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Abstract: The problem of simulating wakes in a stratified oceanic environment with active
background turbulence is considered. Anisotropic RANS turbulence models are tested against
laboratory and eddy-resolving models of the problem. An important aspect of our work is to
acknowledge that the environment is not quiescent; therefore, additional sources are included in the
models to provide a non-zero background turbulence. The RANS models are found to reproduce
some key features from the eddy-resolving and laboratory descriptions of the problem. Tests using
the freestream sources show the intuitive result that background turbulence causes more rapid wake
growth and decay.
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1. Introduction

Oceanographic flows include a broad variety of turbulence-generating phenomena, and the
associated unsteady motions are in general inhomogeneous, non-stationary, and anisotropic.
The thermohaline stratification of the ocean introduces a conservative body force which must be
considered when examining flows in such an environment. Numerous effects including buoyancy,
shear, near-free-surface damping, bubbles, and Langmuir circulations complicate any attempt to
describe turbulent motions. The variety of production mechanisms includes (but is not limited to)
wind shear, wave breaking, internal gravity waves, double diffusion, and overturning due to the
alternating heating and cooling of the ocean surface.

The numerical simulation of engineering-related problems in such an environment is a daunting
prospect. For the case of wakes generated by ships and other man-made objects, the associated
Reynolds number can be O(109) in the near field, while approaching very small Froude number in
the far field. The broad separation of scales means that the use of scale-resolving methods such as
large-eddy simulation (LES) or direct numerical simulation (DNS) at full scale is typically prohibitively
computationally expensive for use in design and analysis problems. In previous work, we have
tested a set of Reynolds stress models (RSMs) against laboratory representations of the oceanographic
environment (see Wall and Paterson [1], publication pending). In this work, we then further develop
the application of these models to the problem of wakes, testing against laboratory and scale-resolving
model descriptions of stratified wakes. The models are then modified with source terms to produce a
finite background turbulence, intended to model the environmental turbulence in the ocean.

As has been noted, one of the key complications associated with the ocean is the density
stratification, which causes anisotropy in the stress tensor. In the late wake, the effects of the
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stratification inevitably dominate the character of turbulent motion. Models which account for
buoyancy-induced stress tensor anisotropy in some way are therefore desirable for simulations
of late-wake behavior, necessitating a second-moment closure. There is an extensive history of
second-moment approaches in modeling geophysical problems (early examples are the hierarchy of
Mellor and Yamada [2] or the summary of Rodi [3]). Similar approaches have also been adopted in
dealing with stratified wakes. Algebraic closures paired with two-equation models have been used
to good effect by, for example, Hassid [4], Voropaeva et al. [5], or Voropaeva et al. [6]. Such models
reproduce key behaviors of stratified wakes, including the vertical collapse and production of
internal waves. Full stress-transport models have also been applied to the problem, with the earliest
example being Lewellen et al. [7]. More recently, Voropaeva [8] has even adopted algebraic and
transport-equation based triple-moment closures.

Due to the expectation of strong stratification effects in the late wake, models which remain
realizable in an approximately two-component turbulence state are desirable. The family of cubic
tensorial expansion models developed at the University of Manchester were developed with the
two-component limit (TCL) as an explicit constraint, and have been applied to a variety of flows
with strong buoyant forcing (for example, see Craft et al. [9], Craft and Launder [10], Suga [11],
or Craft et al. [12]) The so called TCL model has also been applied to doubly-stratified (simultaneous
salinity and temperature stratifications) environs, as presented by Armitage [13].

In evaluating RANS closures, it is possible to employ a wealth of LES and DNS numerical
experiments which have been conducted to complement previous experimental studies of stratified
wakes. Temporal-model, or 3D+t simulations such as those conducted by Dommermuth et al. [14] or
Brucker and Sarkar (Brucker [15], Brucker and Sarkar [16]), have helped to describe the distribution
of energy within the wakes of both towed and self-propelled bodies. More recently, body-inclusive
simulations such as those conducted by Chongsiripinyo and Sarkar [17] have done much to refine
the understanding the scaling laws which can be applied a given stratified wake, and to qualify each
stage encountered during its life. These stages were originally identified as the three-dimensional
(3D), non-equilibrium (NEQ), quasi-two-dimensional (Q2D), and viscous three-dimensional (V3D)
stages by Spedding [18]. It is an interesting digression to note that these stages roughly align with
the stages of a full-scale ship wake as defined by Somero et al. [19] (the near wake, the far wake,
and the persistent wake), though the rigorous definitions are different in each case. Some recent
experiments and LES/DNS studies have also concerned themselves with the effect of non-trivial
free-stream turbulence. Studies such as that of Amoura et al. [20] and Rind and Castro [21] have shown
that environmental turbulent motions can have dramatic effects on wake behavior. In the case of
stratified turbulence, the simulations of Radko and Lewis [22] include consideration of pre-existing
double-diffusive fluctuations. The authors of that study also establish fairly simple wake-detection
criteria based on the centerline deficits of dissipation rate ε and turbulent scalar variance (θ2 or s2). It is
fully understood that much of the physics described by these scale-resolving simulations will be lost
in adopting a RANS approach; the results of these studies must then be carefully applied to refining
RANS models.

Having addressed the scope of the problem, we now recapitulate a set of general criteria which
must be satisfied by a turbulence model which might be applied to full-scale, far-field ship wakes in
an oceanic environment:

• The model must be implementable as part of a general-use computational fluid dynamics package
(in the case of this work, the finite-volume code OpenFOAM)

• The model must be able to accommodate the anisotropy that arises in stratified turbulent flows.
Paramount is accounting for anisotropy in the energy-containing eddies, however, under many
stratification conditions anisotropy may also arise throughout the turbulence wavenumber
spectrum (see, for example, Khani and Waite [23]).
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• The model must gracefully handle free-stream environmental turbulence, with differing levels of
turbulent variance in both the temperature and salinity fields. Ideally, the impact of pre-existing
turbulence on wake similarity would be accurately accounted for as well.

• The model must reproduce classic stratified wake experiments such those of Lin and Pao [24]
• The model must reproduce key behaviors observed using scale resolving methods,

including decay rates of turbulence kinetic energy (TKE) and turbulence potential energy (TPE),
and the growth (or lack thereof) of the wake in the vertical and horizontal directions.

The novelty in the work presented here is primarily in the application and testing of stress
transport RANS models to the wake problem, and the addition of sustaining turbulence sources to
begin addressing the issue of environmental turbulence. As such, the simulations and evaluation
described for this study were conducted primarily to address the third and fifth bullet points.
The simulation approach (including computational methods and initial/boundary conditions) and
turbulence model closure methods employed are detailed in Section 2. The results of comparisons
between the RANS model predictions and laboratory/LES models of stratified wakes are provided
in Section 3, which also includes some commentary on these results. Section 4 provides some brief
concluding remarks and discusses avenues for further work.

2. Simulation Methodology

The model system of equations was solved using extensions to the open-source finite-volume
fluid dynamics package OpenFOAM. A “2D + t” approach was adopted, the same as that employed
by, for example, Lewellen et al. [25] or Voropaeva [8]. Mean field transport and RANS model equations
were solved on a two-dimensional grid, representative of a slice of fluid through which the wake
progenitor has passed.

2.1. Mean Transport Equations

Momentum was transported according to the Reynolds-averaged incompressible Navier–Stokes
equations under the Boussinesq approximation:

∂Ui
∂t

+ Uj
∂Ui
∂xj

=− 1
ρ0

∂P
∂xi

+
ρ− ρ0

ρ0
gi +

∂

∂xj

(
ν

∂Ui
∂xj
− uiuj

)
(1)

∂Ui
∂xi

=0 (2)

where Ui is the mean-velocity vector, ui is the fluctuating component of velocity, P is the mean
kinematic pressure, gi is the gravitational vector, ν is the fluid viscosity, ρ is the fluid density, and uiuj
is the Reynolds stress tensor. For the laboratory-scale simulations conducted in this work, a linear
equation of state for the density ρ was deemed sufficient:

ρ− ρ0

ρ0
= −βS (S− S0)− βΘ (Θ−Θ0) (3)

where the relevant scalar values are the mean temperature Θ and the mean salinity S, the 0 subscript
denotes a reference value, and the expansion coefficients are defined by:

βΘ = −1
ρ

∂ρ

∂Θ

∣∣∣∣
P

, βS = −1
ρ

∂ρ

∂S

∣∣∣∣
P

(4)
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Note that all of the simulations presented in Section 3 are singly-stratified. In keeping with the
methods employed for experimental study of stratified wakes, a salinity stratification was employed.
The equation of state reduces to:

ρ− ρ0

ρ0
= −βS (S− S0) (5)

For the remainder of the work, only the model for the transport of salinity will be provided.
However, the same model can be applied as a temperature field under certain conditions. The scalar
quantities are transported according to an advection–diffusion equation:

∂ (δS)
∂t

+ Ui
∂ (δS)

∂xi
+ Ui

∂SB
∂xi

=
∂

∂xi

(
αS

∂ (δS)
∂xi

− sui

)
(6)

where the total mean scalar field S is assumed to be the sum of a background SB and a perturbation to
that background δS, and sui is the turbulent flux of the scalar quantity. The quantities uiuj and sui are
supplied by the turbulence model.

2.2. Stress/Flux Transport

In general for this work, the framework and nomenclature for second moment models laid out
by Hanjalić and Launder [26] is adopted, where mean quantities are denoted by capital symbols
(U, S, etc.), fluctuating quantities by lower case symbols (u, s), and averaging is denoted by an over-bar
(uiuj, sui, θ2). The stress tensor can be obtained by solving the associated transport equation:

∂uiuj

∂t
+Uk

∂uiuj

∂xk
= Pij + Gij + Φij − εij +Dij + Pij∞ (7)

where the terms on the right-hand side are the dissipation tensor εij, the shear production:

Pij = −
(

uiuk
∂Uj

∂xk
+ ujuk

∂Ui
∂xk

)
(8)

the production due to the buoyancy body force in a Boussinesq fluid:

Gij =−
(
Fjgi +Figj

)
(9)

Fi =βSsui + βΘθui (10)

the re-distributive effects due to pressure interactions:

Φij =
p
ρ

(
∂ui
∂xj

+
∂uj

∂xi

)
(11)

and diffusive effects:

Dij =
∂

∂xk

[
ν

∂uiuj

∂xk
− uiujuk −

p
ρ

(
uiδjk + ujδik

)]
(12)

A free-stream sustaining source Pij∞ is also included, intended to maintain the TKE at some
finite value (preferably associated with some background condition representative of the active ocean
environment). The forms of the free-stream sources employed are given in Section 2.8. Similarly,
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the transport of the turbulent flux of a scalar quantity, such as the temperature or salinity in ocean
water, was described according to the equation:

∂sui
∂t

+Uk
∂sui
∂xk

= PS
si + P

U
si + Gsi + Φsi +Dsi (13)

where the physical interpretation of each term is the same as given for (7). The source terms are:

PS
si =− uiuj

∂S
∂xj

(14)

PU
si =− suj

∂Ui
∂xj

(15)

Gsi =− βSgis2 (16)

The terms εij, Φij, Dij, Φsj, Dsj, and the quantity s2 must be modeled in order to close the
second-moment RSM. The following sections describe the closure approaches employed; the different
models so constructed are summarized in Table 1.

Table 1. Summary of the model variations employed, with equation numbers. The models and
implementation are described in detail in Section 2.

Model uiuj ε φij φθi εij Pij∞

EVM1 (45), (48) (46), (47) N/a N/a N/a N/a
RSM1 (7) (39), (40) (33)–(35) (36)–(38) (41) (51)
RSM1a (7) (39), (40) (33)–(35) (36)–(38) (42) (51)
RSM1b (7) (39), (40) (33)–(35) (36)–(38) (41) (54)
RSM2 (7) (39), (40) (27)–(29) (30)–(32) (41) (51)

2.3. Diffusive Process Closure

For all of the RSMs used in this work, the generalized gradient–diffusion hypothesis (GGDH)
model originally proposed by Daly and Harlow [27] was employed to approximate the diffusive effects:

Dij =
∂

∂xk

(
ν

∂uiuj

∂xk
− cs

k
ε

ukul
∂uiuj

∂xl

)
(17)

Dsi =
∂

∂xk

(
γ

∂θui
∂xk
− cs

k
ε

ukul
∂sui
∂xl

)
(18)

Other, more complex closures for these terms have been applied stratified problems. The most
pertinent example is the set of models employed by Voropaeva et al. [6], using both complex empirical
algebraic expressions and even transport equations for a subset of the triple correlations. Craft and
Launder [10] also recommend using transport equations which account for buoyancy effects on a
subset of the triple correlations for strongly stratified flows. However, the effects described in that work
were primarily associated with sharp pycnoclines, in which inhomogeneity in the triple correlations
became significant. Such approaches would then likely be unnecessary for the linear-stratification
environment in this work. Under certain environmental conditions, the diffusion closure may need
further revision.

2.4. Pressure Strain/Scrambling Closure

In modeling the pressure strain and scrambling terms, it is common to adopt the approach of
Chou [28], in which the pressure fluctuations are eliminated from (11) by taking the divergence of the
transport equation for ui and so obtaining a Poisson equation for p. The details of such a derivation
are here elided. The resulting expressions for Φij and Φsi can be arranged into terms associated
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with different physical processes: the return to isotropy (Φ1), isotropization of mean strain (Φ2),
isotropization of body forcing (Φ3), and wall blocking effects (Φw). The wall blocking effects are
neglected for this work, as the flow of interest is a free shear flow. The term (11) and analogous term
from (13) can then be written as:

Φij = Φij1 + Φij2 + Φij3 (19)

Φsi = Φsi1 + Φsi2 + Φsi3 (20)

Typically, models make use of the stress anisotropy tensor aij and its invariants; the associated
definitions are included for completeness:

aij =
uiuj

k
− 2

3
δij (21)

A2 =aijaji (22)

A3 =aijajkaki (23)

Lumley’s flatness parameter is also employed by some models:

A = 1− 9
8
(A2 − A3) (24)

which takes the value of unity in isotropic turbulence, and the value of zero in two-component
turbulence. Additionally, the symmetric (S) and an antisymmetric (W) portions of the velocity gradient
tensor are employed by, for example, the cubic pressure–strain model employed by RSM1 and the
Boussinesq eddy–viscosity model:

Sij =
1
2

(
∂Ui
∂xj

+
∂Uj

∂xi

)
(25)

Wij =
1
2

(
∂Ui
∂xj
−

∂Uj

∂xi

)
(26)

Two pressure–strain models were employed for the simulations presented in this work.
The simpler was a linear model, and the other a cubic model based on the work of Craft et al. [9].
The linear model employed the return-to-isotropy model first proposed by Rotta [29], and the linear
isotropization-of-production terms from Launder et al. [30]:

Φij1 =− c1εaij, c1 = 1.8 (27)

Φij2 =− c2

(
Pij −

1
3
Pkkδij

)
, c2 = 0.6 (28)

Φij3 =− c3

(
Gij −

1
3
Gkkδij

)
, c3 = 0.6 (29)

The accompanying model of the pressure-scrambling processes in the scalar flux equations is
detailed by Gibson and Launder [31]:

Φsi1 =− c1s
ε

k
sui, c1s = 3.5 (30)
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Φsi1 =− c2sPU
si , c2s = 0.5 (31)

Φsi1 =− c3sGsi, c3s = 0.5 (32)

The cubic model was that developed at the University of Manchester, and is detailed in the
book by Hanjalić and Launder [26]. The model is designed to be realizable approaching the
so-called two-component limit (TCL), at which one of the normal stresses is approximately zero.
The pressure–strain process models were originally described by Craft et al. [9], and have here been
re-cast in terms of the symmetric and antisymmetric portions of the velocity gradient tensor:

Φij1 =− c1

[
aij + c′1

(
aikakj −

1
3

A2δij

)]
− εaij, c1 = 3.1 (A2 A)1/2 , c′1 = 1.2 (33)

Φij2 =c2k
(

aikSjk + ajkSik −
2
3

aklSklδij

)
+ c3k

(
aikWjk − ajkWik

)
+ c4kSij + c5kaijPkk

+ c6k
(

aikaklSjl + ajkaklSil − 2akjaliSkl − 3aijaklSkl

)
+ c7k

(
aikaklWjl + ajkaklWil

)
+ c8k

[
a2

mn

(
aikWjk + ajkWik

)
+

3
2

amianj (amkWnk + ankWmk)

]
,

c2 = 0.6, c3 = 0.866, c4 = 0.8, c5 = 0.3, c6 = 0.2, c7 = 0.2, c8 = 1.2 (34)

Φij3 =−
(

3
10

+
3

80
A2

)(
Gij −

1
3

δijGkk

)
+

1
6

aijGkk

+
2
15
Fm

[
giamj + gjami

]
− 1

3
gk

[
aikFj + ajkFi

]
+

1
10

δijgkamkFm +
1
4

gkamkFmaij

+
1
8

gk

{
Fm

(
akiamj + akjami

)
− amk

(
amjFi + amiFj

)}
− 3

40

{
amkFk

(
giamj + gjami

)
− 2

3
δijgkamkamnFn

}
(35)

The pressure-scrambling process models were further developed by Craft and Launder [10],
and for a doubly-stratified system (such as the temperature/salinity stratification in the ocean) by
Armitage [13]:

Φsi1 =− 1.7
(

1 + 1.2
√

A2 A
)

r1/2 ε

k

(
sui (1 + 0.6A2)− 0.8aiksuk + 1.1aikakjsuj

)
− 0.2A1/2rkaij

∂S
∂xj

(36)

Φsi2 =0.8sui
∂Ui
∂xk
− 0.2

∂Uk
∂xi

suk +
1
6

ε

k
sui
Pkk

ε

− 0.4sukail

(
∂Um

∂xl
+

∂Ul
∂xm

)
+ 0.1sukaikaml

(
∂Uk
∂xl

+
∂Ul
∂xk

)
− 0.1suk

1
k
(aimPmk + 2amkPim) + 0.15aml

(
∂Uk
∂xl

+
∂Ul
∂xk

)
(amksui − amisuk)

− 0.05aml

[
7amk

(
sui

∂Uk
∂xl

+ suk
∂Ui
∂xl

)
− suk

(
aml

∂Ui
∂xk

+ amk
∂Ui
∂xl

)]
(37)
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Φsi3 =− 1
3
Gsi − βSs2aikgk (38)

Notably, the coefficients in (35), (37), and (38) are not empirical, and are determined only by
the realizability constraints. The principle justification for adopting such a complex model is that,
even for a wake with an initially high Re and Fr, the flow will eventually decay to the point at
which the turbulent Froude number FrT = ε/kN is small. The turbulence will then be dominated
by stratification effects, and so approach the two-component limit. Recent LES/DNS studies such as
those by Chongsiripinyo and Sarkar ([17,32]) have lent some credence to this notion, showing that the
vertical normal stress decreases much more quickly than the horizontal normal stresses.

2.5. Scale-Equation Closure

The scale-determining equation is typically the most empirical part of a given RANS turbulence
model. In describing stratified flows, a number of different quantities have been used to describe the
scale of turbulent motion; the various transport equations for kL, ε, or ω each have virtues, but are
ultimately somewhat interchangeable (see Umlauf and Burchard [33]). For this work, the empirical
model of the ε equation developed by Craft et al. [9] was adopted:

∂ε

∂t
+Ui

∂ε

∂xi
=

ε

k

(
1
2

cε1Pkk − cε2 ε +
1
2

cε3Gkk

)
+

∂

∂xi

[(
νδij + cε

k
ε

uiuj

)
∂ε

∂xj

]
+ Pε∞ (39)

As with the stress transport equation, a free-stream source Pε∞ is included. For the stress transport
models, the coefficients for the model ε transport Equation (39) were taken to be:

cε1 = 1.0, cε2 =
1.92

1.0 + 0.7A1/2
2 A

, cε3 = 1.0, cε = 0.15 (40)

The coefficient values and parameterizations in (40) are taken as-is from the works of, for example
Craft and Launder [10], the combination of coefficients has been tested against a variety of free-shear
flows (see Hanjalić and Launder [26] for a thorough accounting). The model for ε given by (39) and
(40) is designed for free-shear flows, and has been found to be ill-posed for homogeneous turbulence
(see Speziale [34]. It is therefore likely to be less-suited to the far-wake than to near-wake regions.
Furthermore, Pereira and Rocha [35] has noted a general deficiency in models like (39) in the case of
strongly-stratified turbulence. The empirical model ε equation is therefore perhaps the best target for
model improvement in future work. Two different models for the dissipation rate tensor were tested.
The first assumes that εij is isotropic:

εij =
2
3

δijε (41)

The second is the model of Hallbäck et al. [36], and adopts a nonlinear dependence on the
anisotropy of the stress tensor:

εij =ε

[
2
3

δij (1− fs) +
uiuj

k
fs

]
− 3

4
ε

(
aikajk −

1
3

A2δij

)
, fs = 1 +

3
4

(
1
2

A2 −
2
3

)
(42)

2.6. Scalar-Variance Closure

Closure of (13) also requires the variance of the scalar fluctuations, s2. Per Radko and Lewis [22],
s2 is also a potentially useful quantity in its own right. A transport equation can be solved for s2:

∂s2

∂t
+ Ui

∂s2

∂xi
=− 2sui

∂Uk
∂xi
− εss +

∂

∂xi

[(
αSδij + csss

k
ε

uiuj

)
∂s2

∂xj

]
+ Pss∞ (43)
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which includes a free-stream source Pss∞ . Dissipation of s2 was modeled using the algebraic expression
of Craft et al. [9]:

εss =r
ε

k
s2, r = 1.5

(
1 +

sui sui

ks2

)
(44)

Some preliminary simulations conducted using a transport equation for εss, rather than (44),
indicated that the algebraic expression was sufficient. However, if environmental conditions are
expected to have significantly different scalar and mechanical time scales (fossilized turbulence,
for example), this evaluation may need revision.

2.7. Eddy Viscosity Model

For the sake of comparison, the same set of wake conditions was also applied to an isotropic
eddy–viscosity model. A standard k-ε model was employed, with the body-force effects on the scale
equation modeled after the approach of Henkes et al. [37]:

∂k
∂t

+ Ui
∂k
∂xi

=Pk − ε + Gk +
∂

∂xi

[(
ν +

1
σk

νT

)
∂k
∂xj

]
+ Pk∞ (45)

∂ε

∂t
+ Ui

∂ε

∂xi
=

ε

k
(cε1Pk − cε2 ε + cε3Gk) +

∂

∂xi

[(
ν +

1
σε

νT

)
∂ε

∂xj

]
+ Pε∞ (46)

cε1 = 1.44, cε2 = 1.92, cε3 = tanh

 |U3|√
U2

1 + U2
2

 cε1, σk = 1.4, σε = 1.3 (47)

As with (40), the coefficient values and parameterizations in (47) are taken and tested as given
in the literature (Henkes et al. [37], in this case). The remaining modeled values are closed with the
Boussinesq approximation:

uiuj =
2
3 kδij − 2νTSij, sui = −νT

∂S
∂xi

(48)

Pk = uiuj
∂Ui
∂xj

, Gk = βSgisui (49)

νT =Cµ
k2

ε
, Cµ = 0.09 (50)

2.8. Environmental Turbulence Sources

Finally, in order to accommodate the existence of environmentally generated background
turbulence, free-stream source terms were introduced to the turbulence quantity transport equations,
as proposed by Spalart and Rumsey [38]. The terms maintain the background turbulence quantities
at a specified value, and have the added benefit of improving numerical stability and convergence.
For the uiuj, the simplest approach is to introduce an isotropic source (the ∞ subscript denotes a
free-stream value):

Pij∞ =
2
3

δijε∞ (51)
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The sources for the ε, s2 equations, respectively, are then:

Pε∞ =cε2
ε2

∞
k∞

(52)

Pss∞ =1.5
ε∞

k∞
s2∞ (53)

A second, nearly two-component anisotropic source, was also implemented, to test the potential
impact of free-stream anisotropy:

Pij∞ =
2
3

 9
10 0 0
0 9

10 0
0 0 2

10

 ε∞ (54)

Note that, as the dissipation of the scalar flux sui is typically included in the pressure-scrambling
model, and any of the flux-vector components may potentially be negative, such source terms for
the flux-transport equations were not applied. Unless otherwise stated, in the simulations conducted
for this work, the free-stream values k∞ ε∞ were chosen such that νt∞ = Cµk2

∞/ε∞ ≈ 0.5ν For the
simulations presented in this work, these forms were employed. Further study may be needed to
select forms which properly account for the stratification and background anisotropy.

2.9. Simulation Approach

As indicated in the introduction, the models were implemented for the open-source finite-volume
code OpenFOAM. For all of the simulations detailed here, a second-order backward numerical
differentiation scheme was applied for the temporal derivatives. Second-order linear schemes
were applied for all spatial derivatives, with limiters applied as necessary to ensure convergence.
The momentum Equation (1) and continuity Equation (2) were coupled using the widely employed
hybrid PISO-SIMPLE (PIMPLE) algorithm, modified to include a Boussinesq body force after the
fashion of Issa and Oliveira [39]. Note that, under the 2D + t approach employed, the axial component
of the velocity U1 given by (1) is actually the velocity difference:

U1 = Us = U1,total −UB (55)

where UB is the propagation velocity of the wake generator. The mean velocity and turbulence
kinetic energy were initialized according to idealized models of drag and self-propelled (or net-zero
momentum, NZM) wakes. The wakes were initially axially symmetric, and the Reynolds stress tensor
was initially isotropic. For the drag wake, the expressions for velocity and TKE, in terms of radial
position r, were:

Us =Us,CL,0 exp
[
−1

2

( r
D

)2
]

(56)

k =kCL,0

[
1 + 4

( r
D

)2
]

exp
[
−2
( r

D

)2
]

(57)

where the initial centerline values are dependent on the case in question. The form of (57) produces a
TKE distribution roughly in line with the sphere wake measurements of Uberoi and Freymuth [40].
For the self-propelled (NZM) wake, the expressions for velocity and TKE were:

Us =Us,CL,0

[
1− 2

( r
D

)2
]

exp
[
−2
( r

D

)2
]

(58)

k =kCL,0 exp
[
−2
( r

D

)2
]

(59)
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The form of (59) produces a TKE distribution which roughly resembles the measurements in the
wake of the disk/jet wake of Naudascher [41]. The expressions for both wake types are plotted as a
function of radial position in Figure 1. Note that the expression for the self-propelled wake produces
a smaller total amount of TKE than that of the drag wake. For all cases, the dissipation rate ε was
set such that the turbulent Reynolds number ReT = k2/νε had a constant value of 10,000 throughout
the wake. In studies employing scale-resolving methods (e.g., Dommermuth et al. [14] or Brucker
and Sarkar [16]), it was found that initializing fluctuations in the scalar value did not substantially
change the behavior of the wake. In applying the RSMs to the same problem, algebraic expressions
were tested to initialize sui and s2, based on assuming equilibrium for the transport equations of those
quantities. However, use of the algebraic initialization was found to have little effect on the RSM
predictions outside of the initial stage of wake development. As the LES studies simply initialized
these quantities to zero, the scalar-associated turbulence quantities were therefore likewise initialized
to zero for this study.

2 1 0 1 2
r/D

0.1

0.0

0.1

U
s/U

B

(a) U

2 1 0 1 2
r/D

0.0

0.5

1.0
k/

k 0

(b) k

NZM
Drag

Figure 1. The initial radial distribution of axial velocity and TKE, given by Equations (56)–(59), for both
a drag and a self-propelled wake.

The simulation domain consisted of a square two-dimensional grid, 120D in both vertical and
horizontal extent. The pressure field p was given a Dirichlet boundary condition, with a fixed value of
zero. The other flow variables were given mixed Dirichlet/Neumann boundary conditions, dependent
on the flux of the quantity at the boundary.

As is readily seen in Equations (56)–(59), the scale of the initial mean velocity and TKE distribution
is primarily set by the initial wake diameter D. The key time scales of the problem are associated
with the mean velocity ((D/UB), the turbulence time scale predicted by the RANS model (k/ε),
and the oscillation period due to buoyant forcing (where the buoyancy frequency is given by
N =

√
−(g/ρ0)(∂ρ/∂x3)).

For all of the simulations conducted in this study, the initial wake diameter was given a
dimensional value of D = 1 m. The gravitational vector was aligned with the x3 axis (g3 = −9.81 m/s).
The body propagation velocity UB was chosen to obtain the desired Reynolds number Re = UBD/ν.
The background salinity stratification ∂SB/∂x3 was then set to provide the buoyancy frequency
required to match a given internal Froude number Fr = UB/ND.

3. Results and Discussion

The employed model variations and the associated equations are summarized in Table 1. RSM1 is
a stress transport model employing the realizable, two-component limit pressure–strain model.
The variant RSM1a employs an anisotropic model of the dissipation rate tensor εij. The variant
RSM1b employs an anisotropic free-stream turbulence source. RSM2 is a a stress transport model
employing the simpler linear pressure–strain model, and EVM1 is the eddy–viscosity model.

The conditions simulated are summarized in Table 2. The scale-resolving simulation studies of
Brucker and Sarkar [16] and Dommermuth et al. [14] were used for comparison due to use of the
“temporal model”, which is more analogous to the 2D + t approach than a body-inclusive simulation.
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Table 2. Summary of the different conditions simulated, with the reference experiment or
eddy-resolving simulation.

Tag Type Re = UB D
ν Fr = UB

ND 100 Us,0
UB

100
u2

i
1/2
CL,0

UB
100 u2

i
1/2
∞

UB
Compare With

LP NZM 20,000 30 16 14 0 Lin and Pao [24] (LP1979)
BS1 NZM 50,000 4 11 8 0 Brucker and Sarkar [16] (BS2010)

BS1a NZM 50,000 4 11 8 2 Brucker and Sarkar [16] (BS2010)
BS2 Drag 50,000 4 11 8 0 Brucker and Sarkar [16] (BS2010)

DOM Drag 100,000 2 11 4.5 0 Dommermuth et al. [14] (DOM2002)

3.1. Turbulence Decay

The decay of the root-mean-square vertical-velocity fluctuations (the square-root of the vertical
normal stress u3u3) and root-mean-square scalar fluctuations (the square-root of the scalar variance s2)
along the wake centerline are depicted in Figures 2 and 3, respectively. The stress transport models
achieve the correct decay rate, matching the (Nt)−1 exponential decay measured for the experiments
detailed by Lin and Pao [24]. The rate is captured for both u3u3 and s2. The differences between RSM1
and RSM2 are trivial for this case. The eddy–viscosity model was not paired with a transport equation
for s2, and so is omitted from Figure 3.

While reproducing the decay rate, the RSMs systematically under-predict the magnitude of
the scalar variance (both the peak value and the value during the decay). A partial explanation
of the deficiency may be the uncertainty in the initial conditions for the problem. As noted
in the previous section, the scalar-associated turbulence quantities were initially uniformly zero.
While computationally convenient, this is clearly non-physical, as mixing of the scalar quantities
begins at the onset of turbulence in the body boundary layer, not at a finite downstream distance.

The eddy–viscosity model (EVM1) predicts a much too rapid decay, likely indicating that
the expression for the coefficient cε3 from Henkes et al. [37] is poorly tuned for this particular
problem. The rapid extinction of turbulence quantities leads to an unrealistically high preserved
wake momentum in the later stages of the wake, as will be discussed in Section 3.2.

Finally, the time-dependent behavior of the centerline value of ε is given for the self-propelled case
under the same conditions as the LES of Brucker and Sarkar [16] as Figure 4. The RSMs predict a decay
rate in keeping with the LES, while the EVM again predicts a much too rapid decay. The introduction of
an anisotropic dissipation rate tensor for RSM1a does not produce a significant difference in behavior,
despite the dependence of ε equation coefficients on the stress anisotropy for the RSMs.

10 1 100 101

Nt/2

10 2

10 1

100

FrD
3/4

UB
u2

3CL

LP1979
Fr = 23
Fr = 31
Fr = 32
Fr = 65
Fr = 120

Models
RSM1
RSM2
EVM1
(Nt) 1

Figure 2. Time evolution of the centerline RMS fluctuating vertical velocity for Re = 20,000, Fr = 30
self-propelled stratified wake, with data from Lin and Pao [24] collected at various Froude numbers.
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10 1 100 101

Nt/2

10 2

10 1

s2
CL| S

x3
D| 1

LP1979
Fr = 23 
Fr = 31 
Fr = 32 
Fr = 65 
Fr = 120 

Models
RSM1
RSM2
(Nt) 1

Figure 3. Time evolution of the centerline RMS fluctuating scalar for Re = 20,000, Fr = 30 self-propelled
stratified wake, with data from Lin and Pao [24] collected at various Froude numbers.

100 101 102

Nt

10 2

10 1

100

101

102

ReFr2 D
U3

B

Models
RSM1
RSM1a
RSM2
EVM1
(Nt) 7/3

200 400 600 800 1000

UB
D t

Figure 4. Time evolution of the centerline TKE dissipation rate for Re = 50,000, Fr = 4. The (−7/3)
exponential decay rate is the same as observed in the LES simulations of Brucker and Sarkar [16].

3.2. Wake Momentum Decay

Model predictions of the decay of the mean defect velocity are compared to the scale-resolving
simulations of Brucker and Sarkar [16]. Figure 5 shows the comparison for the drag wake. The models
all correctly predict the prolonged duration of the momentum wake due to the suppression of turbulent
mixing by stratification. As noted in Section 3.1, the rapid extinction of turbulence quantities for EVM1
results in that model predicting a much larger sustained centerline defect velocity.

The RSMs in general reproduce the overall velocity decay well. The RANS models under-predict
relative to the scale-resolving model in an approximate region between Nt ≈ 6 and Nt ≈ 70. This
roughly corresponds to the NEQ region of the wake, according to the stage breakdown suggested by
Spedding [18]. Further analysis is required to determine if the disagreement with the scale-resolving
simulation can be explained by some physical mechanism occurring in this stage of the wake. As with
the model predictions of the turbulence decay, there is not a substantial difference between RSM1 and
RSM2 for this metric.

Figure 6 shows the comparison for a self-propelled (NZM) wake. The figure shows both the
peak value of the momentum associated with the thrust portion of the wake (U+

s ) and the value
associated with the drag portion of the wake (U−s ). As with the drag wake, the preservation of the
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wake momentum to late Nt is reproduced by the RANS models. EVM1 again predicts a too-high
preserved mean momentum.

The RSM predictions for both the thrust and drag portions of the wake are in fair agreement with
the scale-resolving model for the NZM condition as well. The under-prediction in the NEQ stage is
not present for the self-propelled case. The differences between RSM1 and RSM2 are somewhat more
pronounced. RSM1 predicts a slight increase in U−s near Nt = 5; however, this ultimately puts that
model’s prediction more in line with the scale-resolved simulation predictions. Finally, it is notable that
use of the anisotropic dissipation rate expression in model RSM1a does not produce any qualitative
differences in behavior, and appears to reduce agreement with the scale-resolving simulation.

100 101 102

Nt

10 1

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

U
s,

C
L/

U
B

BS2010
Us, CL            

101 102 103
tUB/D

Models
Us, CL, RSM1
Us, CL, RSM2
Us, CL, EVM1

Figure 5. Time evolution of the wake velocity defect for the drag wake at Re = 50,000, Fr = 4. U+
s

indicates the maximum thrust velocity, and U−s indicates the maximum drag velocity. With LES
predictions from Brucker and Sarkar [16].

100 101 102

Nt

10 2

10 1

U
(+

/
)

s
/U

B

BS2010
U+

s              
Us

101 102 103
tUB/D

Models
U+

s , RSM1
Us , RSM1
U+

s , RSM1a
Us , RSM1a
U+

s , RSM2
Us , RSM2
U+

s , EVM1
Us , EVM1

Figure 6. Time evolution of the wake velocity defect for the NZM wake at Re = 50,000, Fr = 4.
U+

s indicates the maximum thrust velocity, and U−s indicates the maximum drag velocity. With LES
predictions from Brucker and Sarkar [16].
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3.3. Wake Dimensions

In evaluating model prediction of wake dimensions, the general definition of wake height/width
suggested by Brucker and Sarkar [16] is adopted:

Ri = 2

∫∫
U2

1(xi − xc
i )

2dx2dx3∫∫
U2

1 dx2dx3
, xc

i =

∫∫
U2

1 xidx2dx3∫∫
U2

1 dx2dx3
(60)

The integrated expression for the momentum width or height allows for direct comparison
between the drag and self-propelled cases. Figure 7 shows the model predicted wake dimensions for
the pure drag case. The RANS model predictions of the wake growth rate in a horizontal direction
roughly agree with the scale-resolving simulation (disregarding the eddy–viscosity model). However,
after approximately Nt = 100, the RSMs predict a slowing in horizontal growth, which is not observed
in the LES results. However, there is substantial disagreement in the predictions of the vertical growth
of the wake. Both the RANS and LES approaches predict a local peak in R3 shortly after Nt = 1.
However, the scale-resolving simulation of Brucker and Sarkar [16] predicts a wake which shrinks in
the vertical axis over most of the wake’s lifetime, while the RANS models predict a small but positive
growth rate. The discrepancy is difficult to explain, and further study is needed to determine the cause
of the qualitative difference in behavior.

Figure 8 shows the model predicted wake dimensions for the self-propelled case. The RSM
models systematically under-predict the wake width of the self-propelled wake in comparison with
the LES; however, the growth rate is in approximate agreement over a portion of the wake lifetime.
In contrast with the drag wake, the wake height predictions agree fairly well with the LES, with both
the RSMs and the LES indicating a wake which maintains a roughly constant height R3/D ≈ 0.95 at
late Nt. The stronger agreement with LES suggests that the discrepancy seen in Figure 7 may be due to
poor initial conditions in the drag wake simulations, rather than a deficiency in the RSMs themselves.

For both the drag and self-propelled cases, the differences between the predictions of RSM1,
RSM1a, and RSM2 are again mostly trivial.

100 101 102

Nt

1.0

0.5

0.6

0.7
0.8
0.9

2.0

R
/D

(a) R2

100 101 102

Nt

0.5

0.6

0.7

R
/D

BS2010
Ri

101 102 103
tUB/D

101 102 103
tUB/D

Models

RSM1

RSM2

EVM1

b R3( )

Figure 7. Time evolution of the wake width/height based on the integral of the axial momentum.
For a self-propelled wake, Re = 50,000, Fr = 4. With LES predictions from Brucker and Sarkar [16].
(a) width (R2), (b) height (R3).
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0.9
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(a) R2
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Nt

1.0

0.5

0.6

0.7

0.8

0.9

R
/D

(b) R3

BS2010
Ri

101 102 103
tUB/D

101 102 103
tUB/D

Models

RSM1

RSM1a

RSM2

EVM1

Figure 8. Time evolution of the wake width/height based on the integral of the axial momentum. For a
self-propelled wake Re = 50,000, Fr = 4. With LES predictions from Brucker and Sarkar [16]. (a) width
(R2), (b) height (R3).

3.4. Spatial Energy Distribution

The spatial distribution of the energy of a wake also be examined; again for comparison with the
LES simulations of Brucker and Sarkar [16]. For the drag wake, Figure 9 shows a slice of the domain
with the local mean kinetic energy (MKE), while Figure 10 supplies the same for the turbulent kinetic
energy. Likewise, Figures 11 and 12 show the MKE and TKE distributions for the self-propelled wake.
The predicted MKE and TKE distributions are vertically symmetric.

The drag wake MKE shows a wake which has grown in the horizontal direction, while growth in
the vertical is suppressed, in keeping with the thicknesses measured in Section 3.3. Figure 10 shows
that at late Nt the TKE has separated into two peaks with a saddle point on the centerline, which is
broadly in agreement with the behavior predicted by the LES of Brucker and Sarkar [16]. The primary
difference between RSM1 and RSM2 is a slightly larger peak TKE value for the former.

Examining Figure 11, the self-propelled wake possesses two distinct regions of mean kinetic
energy. The thrust portion of the wake is still concentrated at the centerline, while the drag portion has
been separated into two “lobes” roughly one diameter above and below the centerline. The distribution
of MKE compares favorably with the LES of Brucker and Sarkar [16], which predicted similar lobes
in similar locations. Figure 12 illustrates perhaps the most significant difference in behavior between
RSM1 and RSM2 observed in this study. The former predicts a core of TKE for the self-propelled case,
while the latter predicts two separate peaks (similar to the behavior of the drag wake). The prediction
of RSM1 is qualitatively more similar to the distribution observed by Brucker and Sarkar [16] for the
self-propelled case.

3 2 1 0 1 2 3
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0.30
0.45
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Figure 9. Distribution of wake MKE for a drag wake, Re = 50,000, Fr = 4, Nt = 240.
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Figure 10. Distribution of wake TKE for a drag wake, Re = 50,000, Fr = 4, Nt = 240.
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Figure 11. Distribution of wake MKE for a self-propelled wake, Re = 50,000, Fr = 4, Nt = 240.
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Figure 12. Distribution of wake TKE for a self-propelled wake, Re = 50,000, Fr = 4, Nt = 240.

3.5. Collapse-Induced Internal Gravity Waves

The internal gravity waves (IGWs) produced by the vertical collapse of the wake can be examined
taking slices in the (x2 − x3) and (x1 − x3) planes (note that the x1 direction is taken to be related to t by
the body speed for the type of simulation conducted in this study, i.e., x1 = UBt). Figure 13 shows the
perturbation to the salinity field (which, in this case, is equivalent to showing the density perturbation)
as a function of time and vertical location. The wake produces waves which propagate upward and
downward through the linear stratification, with an oscillation period roughly corresponding to the
buoyancy period 2π/N. Figures 14 and 15 show slices in the x2 − x3 plane, depicting waves which
radiate from the wake centerline. The number of rays increases with increasing Nt, or equivalently,
with downstream distance. It is important to note that both temporal model LES and 2D + t RANS
models omit body-generated lee waves.
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Figure 13. Model-predicted density perturbation for a self-propelled wake at Re = 50,000, Fr = 4,
showing the collapse-generated IGWs. The vertical lines at Nt = 10 and Nt = 20 indicate the locations
of the slices shown in Figures 14 and 15.
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Figure 14. Model-predicted density perturbation for a self-propelled wake at Re = 50,000, Fr = 4,
showing the collapse-generated IGWs. Nt = 10. There are 14 rays, spaced at roughly 25◦.
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Figure 15. Model-predicted density perturbation for a self-propelled wake at Re = 50,000, Fr = 4,
showing the collapse-generated IGWs. Nt = 20. There are 26 rays, spaced at roughly 11◦.

3.6. Integrated Energy Decay

Figure 16 shows the time variation of the turbulent kinetic and turbulent potential energy
(TKE, TPE), integrated over the entire domain. The TKE is separated into vertical (VTKE) and
horizontal (HTKE) components. The case is a drag wake under the same conditions as the LES of
Dommermuth et al. [14], and the behavior depicted may be qualitatively compared with that study.



Fluids 2020, 5, 248 19 of 22

The RSM predicts a decay rate roughly in line with the (−2/3) exponential decay measured in the LES
over a portion of the wake’s lifetime. Additionally, the vertical TKE and TPE oscillate with a period
roughly equally to the buoyancy period 2π/N, exchanging energy as they do so. The oscillatory
behavior is also in line with the behavior observed by Dommermuth et al. [14].

100 101 102

Nt

10 4

10 3

10 2

E
U

2
B

D
3

Models
VTKE, RSM1
HTKE, RSM1
TPE, RSM1
(Nt) 2/3

100 101 102
tUB/D

Figure 16. Model-predicted time evolution of integrated wake vertical and horizontal turbulent kinetic
(VTKE, HTKE), and TPE for a drag wake at Re = 105, Fr = 2. The (−2/3) decay is that predicted by
the LES simulations of Dommermuth et al. [14].

3.7. Free-Stream Turbulence Effects

Finally, the effect of increased free-stream turbulence intensity may be briefly explored by
increasing the strength of the sustaining sources included in the turbulence models. As indicated in
Table 2, a second set of simulations was conducted with a high free-stream TI for the self-propelled case
(case BS1a). The test was conducted for both an isotropic free-stream uiuj source, and the anisotropic
source given by (54). Figure 17 shows the decay of the mean velocity. Strong background turbulence
predictably increases the rate at which the mean velocity decays. The anisotropic source term appears
to produce a stronger effect for the same free-stream TI.

Figure 18 depicts the predicted wake dimensions under the same conditions. In this case,
the sustaining sources are strong enough to overcome the buoyancy effects, and the wake grows
in both the vertical and horizontal direction. The growth continues past the point at which the wake
height ceases growth in quiescent conditions. By late Nt, the wake turbulence has been reduced
to the background value, and turbulent transport of the wake momentum is exclusively by the
background turbulence.

While the predicted behavior shown in Figures 17 and 18 makes intuitive sense, further study is
required to confirm the efficacy of the free-stream source approach employed.
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Figure 17. Time evolution of the wake velocity defect for the self-propelled wake at Re = 50,000,
Fr = 4, with a free-stream turbulence intensity of 2%. U+

s indicates the maximum thrust velocity, and
U−s indicates the maximum drag velocity.
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Figure 18. Time evolution of the wake dimensions for a self-propelled wake at Re = 50,000, Fr = 4,
with a free-stream turbulence intensity of 2%.

4. Conclusions

In this work, we have demonstrated the use of a pair of anisotropic stress-transport RANS
turbulence models intended to be used to simulate full-scale wakes in an active ocean environment.
The models were found to reproduce a number of important stratified wake behaviors as observed
in LES and laboratory studies. In particular, the models capture the decay rates of key turbulence
quantities, the preservation of mean momentum to late Nt due to suppression of turbulence, and the
wake collapse and internal gravity wave production. It was found that the more complex TCL
pressure–strain based RSM did not differ significantly in behavior from the simpler linear model under
the conditions simulated. Likewise, the use of an anisotropic dissipation-rate tensor for the stress
transport equations did not substantially improve agreement with LES model predictions. Use of these
more complex models required approximately 10–20% more computing times over the linear RSM
for a given wake case. Further study at late Nt is needed to determine if the TCL model’s additional
cost is justified for low turbulence Froude numbers. Application of the models to late Nt will also
likely require other modifications; the wake approaches both low turbulence Reynolds number and
low Froude number conditions, likely beyond the range of validity for the models as implemented
here (which were developed for high Reynolds number turbulence). Finally, the models were further
modified with additional source terms to supply a nonzero background turbulence, which was found
to increase the rate of wake decay and increase wake thickness growth. More tests are needed to
carefully validate this capability.
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