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Abstract: The microchannel flow model postulates that stress-strain behavior in soft tissues is
influenced by the time constants of fluid-filled vessels related to Poiseuille’s law. A consequence of this
framework is that changes in fluid viscosity and changes in vessel diameter (through vasoconstriction)
have a measurable effect on tissue stiffness. These influences are examined through the theory of the
microchannel flow model. Then, the effects of viscosity and vasoconstriction are demonstrated in
gelatin phantoms and in perfused tissues, respectively. We find good agreement between theory and
experiments using both a simple model made from gelatin and from living, perfused, placental tissue
in vitro.

Keywords: microchannel flow model; elasticity; shear wave speed; stress relaxation time constant;
placenta; vasoconstriction

1. Introduction

Tissue elasticity measurements can provide valuable information related to pathological changes
in tissues. Therefore, elastography has been extensively applied to the diagnosis of normal and
abnormal conditions of tissues such as breast, liver, prostate, thyroid and placenta [1,2]. For example,
Athanasiou et al. [3], in a study on 48 women with benign or malignant breast lesions, showed that
elasticity of malignant lesions was higher than benign cases. Nabavizadeh et al. [4] compared the
complex elasticity parameters such as storage and loss moduli and also the loss tangent of malignant
versus benign breast tumors and stated that these parameters could serve as potential biomarkers.
Wang et al. [5] reported a significant correlation between liver stiffness and fibrosis scores in 320 patients.
Bavu et al. [6] in a study on 113 patients with hepatitis C virus used supersonic shear imaging (SSI)
and showed that the SSI elasticity assessments are useful for evaluating fibrosis stages of the livers.
In a study to investigate the tissue elasticity measurements for characterizing the normal versus
cancerous prostate, Hoyt et al. [7] reported that the stiffnesses of cancerous prostates were significantly
higher than the normal cases and suggested that tissue elasticity could be used as a cancer detection
biomarker. Edwards et al. [8] summarized several studies that investigated the use of placental
elasticity measurements in clinical applications. Kılıç et al. [9] in a study on 50 pregnant women
showed that the placenta stiffness in patients with preeclampsia is substantially higher than the control
groups. Hollenbach et al. [10] have shown that ischemic placental disease affects the shear wave
speed (SWS), which correlates with elasticity, and suggested that elasticity imaging offers potential for
placental disease discrimination.
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Estimating the elasticity of tissues using appropriate mathematical/physical models is a
fundamental need for reliable elastography measurements, and there have been different studies
focused on that topic [11–20]. The microchannel flow model (MCFM) was proposed by Parker [21] as a
descriptive and predictive model for elasticity quantification in soft, vascularized tissues. Under the
assumption of the MCFM framework, the stiffness and SWS of vascularized tissues are related to the
vasculature network parameters, the vessels’ fluid flow under stress, as well as the tissue parenchymal
characteristics. In the derivation of the MCFM, time constants are introduced by employing Poiseuille’s
flow law for the fluid inside the vessels, which are dependent on the fluid viscosity and the vessel
diameter. Some pathological conditions could cause a change in the fluid flow parameters inside
the vessel network, which under the MCFM framework reflects changes in the values of the time
constant parameter associated with the vasculature. For example, inflammation in the liver [22], or the
preeclampsia condition (a medical disorder in pregnancy that is associated with high blood pressure
and the fluid flow reduction) in placenta [23,24] could both cause vessel constriction.

In this paper, we present experimental validations of the MCFM theory in predicting a relationship
between the changes in characteristic time constants of tissues and the corresponding changes in their
stiffnesses using tests on gelatin-based phantoms and also in vitro perfused placenta. Specifically,
the effects of change in fluid viscosity and also vessel diameter (through vasoconstriction) on the
time constants and therefore, on tissue stiffness, are investigated. The results from gelatin phantom
experiments with interior fluid channels are employed to show the viscosity effect, and the in vitro
perfused placenta experimental results are used to discuss the role of vessel diameter on the stiffness.

2. Theory

2.1. Background

The MCFM [21,25] begins with the analysis of a simple scenario, shown in Figure 1, where an
elastic homogeneous material contains a small fluid-filled channel open on only one side.
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Figure 1. An ideal model of an elastic, isotropic block with a single interior fluid-filled channel of
radius r and length L is considered for the stress derivation in the MCFM. The block cross-sectional
area and height are denoted by A′0 and x0 , respectively. It is assumed that the channel is open to free
exit of fluid volume only on one side, and the flow fluid is governed by Poiseuille’s law.

When placed in a stress relaxation test, we assume the resulting strain must account for both the
elastic strain and the loss of volume as fluid is squeezed out of the channel under compression. A key
assumption is that the fluid flow will be governed by Poiseuille’s law for laminar flow which states
that the fluid flow undergoes a pressure drop of ∆P according to Equation (1), which is dependent on
the fluid viscosity (η), flow volume rate (Q), channel radius (r), and channel length (L). On the other
hand, this pressure drop is physically proportional to the normal stress σx from the compression test
sensed at the interior side of the microchannel (∆P � C1σx), with C1 as a constant.

∆P =
8ηL
πr4

Q � C1σx (1)
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Assuming the decrease in volume of the fluid in the channel is reflected as the decrease in the
volume (the length along the x-coordinate) of the tissue around it, the stress-strain relationship for the
fluid-filled channel is derived in Equation (2) and simplified as Equation (3), which is analogous to a
dashpot stress-strain relationship.

dε
dt

=
Q

A′0x0
=

Cσxr4

A′0x0η
(2)

σx(t) = η

(
A′ox0

cr4

)
·

dε
dt

(3)

In these equations, ε is the strain applied, A′0 is the cross-sectional area of the tissue block, x0 is
the dimension along x, and C is a constant equal to π/8L. Considering the elastic medium and the
fluid-filled channel as two elements undergoing relaxation results in a simple series spring-dashpot
model with a single exponential decay given in Equation (4), the characteristic time constant associated
with the fluid-filled channel τ f luid is obtained from Equation (5).

σx(t) = ε0Ee
−

t
τ f luid (4)

τ f luid =

(
ηA′ox0

cr4

)
/E (5)

In Equations (4) and (5), E is the Young’s modulus of the elastic medium, and ε0 is the magnitude
of constant step strain applied. For the case of a vascularized tissue model, there will be a distribution
of fluid channels with different radii corresponding to the distribution of vessels that result in having a
spectrum of time constants, all contributing to the stress relaxation behavior. Using the superposition
principle and integrating stress over a continuous distribution of relaxation time constants (channel sizes)
assumed to follow a power law behavior A(τ) = A0τ−b, we have:

σSR(t) = A0t1−bΓ[b− 1] (6)

which is the two-parameter stress relaxation equation with b as the key power law parameter related to
the fractal vasculature structure and A0 as a constant, in which Γ is the gamma function. Equation (6) is
derived for a distribution of time constants from zero to infinity, however, in practice there are bounds
on the largest and smallest vessels in a vasculature corresponding to larger veins and arteries and
small capillaries and extracellular spaces, which map to the lowest and highest characteristic time
constant, respectively. Applying these bounds on the integration over the relaxation time constant,
the stress relaxation follows a four-parameter equation as shown in Equation (7) with two additional
parameters of Tmax and Tmin where a = b – 1.

σSR(t) = A0 ·
Γ
(
a, t

Tmax

)
− Γ

(
a, t

Tmin

)
ta (7)

This framework makes specific predictions about the behaviors when either viscosity is changed,
or vasodilation or vasoconstriction causes a change in vessel radii.

2.2. Change in the Relaxation Time Constant Associated with the Fluid Type

In theory, when viscosity is changed in the simple channel-in-phantom (CIP) model shown in
Figure 1, we simply have a change in the stress relaxation time constant and the stress level. In the
derivation of the MCFM, each channel contributes to the relaxation with a distinct characteristic
time constant according to Equation (5). The time constant increases linearly with the increase in the
viscosity of the fluid inside the CIP and decreases with the stiffness level of the phantom; the more
viscous fluid and also the softer background case have higher time constants. Therefore, a change in
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the fluid viscosity would have the effect of changing the stress relaxation response in experiments,
assuming all other parameters remain constant.

2.3. Change in the Relaxation Time Constant Associated with Vessel Size

By definition, any vasoconstriction or vasodilation in vascularized tissues such as placenta imposes
a change in the vessel radii. Introducing a scale factor χ, the relationship between the radii of the
changed states after vasoconstriction/vasodilation r2 and the initial state r1 is modeled as:

r2 = χr1

χ > 1 vasodilation

χ < 1 vasoconstriction
(8)

The state of the vasculature after vasoconstriction/vasodilation have a new relaxation spectrum
A2(τ2) as well as new maximum and minimum time constants denoted by Tmax,2 and Tmin,2, respectively.
The parameters of the second states of vasculature are related to that of the initial states by employing
the general transformation rule explained in detail in Parker [26], which are shown in Equation (9)
(which is true for Tmax,2 and Tmin,2 as well) and Equation (10).

τ2 =
τ1

χ4
(9)

A2(τ2) = χ4A(τ1) = χ4A
(
τ2χ

4
)

(10)

The stress relaxation response for the new vasculature is obtained by integrating over the new
relaxation spectrum, shown in Equation (11).

σSR(t) = A0χ
4(1−b)

Γ
(
a, t

Tmax,2

)
− Γ

(
a, t

Tmin,2

)
ta (11)

The vessel radii scale factor χ is found as the key parameter in linking the two states of
the vasculature before and after undergoing the vasoconstriction/vasodilation. Vasoconstriction,
characterized as the case with χ < 1, causes an increase in time constants as well as a general hardening
of the tissue in comparison to the baseline state.

Therefore, vasoconstriction/vasodilation experiments in living tissues undergoing changes in the
vessel radii are another way to study the effect of changes in the characteristic time constants on the
tissue response.

2.4. Ramp-Plus-Hold Models for CIP

The stress relaxation behavior of a material is characterized by its response to the application of an
ideal step strain function on the sample of the material. However, an ideal step strain involves imposing
an instantaneous change of strain from zero to the desired strain which, in practice, cannot be achieved
physically. Therefore, a step strain is modeled as a combination of two processes: first, a gradual linear
increase of strain from zero to a desired strain level ε0 in the form of a ramp with the duration of T0,
and second, keeping the strain ε0 constant, allowing the viscoelastic material to relax in time, as show
in Figure 2a, similar to the derivation of stress response using the Kelvin-Voigt fractional derivative
(KVFD) model by Zhang et al. [27].
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Figure 2. (a) A ramp-plus-hold strain function representing the experimental step strain applied in
practice for the stress relaxation test and (b) an equivalent representation of the strain function in (a)
composed of a ramp-up strain function plus a delayed ramp-down strain function. The parameter ε0

indicates the hold strain and T0 shows the ramp duration.

Applying ramp-plus-hold strain is equivalent to the superposition of a ramp-up strain and a
delayed ramp-down strain, as depicted in Figure 2b. The same rule applies to the stress response
according to Equation (3):

σramp+hold(t) = σramp−up(t) + σramp−down(t− T0) ·Heaviside(t− T0) (12)

From systems theory, the response of a linear system to the ramp input is the integral of the
response to the ideal step input. Thus, for the CIP with fluid, the ideal step response in Equation (13)
is employed to derive Equation (14) as the CIP ramp response. Equation (13) expresses the stress
contribution from a CIP filled with fluid in response to the ideal step strain with the time constant of
τ f luid introduced by the CIP, and B0 is a constant.

σideal step(t) = B0e
−

t
τ f luid (13)

σramp(t) = B0

(
τ f luid − e

−( t
τ f luid

)
τ f luid

)
(14)

By substituting Equation (14) into Equation (12), the CIP ramp-plus-hold response can be easily
obtained. To focus mainly on the role of the fluid inside the vessels in the characteristic time constant,
we consider two experiments where the elastic block is the same for both cases, but the viscous
fluid in the CIP is different. If subscripts (1) and (2) correspond to the cases with fluid (1) and
fluid (2), respectively, then the stress difference σ2(t) − σ1(t) between these two cases when subjected
to ramp-plus-hold strain is given by:

∆σ(t) = σ2(t) −σ1(t)

=
{
B2

(
τ2 − e−(

t
τ2
)
τ2

)
−B2

(
τ2 − e−(

t−T0
τ2

)
τ2

)
Heaviside(t− T0)

}
−

{
B1

(
τ1 − e−(

t
τ1
)
τ1

)
−B1

(
τ1 − e−(

t−T0
τ1

)
τ1

)
Heaviside(t− T0)

}
(15)

where ∆σ(t) denotes the difference between the total stresses for the two cases.
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3. Methods

3.1. Phantom Preparation

For making the CIP samples, four small plastic rectangular cubes were made as the molds with a
cross section of 35 mm × 35 mm and a height of approximately 38 mm. Each mold had 6 circular slots
with diameters of 3 mm for inserting disposable plastic straws to make the CIPs. The arrangement of
the CIPs (or straws) are shown in Figure 3a,b. The channels are placed inside the cubes at a slight angle
of approximately 5◦ as shown in Figure 3c to avoid the fluid flow out of the CIPs during the experiment.
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Figure 3. (a) Samples of gelatin-based phantoms each including six channel-in-phantoms (CIPs) made
by sealed straws which are removed when the gelatin mixture hardens to produce channels. (b) and
(c) show the front and side views of one of the samples from (a), respectively undergoing the stress
relaxation test after injecting castor oil inside the CIPs.

Gelatin-based phantoms are made from a specific mixture of gelatin, agar, sodium chloride (NACL)
in 900 mL of degassed water with the weight proportions of the ingredients listed in Table 1 [28].

Table 1. Portion of ingredients used for making phantoms.

Ingredient Amount

degassed water 900 mL
gelatin 4%
NaCl 0.9%
agar 0.15%

The phantom preparation procedure was similar to the method used in [28] and is described here.
For making a homogeneous gelatin phantom, the gelatin powder, agar, and NaCl were mixed and the
mixture was added slowly to the degassed water while stirring to let the ingredient dissolve. Then,
the mixture was heated up to a temperature of about 65 ◦C and then was placed on a magnetic stirrer
to stir it constantly. By placing an ice bath around the container, the solution was allowed to cool down
to nearly 30 ◦C. The straws were sealed using wax and then inserted in the cubic mold before adding
the gelatin mixture into the molds. The samples were left at a temperature of 4 ◦C overnight to let
the gelatin mixture solidify. On the next day, the phantoms were allowed to reach room temperature
before performing the mechanical testing.

3.2. Stress Relaxation Test

The compression test for stress relaxation measurements was done by applying a 5% strain on
each sample using a Q-Test/5 machine (MTS, Eden Prairie, MN, USA) with a 5 N load cell and a
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compression rate of 0.15 mm/s for approximately 500 s of relaxation time. The ramp-plus-hold time
was approximately 12–13 s depending on the sample height. The test was done on 3–4 samples
of gelatin phantoms with castor oil and also with olive oil as the CIP fluid. The relaxation force
measured during the test was converted to stress using the cross-sectional area of the samples. Then,
the difference in the stress variation in time of the castor oil CIP samples and the olive oil CIP samples
was fitted to a stress vs. time relationship similar to Equation (15) to obtain the coefficients. A slightly
modified version of Equation (15) was used in the curve-fitting procedure with an additive constant δ
included. This additional constant allows for some flexibility in the fitting process and accounts for
small experimental sample-to-sample differences.

Stress curve fittings were performed using the curve-fitting toolbox in MATLAB (MathWorks,
Inc., Natick, MA, USA) based on the nonlinear least square minimization of errors.

3.3. Viscosity Measurement

Noting that the viscosity of the fluid plays a major role in the value of the time constant,
the viscosities of the two fluids employed are measured at lab temperature using a viscometer (Cannon,
model 9721-B74, universal size 400, State College, PA, USA). Using the time period required when a
fluid inside the viscometer flows between two marked points and also the characteristic viscometer
constant provided by the manufacturer, the kinematic viscosity of the two fluids are calculated and then
converted to the dynamic viscosity η for each fluid using the density of the fluids. The characteristic
viscometer constant is 0.4511 cSt/s at room temperature.

3.4. Placental Elastography Images and SWS Measurements

Elastography images of the in vitro perfused human placenta were obtained at a center frequency
of 5 MHz using a Siemens Antares scanner (Siemens Medical Solutions, Malvern, PA, USA) and a
VF10-5 probe (Siemens Medical Solutions, Malvern, PA, USA) with a single-track location shear wave
elasticity imaging (STL-SWEI) pulse sequence and accelerated processing [29]. To study the shear
wave propagation in the placenta, the velocity versus time data were obtained at two locations after
applying a radiation push pulse and then, by employing the Fourier transform, the amplitude and
phase of the velocity were obtained as a function of frequency.

Placenta tissue under this study was from a healthy pregnancy immediately after caesarean section
with no overall defects observed during post-delivery examination. Using an open perfusion system,
an arterial pressure of <40 mmHg and a normal fetal flow at about 3–6 mL/min were maintained.
For creating in vitro vasoconstriction in the perfused placenta, a dose of 1 mL 10−6 M vasoconstrictor
agent (thromboxane agonist, U46619, Caymen Chemical Co., Ann Arbor, MI, USA) was injected in the
fetal artery.

The protocol for this study was approved by the Research Subjects Review Board at the University
of Rochester. The placenta is a disposable tissue specimen from the surgical examinations and no
patient is identified related to the disposable samples. Therefore, consent from the patient was not
needed, consistent with the World Medical Association Declaration of Helsinki.

4. Results

The results are presented in two sections: first, the results from the stress relaxation tests on the
CIP gelatin phantoms with fluid channels are presented. The second section includes elastography
results on the perfused placenta in baseline and vasoconstriction conditions.

4.1. Phantom Experiments

4.1.1. Viscosity Measurements

The viscosities of castor oil and olive oil are measured using the viscometer and the average of
measurements and the standard deviation for each case are reported in Table 2. The measurement for
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each oil is repeated 4–5 times and the low standard deviation for both cases indicates the reproducibility
of the measurements. The results show that castor oil is almost 12 times more viscous than olive oil.

Table 2. Mean viscosity measurements of the selected oils and their standard deviations (SD) at
room temperature.

Oil Dynamic Viscosity (Pa·s) SD

castor oil 0.98 0.04
olive oil 0.08 0.001

4.1.2. Stress Relaxation

Figure 4a,b show the results of stress relaxation tests on gelatin-based phantoms with castor oil
and olive oil channels, respectively. The stress curves of different samples of the same fluid inside CIP
being similar indicates the good reproducibility of the test. Also, comparing the stress level for the
two groups, it is observed that the samples with castor oil have elevated stress in comparison to the
samples with olive oil, and appear stiffer in the experiment.Fluids 2020, 5, x  9 of 15 
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Figure 4. Stress relaxation curves for phantoms having: (a) channels filled with castor oil (b) channels
filled with olive oil, all resulting from 5% strain. For castor oil, the test results of four samples and for
olive oil the test results for three samples are presented.

Figure 5a–d show four examples of the MCFM curve fits to the stress differences of samples
with castor oil CIPs and samples with olive oil CIPs, and Figure 5e presents the fitting results when
the averages of all stress differences of the two groups are taken into account. The results of fitting
parameters are reported in Table 3 with the value of fitting goodness evaluated by R2. The fitting results
for the two time constants show that the higher time constant (which is associated with the castor oil)
is, on average, approximately 12 times larger than the smaller time constant (which is associated with
the olive oil).
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Table 3. MCFM fitting results.

Fitting Case BCO τCO BOO τOO δ R2

Difference between
CO and OO samples

(a) 0.57 102 −1.29 8.03 48.19 0.912
(b) 0.36 95 −1.28 8.5 41.67 0.85
(c) 0.58 105 −1.12 8.64 40.85 0.91
(d) 0.958 98 −0.59 7.8 38.96 0.913

Average of stress differences (e) 0.61 105 −1.16 8.1 42.37 0.949
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4.2. Perfused Placenta in vitro Elastography

Figure 6a shows the elasticity measurements as a color image overlaid on the B-scan of the
perfused placenta and Figure 6b illustrates the shear wave generated in the tissue due to the application
of acoustic radiation force push pulses at two locations that are used for elastography measurements.

Figure 6. Elastography results from an in vitro perfused placenta. (a) B-scan image with tissue stiffness
as a pseudo-color overlay with the color bar showing local stiffness in the region of interest. Blue color
represents softer and red indicates stiffer regions. (b) Shear waves from radiation force push pulses at 2
locations. These data form the basis of elastography measurements.

Figure 7 presents the SWS dispersion curves for baseline and the vasoconstriction condition
for the perfused post-delivery placenta. Introducing vasoconstrictor agents causes a decrease in
vessel diameters and, therefore, an increase in the SWS measurements. The higher level of SWS for
the vasoconstriction implies that the tissue is stiffened in comparison to the baseline. In this figure,
the SWS dispersion measurements are presented as four datasets for baseline, and three datasets for
vasoconstriction, shown as different yellow symbols and green symbols, respectively.

The MCFM framework predicts a power law frequency-dependent elasticity E(ω) and SWS cs(ω)

for the soft vascularized tissues as E(ω) ∼ A·|ω|a and cs(ω) ∝ ωa/2 with a as the power law parameter
related to the vasculature networks of the tissues (a = b− 1) and ω = 2π f [30]. Therefore, the curve
fit to the dispersion of SWS for baseline and vasoconstriction can approximate the key power law
behavior at the two states. In Figure 7, the power law curve fits to the averaged SWS dispersion
measurements for each condition are shown as lines, and the fitting coefficients are reported in Table 4.
The results indicate that the power-law parameter a/2 (or b) from the SWS dispersion measurement
fitting is slightly higher in vasoconstriction in comparison to the baseline.

Table 4. Power law fitting to dispersion of SWS: cs = c′· f a′
·(a′ = a/2).

Condition c’ a’ R2

baseline 0.412 0.242 0.99
vasoconstriction 0.589 0.257 0.9915
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Figure 7. Shear wave speed dispersion curves for the baseline perfused placenta versus placenta
in vasoconstriction. Yellow symbols show four different datasets from baseline measurements and
green symbols present three different datasets from vasoconstriction measurements. The fitted curves
are results of power-law fitting to the average of measured datasets for each condition (baseline and
vasoconstriction).

5. Discussion

Employing the MCFM offers the potential to investigate the role of the fractal vasculature of
tissues and the fluid contents as they influence tissue stiffness at a macroscopic scale. According to
the MCFM derivation, each vessel in a vasculature is associated with a characteristic time constant
τchar and therefore a branching vasculature, comprised of different vessels from smallest to largest,
introduces a spectrum of time constants that contribute to the behavior of the soft tissue under study.
Under the MCFM, an increase in the time constant elevates the stress relaxation level and the stiffness of
the tissue. The time constant of the MCFM depends on a number of parameters such as the viscosity of
fluid inside vessels, the vessel radius and the elastic modulus of the tissue around the vessels according
to τchar ∝

(
η/Er4

)
. It appears that there are some pathological changes in tissues that could change

these parameters and therefore, could change the distribution of time constants within these tissues.
For example, the placenta is a vascularized organ that is vital for development and survival of the
fetus and acts as a connecting medium between mother and the fetus. In some complicated cases like
pregnancy-induced hypertension, placental blood flow could decrease, imposing some risks to the
fetus [31]. These pathological changes in the placenta may relate to changes in the characteristic time
constants in the MCFM. Therefore, the MCFM framework has the potential to characterize and model
some pathological changes of the tissues. This work has presented some experimental validations for
the effect of time constant variation on the stress and stiffness level of phantom/tissue predicted by
the MCFM through separate tests on the gelatin-based phantoms and also in vitro perfused placenta.
It is shown that the MCFM predictions of the effect of time constant on the stress/stiffness level are
consistent with the experimental observations in the two experiments.

In gelatin-based phantom experiments, it is shown that when fluid within the CIP is changed
from a low viscous oil (olive oil) to a fluid with higher viscosity (castor oil), the stress relaxation curves
shift to higher values under the same strain applied in the test. Moreover, it is shown that the MCFM
fits well to the stress differences of olive oil CIP samples and castor oil CIP samples, containing two
fitted time constants where the larger one (which is associated with the castor oil) is approximately 12
times larger than the smaller time constant (which is associated with the olive oil) in the fitting process.
This is close to the range predicted by the theory using the associated parameters as:

τCO
τOO

=

(
ηCO

ηOO

)
= 12.25 (16)
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where, by substituting our experimental parameters into Equation (5):

τCO =
0.98

(
0.0352

)
(0.038)

π
8×0.032 (0.00154)(7000)

= 104.5 s (17)

which is approximately close to the time constant estimated for castor oil from the stress relaxation
curve-fitting reported in Table 3, and indicates the agreement of the MCFM prediction in theory and
the experiment.

Next, considering the fractal vasculature within the placenta, the injection of the vasoconstriction
agent imposes a decrease in the radii of vessels, which also results in an increase in arterial pressure.
The elevated dispersion curve for the vasoconstriction condition in the placenta demonstrates that
vasoconstriction imposes a stiffening effect on the tissue. In these experiments, the arterial pressure
under a constant flow pump increased from approximately 40 mmHg to 90 mmHg after vasoconstriction.
Under Poiseuille’s law, this corresponds to a decrease in radius to the fourth power using Equation (1),
which is related to the vessel radii scale factor X according to Equation (8). The relationship of the
arterial pressure change with the vessel radii scale factor can therefore be written as:

∆P2

∆P1
=

( r1

r2

)4
=

1
χ4

(18)

χ =
(40

90

)1/4
= 0.8165 � 81.7% (19)

We can roughly estimate how the stress behavior and therefore, the stiffness level of the placenta
could change between baseline and the vasoconstriction state with the scale factor of X = 0.817.
Borrowing from the dispersion fitting results presented in Table 4, the power law parameter (b = a+ 1 )
approaches 1.5 for the vasoconstriction. Using Equation (11) for the stress response when b is equal
to 1.5, the leading term in X simplifies, predicting a new stress response changed approximately by
1/χ2. This implies that the stress level increases and the tissue becomes stiffer due to vasoconstriction
(X < 1) . In our case, the prediction from theory is that the post-vasoconstriction stress relaxation
would be elevated by a factor of (1/0.817)2 which is approximately 1.5, very close to the proportional
change shown in Figure 7.

Specifically, by examining Figure 7 and the fitting results in Table 4, the second fitted parameter c’
from the SWS dispersion fitting for the baseline and vasoconstriction is 0.412 and 0.589, respectively.
The proportion of these two parameters is 0.589/0.412 = 1.4 which indicates a higher level of c’ for
vasoconstriction, consistent with the earlier estimate following Equations (18) and (19).

Thus, the leading term X defined in the MCFM derivations in Equations (7)–(11) appears to
adequately predict observed changes in tissue stiffness caused by vasoconstriction.

6. Conclusions

By employing Poiseuille’s law of fluid flow, the MCFM introduces a characteristic time constant
associated with each vessel in a vasculature that is found to affect the stress-strain behavior in the
underlying vascularized soft tissue. In this study, by using two separate experiments in gelatin-based
phantoms and also perfused post-delivery placenta, the effect of changing this time constant on the
tissue behavior is investigated. Under this framework, we examined the changes in two separate
parameters:

• vessel fluid viscosity (in phantom experiments)
• vessel diameter (through vasoconstriction in placenta).

The associated time constants were changed, and it is shown in both cases that increasing the
characteristic time constants creates a stiffening effect on the tissue/phantom under study through
increased stress relaxation level in phantoms and elevated SWS dispersion in placenta. The degree of
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change is also consistent with the prediction of MCFM. Thus, the MCFM can be useful for stress-strain
models of vascularized tissues including changes over time as pathologies or vasoactive responses
are activated.
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