β∗ > 0, where because β∗ imposes a large-scale cutoff
(panel a) the curves terminate at large scales with Cb > 0. Because the growth curves are shifted
toward larger wavenumbers, the most unstable linear modes no longer correspond to the optimal
slope Cb = 0.5; rather, they occur at steeper slopes where potential energy conversion is less efficient.

Finally, these curves can be interpreted in the context of Figure 1a, which showed the
domain-averaged values of Cb calculated in physical space. The domain averaging essentially
represents an average over all wavenumbers, but is weighted toward the more energetic, faster-growing
modes. To this end, Figure 2d shows values of Cb in panel (c) weighted by the growth rates in panel (a),
and normalized so that the β∗ = 2.0 curve has a peak value of one. Here it is evident that the
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tendency for the growth curves to shift toward higher wavenumbers at larger β∗ means that the
domain-averaged Cb becomes weighted toward steeper modes.

In summary, the tendency for Cb to increase with β∗ occurs because a nonzero β imposes
a threshold wavenumber above which the flow remains linearly stable. This prevents larger,
shallower modes from contributing to the domain-averaged value of Cb, and restricts instability
to smaller waves which are less efficient at generating EPE (e.g., Appendix B in [42]). These small
waves also are oriented at steeper slopes, further inhibiting EPE generation. A schematic depiction
of this behavior is shown in Figure 2e. For a given vertical fluid parcel excursion δz, increasing β

restricts the horizontal distance δy the parcel can travel. The overall parcel trajectory thus becomes
steeper, occurring along paths that are suboptimal for EPE generation. Even if the growth rates are
not reduced significantly (panel a), limiting δy means that less EPE is generated overall irrespective of
the trajectory. Together these effects can severely inhibit EPE generation (and thus eddy formation),
possibly helping to explain observed “threshold behavior” (e.g., [33]) where the flow rapidly switches
from eddy-dominated to jet-dominated states despite only small increases in the effective β.

4. Conclusions

A useful mnemonic for teaching the concept of slope is “rise over run”, with the “rise” referring to
the change in vertical position and the “run” referring to the change in horizontal position. The same
mnemonic can be used to understand the effect of β in inhibiting potential energy release by baroclinic
instability. Two principle restoring forces exist in geophysical fluid dynamics: a vertical restoring
force set by the density stratification that controls the “rise”, and a horizontal restoring force set
by the potential vorticity gradient (a “half-cycle Coriolis force”, e.g., [43]) that controls the “run”.
Thus, when β is increased and the “run” is reduced, the slope of the eddy fluxes is increased.

The slope of the eddy fluxes depends on the horizontal wavelength, with larger waves naturally
having shallower slopes and shorter waves steeper slopes. When β = 0 the slopes within the range
of unstable wavenumbers smoothly transition from the isopycnal slope at the short-wave cutoff to
zero at the domain scale (Figure 2a, blue line). Thus, the set of unstable modes occupies the full
extent of the wedge of instability. Nonzero β restricts the unstable modes to a progressively smaller
portion of this wedge; by imposing a long-wave cutoff, the eddy transport is forced to become steeper,
inhibiting its ability to extract potential energy both by forcing it along suboptimal slopes and by
limiting the distance of its horizontal excursions. This manifests in reduced linear growth rates and
would likely imply a reduced ability to overcome the barotropic governor (e.g., [24]) and manifest
baroclinic turbulence from a marginally stable barotropic jet.

This study focused on a relatively narrow portion of the baroclinic life cycle, namely the linear
growth phase in the limit of constant β. An interesting extension of these results might be found by
exploring a flow configuration similar to that of [14], who found that linear growth rates increased with
the strength of a spatially varying β. Much of the theoretical framework introduced here would still
apply when β is nonconstant or even negative, albeit any expectations about its effects would have to
be made depending on the specific flow configuration. It would be interesting to explore whether this
theory has applications for flows where sloping bathymetry introduces an “effective β” and affects the
instability of the baroclinic modes (e.g., [44]). It would likely be possible to apply some of the theory
here to nonlinear or baroclinically adjusted flows as well (i.e., including jets or lateral shears) with
appropriate modifications to the averaging, if necessary. These topics would make for interesting new
perspectives on longstanding knowledge about β-plane dynamics.

Supplementary Materials: The Dedalus and postprocessing scripts used in this manuscript are available online
at https://github.com/sdbachman/Linearized-QG.
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