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Abstract: An increasing attention has recently been paid to the effect of the underwater noise field
generated by ship activities on the marine environment. Although this problem is widely discussed
in international treaties and conventions, it has not yet found a consolidated technical-scientific
treatment capable of quantifying the level of underwater noise emissions produced by naval systems.
As part of a national research collaboration, a novel code has been developed to predict noise
propagation according to the Ray Tracing approach. Such optical geometry-based technique allows
for calculating the Transmission Loss (TL) trend in its respective contributions: geometrical loss
(due to the distance between the source and receiver), dissipation loss (due to the characteristics of
the propagation environment), and reflection loss (due to the surfaces that delimit the field). The
simulation requires as input parameters the source info as spatial position, frequency, and sound
pressure level (SPL) as well as the sea properties like seabed depth, the speed of sound profile,
the layers thickness the water column is divided into, the sea salinity, temperature, and pH. The
simulation code provides the SPL spatial distribution useful as a fast industrial tool in the future
studies addressed to identify the emission limits for the protection of marine wildlife.

Keywords: acoustic models; Ray Tracing; underwater noise

1. Introduction

A topic of scientific interest for many years now is the study of noise propagated
in the sea. As pioneering contributions in this sense, it is worth recalling the works of
Knudsen [1] and Wenz [2], published at the beginning of the twentieth century. The sound
disturbances emitted by naval systems are certainly among the main components of noise
pollution—both sonic and ultrasonic—negatively affecting the marine ecosystem [3–7].
Awareness perspectives are supported by binding regulations of certain states or of EU
Directives on the care of the natural environment, such as to impose limits on underwater
noise levels [8]. The United Nations Convention on the Law of the Sea (UNCLOS) estab-
lished underwater noise produced by both coastal and offshore anthropogenic activities
as a source of pollution of the marine environment [9]. Article 1 defines the “pollution of
the marine environment”. It is classified on the basis of continuous emissions (such as
drilling, ship traffic) and intermittent (such as pile drivers, geoseismic surveys), which
are added to the noise normally present in the marine environment. The characteristics
of ship noise are a function of various parameters such as the type of vessel, its size, type
of propulsion, and speed performance. The noise produced by the propeller in particular
could have an emission range of up to hundreds of kilometers. In 2008, underwater noise
was defined as a qualitative parameter of the state of health of the marine environment,
thus requiring Member States to consider the problem and take precautionary measures
aimed at containing cross-border pollution emissions (European Community, through the
“Marine Strategy Framework Directive” [10]). In order to assess the extent of the environ-
mental impact, national and international organizations were the first to issue procedures
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for measuring the noise radiated into the water by ships [11,12]. This, in order to regulate
the levels of noise pollution deriving from navigation as the annexes of MAR.POL. (Inter-
national Convention for the Prevention of Pollution from Ships [13]), only concerns forms
of pollution by substances and not by forms of energy. Although there are still substantial
gaps, a large growing research community supports the conclusion that noise pollution can
severely affect the physiology, communication, behavior, and energy of marine animals
with both acute and chronic effects as well [14–22]. Many studies on submarine transport
noise were provided, highlighting important details on the noise levels of individual ships
operating under various operating conditions. Research has always aimed to develop ana-
lytical or empirical data-based models for the diagnosis, identification, and classification of
underwater acoustic wave sources. The noise produced by commercial ships dominates
above all in the low frequency range of deep-ocean, but it remains more difficult to predict
in coastal proximity where other local sound components intersect [3,23–28]. On the other
side, war boats and submarines represent perhaps one of the few cases where noise levels
are more limited, even if more for strategic reasons than ecological ones [29–35]. The typical
noise components can be categorized into three main classes [8–32]: contributions due to
the components of the hull, i.e., the powertrain and auxiliary systems; noise produced by
the ship’s propellers; resonant phenomena of cavitation of the propellers and sustained
turbulence around the underwater part of the hull. The ship’s service generator is the
main source of underwater noise, especially of a tonal nature, generated by the ship at
low speed: they are independent of the ship’s speed. The high-speed noise band is mostly
given by some propulsive components with a frequency range above 100 Hz. Experimental
field studies have been conducted in order to analyze the formation and propagation of
the acoustic waves produced by a small ship in condition of the shallow sea [36]. The
authors also evaluated the influence of boundary conditions, such as the seabed, with the
noise spectrogram. Another experience concerns the evaluation of the noise radiated by
commercial ships in transit on the coast of southern California (Santa Barbara Channel,
SBC) [37]. Novel detection techniques of submarine sound levels as well as to identify the
ship passages have been studied [38–40]. In the course of this article, a fast methodology for
the prediction of the noise emitted by a source will be studied by applying the Ray Tracing
theory, useful for calculating the wave propagation paths as a function of characteristic
parameters: the different distribution speed of sound, absorption characteristics of the
region fluid, and surfaces reflection properties. The Matlab® code developed allows for
simulating the mapping of hydrophones positioned at different heights of the seafloor:
the focus of authors has been placed on the analysis of noise levels in the Adriatic Sea
never presented in literature so far. This work in quality of “Case Report” does not aim
to introduce an innovative tool in the study of underwater noise but rather to present its
potential in a preliminary project phase between the University of Naples “Federico II” and
Fincantieri Company. The results were compared with the Pekeris model [41]: a maximum
error of 3 dB was found both at the assigned heights and up to a range of 25 km.

2. Materials and Methods
2.1. Theoretical Model of Ray Tracing

The development of predictive tools can also prove extremely useful in order to
optimize the noise levels emitted at sea: the mathematical models are based on the phe-
nomenological laws that govern the physics of wave propagation in fluids. The “Ray
Tracing theory” represents a possible modeling approach for this purpose. This type of
modeling is used in the optical field to analyze the light diffusion, but its applicability can
also be extended to the acoustic field. This technique is a high-frequency approximation of
the solution of the wave equation. It allows to define the propagation of sound through the
emission of rays emitted by a point source in a medium at a constant speed of sound. The
rays emitted by the source are perpendicular to the wave fronts, which are instead spherical
surfaces radiated by the source itself. The reference theory is due to the Snell–Descartes
law, which is used in acoustic geometry to describe the interference phenomena that occur
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between two homogeneous fluids having different speeds. Let us consider two fluids of
which the first has density ρ1 and speed c1 and the second which has density ρ2 and speed
c2 (with c2 > c1), as represented in Figure 1.
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Figure 1. Incident ray which partly reflects and partly is transmitted in the second fluid.

Snell–Descartes Theorem. The ratio of the cosines of the angles of incidence and refraction is
equivalent to the ratio of phase velocities in the two media, or equivalent to the reciprocal of the ratio
of the indices of refraction.

The difference in the velocity of the fluids means that the incident ray (inclined by the
angle β1 with respect to the horizontal line) partially reflects upwards symmetrically and
partially refracts in the second fluid with an angle β2 that is obtained from the following
relationship (1):

cosβ1

c1
=

cosβ2

c2
(1)

This equation is valid only if β2 ≤ 1 and therefore cosβ1 ≤ c1/c2.
From this relation, it is possible to introduce another angle βcritic called “critical angle”,

equal to Formula (2):

βcritic = arccos
(

c1

c2

)
(2)

For incidence angles β1 smaller than βcritic, there is total reflection. The same law can
also be extended to study sound propagation phenomena when velocity varies linearly
with depth.

Considering the law of variation of speed with depth as per Equation (3) (see Figure 2):

c(z) = c0 + g(z− z0) (3)

In which z is the vertical dimension and g is the speed gradient. Substituting the
Equation (3) in the Snell–Descartes law Equation (1), the Equation (4) is obtained:

cosβ(z) =
c(z)
c0

cosβ0 =

(
1 +

g
c0
(z− z0)

)
cosβ0 (4)

Given the radius RC = c0/gcosβ0, the relationship (4) is reduced as follows:

cosβ(z) = cosβ0 +
z− z0

RC
(5)

It is observed, therefore, that in the case in which the speed varies with depth, the rays
do not maintain straight trajectories but bend defining curved sections, unlike the case in
which the speed remains constant and the rays propagate according to rectilinear sections.
The method therefore consists in determining of the propagation of sound through linear
segments and arcs that are connected along the water column, Figure 2. Relying upon this
physical principle, the numerical prediction has been developed in this paper.
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2.2. Numerical Prediction Code: Objectives and Functionality of the Program

The simulation program developed and described within this paper implements the
basic foundations of this theory. The main purpose was to evaluate the Transmission Loss
(TL) in water, and therefore the calculation of the sound pressure level (SPL) of a given
point-like source that radiates a sound wave. The phases necessary to achieve this goal
will be explained below, giving the reader the opportunity to get the program steps and
then describing the applicative example about the noise analysis of the Adriatic Sea (Italy).
From a general standpoint, the simulation code is structured in two distinct parts in order
to guarantee greater speed and fluidity. The first part is dedicated to the input of the
characteristic parameters of the source (the minimum angle, the maximum angle, and the
step of emission of the rays) and of the surrounding environment (depth, temperature,
salinity, pH). These data are fundamental to evaluate the water absorption coefficient α
(Appendix A). Subsequently, the program, through a series of iterative cycles, will provide
the different propagation paths of the rays emitted by the source. In the second part of
the program, the user has the possibility to set up a matrix of virtual receivers through
which to map the trend of the Transmission Loss (TL) and the SPL sound pressure level.
The global layout is represented in Figure 3.
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2.2.1. Propagation Paths

In evaluating the propagation paths, it was assumed that the velocity varies linearly
with the depth through a law of this type (6):

c = c1 + g1 × zn (6)

where c1 is the surface speed, g1 the speed gradient, and zn the various levels in which the
water column is subdivided. The variation of the incident ray along the water column is
evaluated as a function of the velocity along the different levels.
According to the Snell–Descartes law at each level:

- If the angle of the i-th ray is greater than the critical angle, the latter will continue to
propagate according to its direction until it reaches the bottom or the surface of the
sea and then will reverse its direction.

- If the angle of the i-th ray is greater than the critical angle, the latter will obviously
reverse its direction of propagation before reaching the bottom.

Finally, one set of rays will reverse their direction when they interfere with the sea
floor and surface while other rays will reverse their direction before reaching the bottom,
tracing arch-shaped trajectories, Figure 4a. Once the different propagation paths have been
obtained, the second part of the program requires the definition of the map of receivers
such as to discretize the fluid domain, Figure 4b.
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Figure 4. Simulation setup: (a) rays of propagation; (b) receiver matrix.

2.2.2. Calculation of the Loss of Propagation (TL)

When a wave propagates from a source, a reduction in intensity due both to the
absorption of acoustic energy and to a loss of geometric diffusion (Appendix B) could be
considered. Absorption was taken into account for the initial stage of the program, aiming
to calculate the transmission loss ratio as follows in the Equation (7):

TL = 20logR + αR (7)

In the case of rays incident on the sea floor, an absorption coefficient equal to 0.5 has
been assumed, determining, therefore, an increase of 3 dB in the propagation loss according
to Equation (8):

TL = 20logR + αR + 3n (8)

where n is the number of reflections on the sea floor.
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2.2.3. Calculation of the Sound Pressure Level (SPL)

The SPL magnitude with respect to the acting pressure p is defined as the following
quantity (9):

LP = 10 log10

(
p

pre f

)2

[dB] (9)

in which pref represents the reference pressure evaluated at 1 m from the source and equal
to 1 µPa. In order to evaluate the SPL due to the various sound fields, the linear sum of the
pressures is automatically performed in Matab® (The MathWorks, Inc. Natick, MA, USA),
assuming that: (

pi
pre f

)2

= 10SPLi/10 [Pa] (10)

where pi is the i-th sound field pressure calculated at the receiver. The total sound field is
obtained from the sum of the contributions of all pressures as per Equation (11):

SPLTOT = 10 log10

(
∑i pi
pre f

)
[dB] (11)

2.3. Case Study Overview

As part of a collaboration between the University of Naples “Federico II” and Fin-
cantieri technical department, the following program was developed to evaluate the propa-
gation of sound in the Adriatic Sea, from a source located at a depth of 10 m from the sea
surface. Five case studies were carried out in the same hydrogeological site, considering
different depths with the purpose of making a final comparison of the different modes of
transmission. The parameters used during the application and the expected results are
outlined below.

• SOURCE:

A point source located at –10m from the sea surface and with an SPL equal to 100 dB
was assumed as a source of disturbance. With a range of rays varying between −90◦ and
+90◦ with a step of 0.5◦.

• SEA AND CHARACTERISTICS:

The Adriatic Sea, as mentioned, was the reference marine environment for this re-
search. This sea develops for a length of 800 km and a width of 200 km. This sea can be
divided into three characteristic areas, Figure 5a:

- A northern area characterized by a low percentage of salt due to the fact that the
rivers flow into the basin. This area, which extends up to the cross of Ancona, is
characterized by a shallow seabed.

- A central area that goes from Ancona to the cross of the island of Pianosa, has a higher
depth, and in particular, this area is characterized by warmer waters exhaled by the
presence of the Ionian currents that penetrate through the Otranto Canal.

- A southern area that extends along the coasts of Puglia where the maximum depth
foreseen for this sea is reached, which is 1233 m in correspondence with the Gargano.
This depression is also known as the “Fossa of the lower Adriatic”.

Based on this consideration, five case studies were elaborated by changing the depth
of the seabed: from an average value of 250 m up to the maximum depth of 1250 m,
with steps of 250 m assumed as the spatial range of investigation. So, the following cases
were contemplated: 250 m, 500 m, 750 m, 1000 m, 1250 m. The characteristics of the sea
are those reported in the MARCOAST (Marine and Coastal Environmental Information
Services) project with which ISPRA (Higher Institute for Environmental Protection and
Research) collaborated [42]. The project carried out a monitoring of the characteristics of
the Adriatic Sea from 2007 to 2011. For the selection of the parameters, the average surface
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temperature measured in July 2008 (T = 24 ◦C) was considered, Figure 5b, while for the
salinity, an average value based on ten-year surveys was chosen. The salinity chosen for
the application is 37.62 psu (Practical Salinity Units), Figure 5c.

• MATRIX OF RECEIVERS:

For the second part of the program, a matrix of 6 × 6 receivers distributed at intervals
of equal width was set up as reported in Figure 4b.
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3. Results

Following the logic of the previous paragraphs and exploiting the input data shown,
the program will be able to graphically provide the different sound fields. At the end of
processing, the program will graphically provide a series of sound fields. The first to be
provided are: the direct sound field, the sound field after reflection on the free surface, the
sound field after reflection on the seabed. Since sound can be composed, it is observed that
the compound sound fields are obtained from the sum of direct and reflected sound fields.
In fact, the program provides: the sound field composed between direct and reflected on the
free surface, the sound field composed between direct and reflected on the bottom. Finally,
the total one is obtained from the composition of the three sound fields, that is, total sound
field composed of direct, reflected on the free surface, and reflected on the bottom. This
reasoning was carried out for each case study and therefore at each depth. The simulations
have been performed using an Intel® Core™ i7-6500U processor @2.50 GHz with 2 cores.
These sound fields (direct, reflected, and combined) obtained for the particular case of
maximum height of 250 m are represented in Figure 6. The composed acoustic contours
representative of the other heights from the seabed, i.e., 500 m, 750 m, 1000 m, and 1250 m,
are reported in Figure 7. The simulations show the importance of considering the reflected
fields for the global propagation loss quantification. The global sound field in Figure 6f
actually follows almost the same wave pattern as the direct field in Figure 6a but higher in
amplitude: the resulting field reaches up to 55 dB against the 50 dB of the direct field only.
As the coverage range increases, the SPL decays with a logarithmic law and as a function
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of the attenuation parameters illustrated above in paragraph 2: the acoustic level reaches a
maximum of 40 dB at the distance of 1250 m, Figure 7d.
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4. Discussion

In order to assess the Ray Tracing trend accuracy, the transmission loss has been
compared with the Pekeris waveguide-based model; the purpose of such investigation was
to deepen the basic understanding of the propagating mechanisms of underwater noise
with respect to well-known theoretical schemes, especially for far-field cases. A maximum
range of 25 km has been assumed. Below are the graphs representing a final comparison
among the case studies, Figure 8.

The Pekeris model represents the simplest one to characterize shallow water acoustics,
considering calm sea, constant depth, homogeneous medium non-absorbent seabed. The
analyses showed an acceptable level of correlation between the Ray Tracing model, whose
decay is a logarithmic function, and the transcended Pekeris model based instead on the
propagation of normal modes; an average error of about 3 dB was estimated between the
two approaches, which is acceptable in a preliminary design phase. For Pekeris, the rate
of dispersion and waves attenuation in the waveguide depends on the iterative search
of mode numbers. The wave equation is solved to determine the normal mode solutions
which prevail at large distances from the source, according to Lamb procedure. For the
present calculation, four normal modes have been supposed: the pressure field is calculated
according to a two-dimensional modal extension (Kirchhoff equation). The discrepancy
between two approaches could be found, therefore, in the different schematization of
reflection and attenuation mechanisms, with the TL increasing with mode number [41].
Due to the broadband nature of the problem, the model is very computationally demanding.
The calculation times essentially depend on the pitch of the rays and the distance to be
covered. Performance can certainly be optimized by consolidating the simulation code
structure. However, for a preliminary phase, these times are still advantageous with
respect to finite element models, which required much more computational cost and mesh



Fluids 2021, 6, 19 10 of 14

modeling steps as well. At the end of the processing, the time required for each simulation
was evaluated: it is the function of two main parameters:

• HEIGHT OF THE SEABED

The higher the height of the bottom, the more the processing time required for the
simulation increases.

• STEP BETWEEN RADIATION ANGLES

The code allows for inserting the interval between the emission rays of the source; the
smaller the step, the more detailed the noise map will be. The computational cost varies
quadratically with the depth of the sea, Figure 9. In Table 1, the times required by the
program in the five cases.
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Table 1. Computational cost estimation as function of sea depth.

SIMULATIONS DEPTH TIME REQUIRED

CASE I 250 m 9.86 min
CASE II 500 m 30.47 min
CASE III 750 m 55.30 min
CASE IV 1000 m 92.05 min
CASE V 1250 m 137.54 min

5. Conclusions

This paper is part of the macro-topic inherent in the current need to study forecasting
systems for optimizing the sources of underwater noise pollution generated by ship traffic.
In particular, the activity arises from a collaboration between the University of Naples
“Federico II” (industrial engineering department) and the technical office of Fincantieri
Group with the purpose of creating a fast predictive code for a preliminary evaluation
of the acoustic propagation fields in submarine environments, with special attention to
the basin of the Adriatic Sea. The simulation program in Matlab® is essentially based
on the optical-acoustic technique of Ray Tracing, which allows to characterize the sound
propagation path also as a function of the characteristic parameters of the source and
of the diffusion medium. Methodology is very suitable for preliminary calculations for
two reasons:

• For the identification of the sound field radiated even at a great distance and, therefore,
of the impact this may have on the marine environment.

• For the interpretation of the possible experimental values detected by the hydrophones
in a field relatively close to the ship for an effective characterization of the distur-
bance source.

Future developments conducted by the research group aim at expanding the function-
ality of the program, taking into account also the third spatial dimension, while always
limiting the computational cost, which, for applications of this kind, can be excessively
expensive. Experimental campaigns of field measurements are also underway to validate
this first part of the program.
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research paper. All authors have read and agreed to the published version of the manuscript.
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Appendix A

The theory used to evaluate the water absorption coefficient α is the model proposed
by Francois–Garrison, in which the absorption coefficient is expressible into three terms that
correspond, respectively, to the contribution of boric acid, of the sulphate of magnesium,
and water viscosity:

α = A1P1
f1 f 2

f 2
1 + f 2

+ A2P2
f2 f 2

f 2
2 + f 2

+ A3P3 f 2 (A1)

• Factors taking into account the contribution of boric acid B(OH)3:
A1 = 8.86

c 100.78pH−S

P1 = 1

f1 = 2.8
√

S
35 104− 1245

T+273

c = 1412 + 3.21T + 1.19S + 0.0167z

(A2)

• Factors taking into account the contribution of magnesium sulfate Mg(SO)4:
A2 = 21.44 S

c (1 + 0.025T)
P2 = 1− 1.37 × 10−4z + 6.2 × 10−9z2

f2 = 8.17 ×108− 1990
T+273

1+0.0018(S−35)

(A3)

• Factors that take into account the contribution of water viscosity:

P3 = 1− 3.83× 10−5z + 4.9 × 10−10z2

i f T < 20◦C → A3 = 4.937 × 10−4 − 2.59 × 10−5T + 9.11 × 10−7T2 − 1.5× 10−8T3

i f T > 20◦C → f2 = 8.17 ×108− 1990
T+273

1+0.0018(S−35)

(A4)

Appendix B

When a source emits a sound, it propagates in all directions in the form of surfaces
whose sound levels are constant on each surface but decrease as the distance from the
source increases. In fact, the sound wave propagating outwards causes a decrease in
intensity proportional to the inverse of the surface. Near the source, the sound surfaces are
spherical; as the radius increases, the diffusion will not always be spherical since there will
be on one side the sea surface and on the other the seabed and, therefore, from a spherical
diffusion, we pass to a cylindrical diffusion. For the two types of diffusion, the following
(TL) transmission loss can be considered:

• SPHERICAL DIFFUSION:

TL = 20 log
(

R
R0

)
(A5)

R0 is the reference level evaluated at 1 m from the source in a homogeneous non-dissipative
medium

• CYLINDRICAL DIFFUSION:

TL = 10 log
(

r
r0

)
(A6)

The transmission loss can be evaluated also taking into account the attenuation coeffi-
cient α. In this case, the relationship becomes:

TL = 20logr + αr (A7)
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