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Abstract: We consider the extension of the momentum conservative staggered-grid (MCS) scheme
for flow simulation in channels with varying depth and width. The scheme is formulated using
the conservative properties of the Saint-Venant equations. The proposed scheme was successful
in handling various steady flows and achieved results that are in complete accordance with the
analytical steady solutions. Different choices of boundary conditions have created steady solutions
according to the mass and energy conservations. This assessment has served as a validation of
the proposed numerical scheme. Further, in a channel with a contraction and a nonuniform bed,
we simulate two cases of dam break. The simulation results show a good agreement with existing
experimental data. Moreover, our scheme, that uses a quasi-1-dimensional approach, has shown
some fair agreement with existing 2-dimensional numerical results. This evaluation demonstrates the
merits of the MCS scheme for various flow simulations in channels of varying width and bathymetry,
suitable for river flow modeling.

Keywords: Saint-Venant equations; steady flow; conservative schemes

1. Introduction

The Saint-Venant equations are governing equations commonly used to model river
flow and open channel flow. They are deduced from mass conservation and momentum bal-
ance for an incompressible fluid flow under the assumptions of hydrostatic pressure. The
numerical approach commonly used to find approximate solutions to the SWE equation is
the finite volume method. This approach approximates the solution by representing the dif-
ferential equations in the form of algebraic equations, while maintaining the conservative
properties of the original equation. The finite volume method is a fairly well-established
method for hyperbolic equations. A reasonably complete explanation of this approach
can be found in textbooks, see, e.g., in [1,2]. Various software packages, such as Swash,
Comcot, HEC-RAS, etc., have adopted a specific version this finite volume method. This
kind of software certainly has a large range of applications related to free surface flows,
and river flow modeling is one of them. For flood simulations along river basins, numeri-
cal calculations using 2- or 3-dimensional approaches require extensive computation [3].
However, if the river under consideration is not too complex, a one-dimensional approach
is considered a good compromise [4]. Apart from simulating the flow dynamics along the
river, steady flow simulation is also important. The steady solution of the Saint-Venant
equation is itself important. Basically, this steady solution provides an overview of the
hydrograph shape as the flow travels through a river channel; this technique is commonly
known as the flood routing procedure [5,6].

Natural channels are usually non-prismatic, that is, their cross section is nonuniform.
Discussions on modeling flow in channels of varying widths and depths can be found in,
for example, [7–9]. Most of them use the Saint-Venant equations as the governing equation
and apply a numerical approach to studying the flow. Such an approach is considered
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feasible for modeling streamflow under real conditions, as suggested in [10]. Studies on
channel flow with a triangular, trapezoidal cross section were carried out, for instance,
in [11,12]. Until recently [13], there are only a limited number of steady-state-preserving
schemes for the Saint-Venant equations in channels that take into account varying channel
with gradients. It is generally not easy to design a scheme that respects all steady states.

Our goal here is to propose an accurate code, suitable for a wide range of flow regimes,
including subcritical, supercritical, transcritical flow, as well as transcritical flow with a
shock. The numerical model proposed here is the extension of the momentum conservative
staggered-grid (MCS) scheme [14], which holds for flow simulation in channels with
varying width and depth. The MCS-scheme is a version of the finite volume method for
the shallow water equations that uses a staggered partition domain. The formulation
of this scheme is based on a discrete version of conservation of mass and momentum
balance, from which it gains its name as the momentum conserving staggered-grid scheme,
abbreviated as the MCS-scheme, see in [14] for detail. See also in [15] for the 2-dimensional
version of the MCS-scheme. By evaluating the surface and velocity variables on adjacent
staggered grid points, and applying the upwind approximation to calculate the appropriate
flux, the scheme does not require any Riemann solver for calculating flux, so the numerical
calculation is cheap. Moreover, this scheme can accurately handle numerical solutions with
hydraulic jumps [14].

In this article, we discuss one extension of the MCS-scheme for flow simulation
in channels with changing depth and width. The conservative formulation, i.e., mass
and momentum, is maintained here. A discrete version of mass conservation can be
easily formulated for channel with an arbitrary but regular cross section. Further, an
approximation of the advection term, which uses the momentum balance formulation, is
important to be adopted here. The resulting MCS scheme is then validated by a selection
of steady and transient hydraulic problems with reference solutions. We simulate the
evolution of transient solutions to a steady state. By implementing the proper boundary
conditions, we can obtain steady solutions, exactly as predicted from the conservation mass
and energy head formula. Those includes subcritical and supercritical steady flow, as well
as smooth and discontinuous transcritical solutions. Various numerical experiments are
presented to demonstrate that the proposed numerical model is capable to exactly preserve
both moving-water and still-water steady states.

The organization of this paper is as follows. We recall the mathematical model and
the analytical steady profiles in Section 2. The extension of the MCS scheme, including
its validation with the analytical steady solution is presented in Section 3. Two numerical
simulations were carried out in Section 4 for validation with known experimental data.

2. Mathematical Model—The Saint-Venant Equations

Consider a fluid layer bounded above by the free surface and below by a topography,
flowing through a channel with an arbitrary cross section as sketched in Figure 1. The
motion of free surface is governed by the Saint-Venant equations read as

∂A
∂t

+
∂Q
∂x

= 0, (1)

∂Q
∂t

+
∂

∂x

(
Q2

A

)
+ gA

∂ĥ
∂x

= −gA
dd̂
dx

. (2)

In the above equations, A(x, t) is the wet cross-sectional area of the channel, Q(x, t) is
momentum, and d̂(x) the channel bathymetry, see Figure 1. Here, Q(x, t) = A(x, t)û(x, t),
with û(x, t) is the horizontal velocity. When we restrict our discussion for the case of
rectangular channels, the cross section area A(x, t) = ĥb̂, with ĥ(x, t) denotes the fluid
height, and b̂(x) the channel width. Furthermore, the Saint-Venant equations can be
expressed as follows,
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∂A
∂t

+
∂Q
∂x

= 0, (3)

∂û
∂t

+ û
∂û
∂x

+ g
∂(ĥ + d̂)

∂x
= 0. (4)

In deriving (4) from (1), (2) we have used the following relation,

ûûx =
1
A

(
(Qû)x − ûQx

)
. (5)

In Section 3, the staggered conservative approximation will be applied to Equations (3)
and (4), and considered as the extension of the MCS-scheme [14]. The resulting scheme
turns out to be good, and suitable for simulating flow for any Froude number, both
subcritical as well as supercritical.

Figure 1. Sketch of the problem and notations; side view (left) and top view (right).

2.1. Flow over a Bump

In this section, we will discuss about types of steady solution of the fluid layer in a
channel with a bump. For the sake of clearness, here we will provide a short review on open
channel flow theory, which discusses about steady solution for flow with every Froude
number. This steady solution can be obtained from the conservation of mass and energy.

Suppose that the fluid is flowing along the channel with a constant depth and encoun-
ters a smooth bump, see Figure 1. We assume the bump is slowly varying, and so the flow
is approximately unidirectional. Let H be the water depth, and U the horizontal velocity
far upstream, anywhere else the water depth and horizontal velocity are denoted as ĥ(x)
and û(x). Conservation of mass:

û(x)ĥ(x) = UH, (6)

and Bernoulli’s equation:

1
2g

û(x)2 + (ĥ(x) + d̂(x)) =
1

2g
U2 + H. (7)

Note that the two relations above should be fulfilled by the steady solutions ĥ(x) and
û(x) of (3) and (4), as both functions do not depend on time t. Eliminating û(x) from (6)
and (7) will give us

ĥ3 − Êĥ2 +
U2H2

2g
= 0, Ê = Ê1 − d̂, Ê1 =

U2

2g
+ H, (8)

Let us introduce the following non-dimensional variables and the Froude parameter
number F as follows,

d =
d̂
H

, h =
ĥ
H

, F =
U√
gH

, (9)

Then, the relation (8) can be written in terms of the non-dimensional variables d, h and
the Froude number F, as follows,
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h +
1
2

F2 1
h2 = E, (10)

with the normalized energy

E =
Ê
H

=

(
1
2

F2 + 1− d
)

. (11)

Unless stated otherwise, further discussion will use normalized variables, i.e., without
hat. As the steady solution satisfies mass conservation (6) and Bernoulli (7), it satisfies (10).
If the upstream flow condition U and H (including the Froude number F) are known,
Equation (10) gives a relation between the height of the bump d and the fluid height h. Ba-
sically, by performing the numerical root finding algorithm towards (10), the steady surface
can be obtained. This steady surface will be considered as the analytical steady surface, for
later use, in order to distinguish it with the numerical steady surface. In addition, different
type of steady solution will appear depending on the choice of downstream boundary
condition and the flow type, as we shall discuss in the following.

Consider a subcritical flow from left to right over a bump d(x) that tends to zeros near
the left and right boundaries. On the upstream part, water height is set to be h = 1. In
Figure 2, we plot the curve E(h), with our interest is on the first quadrant, with positive
horizontal and vertical axes. The upstream condition is represented by a point (E1, h1 = 1),
which happen when the bathymetry is zero. First, we focus on the subcritical case, see
Figure 2 (left). As indicated by the red arrow, as d(x) increases from 0 to dm, the energy
decreases from E1 to Em. At the maximum height of the bump dm, the energy and fluid
height is represented by the point (Em, hm). After reaching the maximum value, the bump
d(x) decreases back to zero, which means the energy goes back to E1. Therefore, in this
subcritical case, the steady fluid height follows the upper leg of the energy curve; starting
from E1 goes to Em and then goes back to E1, see Figure 2 (left). From this analysis, it is
clear that in the case of subcritical flow, water level decreases at the bump.

Figure 2. The energy curves E(h), (left) the subcritical case, and (right) the supercritical case.

Furthermore, for a given upstream flow condition F, we can determine a critical flow
condition, i.e., the maximum height of the bump dc that corresponds to the minimum
energy Ec. The critical point (Ec, hc) can be obtained by equating the first derivative dE

dh to
zero to yield the critical fluid height and the critical bump as follows,

hc = F2/3, and dc =
1
2

F2 + 1− 3
2

F2/3, (12)

In this critical situation, the minimum energy is Ec =
3
2 F2/3 = 3

2 hc. Therefore, if we
have a bump with height reaches this maximum value dm = dc, we can get a transcritical
steady solution. On the energy curve in Figure 2 (left), this transcritical steady solution
is illustrated by the curve segment, that starts from the point (E1, 1), moves to the left
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following the subcritical leg, passes the critical point (Ec, hc), where the Froude number
F = 1, and then turns around following the supercritical leg up to the point (E1, h2). Note
that this downstream water height h2 is indeed the second positive root of Equation (10)
with energy E = E1, whereas the first positive root is h1 = 1.

On the other hand, if the upstream flow is supercritical, with F > 1, the upstream
condition (E1, h1 = 1) is located on the lower leg of the energy curve, see Figure 2 (right).
In this case, the steady solution is described by the curve segment which is located on the
lower leg of the energy curve. As the bump d(x) increases from 0 to the maximum height
dm, the energy decreases from E1 to Em, and this situation corresponds to a steady solution
h(x) which increases from 1 to the maximum fluid height hm. Then, on the downstream
part of the bump, the fluid height decreases back to its previous height h(x) = 1, see
Figure 2 (right). In Section 3, all three cases discussed above, i.e., subcritical, supercritical,
and transcritical steady flow, will be simulated using the momentum conserving staggered
grid (MCS) scheme.

2.2. Flow through a Contraction

In this subsection, we discuss the steady water level in a channel with a slowly varying
width. We focus on different steady flow as response to a contraction on the channel width.
Here, we consider a channel with constant bathymetry, and varying width b̂(x) with the
max width B, as depicted in Figure 1 (right). The steady solution will be dictated by the
same Bernoulli Equation (7), but with a modified mass conservation (13):

b̂(x)û(x)ĥ(x) = BUH. (13)

Eliminating û(x) from the two equations; mass conservation (13) and Bernoulli’s

Equation (7), and writing them in terms of the normalized width b(x) = b̂(x)
B , and the

normalized fluid depth h(x) = ĥ(x)
H to yield

1
b2 − 1 = k(h), k(h) =

h2

F2

(
F2 + 2(1− h)

)
− 1. (14)

The relation (14) will determine the steady water level that will appear in a channel
with width b(x). Similar to the steady surface as a response to bathymetry as discussed
in Section 2.1, the steady surface as a response to channel constriction can be obtained
from (14), by performing numerical root finding algorithm. Furthermore, this steady
surface will be considered as the analytical steady surface, in order to distinguish it with
the numerical steady surface. Our discussion here will use normalized water height h(x)
and normalized width b(x). Moreover, we define the following notation [b] ≡ 1/b2 − 1 to
simplify its expression in formulas. In Figure 3, a typical smooth curve of a normalized
width b, with bm ≤ b(x) ≤ 1, and the corresponding curve of [b] are plotted. Then, the
curve k(h) is plotted on the h[b]−plane, as shown in Figure 4. The curve intersects the
horizontal axis at two positive zeros h1 and h2, one of them equals to 1. The curve has
only one feasible critical point (hc, k(hc)), which is attained at hc = 1

3 (F2 + 2), with the
corresponding critical width

[bc] = k(hc), or bc = (k(hc) + 1)−0.5. (15)

Part of the curve k(h), with h > hc corresponds to the subcritical leg, whereas part
of the curve with h < hc is the supercritical leg. Various steady solutions may appear
depending on different type of flows, which will be discussed below. The mechanism is
analogous to those from the section of steady flow due to bump.
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Figure 3. (Left) Illustration of channel width b(x), and (right) its transformation [b] ≡ 1/b2 − 1.

Consider a subcritical flow from left to right passing over a flat channel with a varying
width b(x), that tends to unity near the left and right boundaries. On the upstream part,
water height is set to be h = 1, and the channel width is b(x) = 1 (or [b(x)] = 0). On the
curve k(h), this upstream flow is represented as a point (h1 = 1, 0), see Figure 4 (Left).
As the channel width decreases from the normal width b = 1 to bm, the flow accelerates.
On the k(h) curve the steady flow follows along the subcritical leg of the curve, which
means h decreases. When the channel width increases back to the original width, the steady
water height increases. If the downstream water height is set to h = 1, the steady water
flow returns back to the original height. Therefore, in this subcritical case, the channel
contraction causes a negative steady hump at the surface. However, if the downstream
water height is set to be h2, which is the second positive water height that corresponds to the
normal width [b] = 0, see Figure 4 (Left), and if we set the bm = bc the steady flow appears
in the form of a smooth transcritical flow. On the curve k(b), this smooth transcritical
steady flow is represented as a segment curve that starts from (h1 = 1, [b] = 0), goes up
to the maximum point (hc, [bc]), turns around, and further goes down to (h2, [b] = 0).
Similarly, if the upstream flow is supercritical with water height h = 1, the steady flow can
be traced from the curve k(h) starting from the left part of the curve. In the next section,
numerical simulations of various type of flows will be conducted. Those simulations are to
be validated by the analytical steady water level as described by the relation (14).

Figure 4. The energy curve k((h) as a function of 1/b2 − 1: (left) the subcritical case and (right) the
supercritical case.

3. Numerical Model and Flow Simulations

The numerical scheme for solving the Saint-Venant Equations (3) and (4) will be dis-
cussed here. This is a second-order staggered grid scheme that maintains the conservative
property of the equations, namely, the mass and momentum balance. The scheme is a
direct generalization of the momentum conserving scheme as originally proposed by [16].
Consider the Saint-Venant equations on the computational domain x ∈ [a, b], and time
t ∈ [0, T], with a, b, T ∈ R. Both spatial and time domain are uniformly discretized with a
spatial step size ∆x/2 and a time step ∆t, respectively. The staggered partition along the
spatial domain produce partition points: x1/2 = a, x1, ..., xj−1/2, xj, xj+1/2, ..., xNx+1/2 = b,

with Nx =
b− a
∆x

. In this staggered setting, the variable u is approximated at half grid
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points u|xj+1/2 = uj+1/2, whereas the surface area A is approximated at full grid points
A|xj = Aj. Next, the water level can be computed from hj = Aj/bj.

Further, the mass conservation (3) is approximated at cell [xj−1/2, xj+1/2], whereas the
momentum Equation (4) is approximated at cell [xj, xj+1]. The approximate equations now
read as

dAn
j

dt
+

Qn
j+1/2 −Qn

j−1/2

∆x
= 0, (16)

dun
j+1/2

dt
+ (uux)

n
j+1/2 + g

hn+1
j+1 − hn+1

j

∆x
+ g

dj+1 − dj

∆x
= 0. (17)

In the above formula, the following variables are computed consistently,

A|j = h|jb|j, Q|j+1/2 = ∗hj+1/2uj+1/2bj, (18)

where ∗hj+1/2 is calculated using the upwind approximation,

∗hj+1/2 =

{
hj, for uj+1/2 ≥ 0,
hj+1, for uj+1/2 < 0.

(19)

Adopting the relation (5), the consistent approximation for the advection term reads

uux|j+1/2 =
1

Āj+1/2

( Q̄j+1
∗uj+1 − Q̄j

∗uj

∆x
− uj+1/2

Q̄j+1 − Q̄j

∆x

)
, (20)

whereas

Āj+1/2 =
Aj + Aj+1

2
, Q̄j =

Qj−1/2 + Qj+1/2

2
, (21)

and the first-order upwind approximation for horizontal velocity is

∗uj =

{
uj−1/2, for Q̄j ≥ 0,
uj+1/2, for Q̄j < 0.

(22)

The resulting scheme (16)–(22) is semi-discrete. It is second-order accurate for the
linear terms, but it is first-order accurate for the nonlinear terms. For time integration, the
second-order θ−scheme, with 0 < θ < 1 is taken. Using this scheme, the steady water
levels that appear as a response to various different situations will be simulated. This will
also serve as a validation of the proposed scheme.

For simulations which involve dry areas, see the discussion in Section 4; a simple
wet–dry procedure should be adopted. In order to avoid instability, the momentum
calculation (17) is deactivated in the dry area. Here, a location will be considered as dry
if the water level is less than a prescribed threshold value hthres, or equivalently if the
area Āj in (20) is less then Athres ≡ hthresbj. All computations conducted in the following
subsections will use normalized variables.

3.1. Simulation of Flow over a Bump

Consider a horizontal, frictionless rectangular channel of a constant width b(x) = 1.
Assuming that the upstream flow carrying a discharge Q at depth h = 1, which corresponds
to the upstream velocity u = Q, and the upstream Froude number F = u/

√
gh = u/

√
g.

In this simulation, we use a channel base in the form of

d(x) = max{0, dm(1− 0.25x2)}, (23)

which is a bump of height dm.
In the discussion follows, the MCS scheme will be implemented to show the devel-

opment of a specific steady water level as response to the bump d(x), as well as their
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dependence on the chosen boundary condition. Different types of situations, as predicted
by the theory, will be simulated: subcritical, supercritical, and transcritical. For all numer-
ical experiments conducted here, we use the computational domain −L ≤ x ≤ L, time
t > 0, with the spatial grid size ∆x = 0.01, and ∆t = 0.001, so that the CFL number is 0.30.
All steady flow simulations conducted here will be compared with the analytical steady
solutions from (10). The comparison shows a perfect agreement, with the root mean square
error (RMSE) ±0.6% as resumed in Table 1.

Table 1. The root mean square error (RMSE) between the numerical fluid height and the analyti-
cal solution.

Case Flow Type RMSE-Error

Flow Subcritical 0.00016
over Supercritical 0.00034

a bump Smooth transcritcal 0.00111
Transcritical with shock 0.00641

Flow Subcritical 0.00008
through Supercritical 0.00209

a contraction Smooth transcritical 0.00114
Transcritical with shock 0.01211

3.1.1. Example 1: Subcritical Steady Flow

In this first simulation, the initial conditions used are water height h(x, 0) = 1.0 and
horizontal velocity u(x, 0) = 1.5, which correspond to an initial discharge of q(x, 0) = 1.5.
Here, we adopt two boundary conditions: an upstream discharge q(0, t) = 1.5 and a
downstream water height h(L, t) = 1, and the channel bump (23) with dm = 0.1.

Shortly after the simulation begins, the steady situation starts to develop, and after
sometime the steady situation is reached, see Figure 5a. The expected steady flow that
appear in this case, can be traced using the subcritical leg of the energy curve in Figure 2
(Left). The inflow boundary condition q(0, t) = 1.5 on the normal water height, corresponds
to the point (E1 = F2/2 + 1, h1 = 1). As it runs over the bump, the energy E decreases,
also the water height h decreases. The process continues until the maximum crest of the
bump dm, at which the water height reaches its minimum, beyond which the water height
increases back to meet the downstream boundary condition h(L, t) = 1. As shown in
Figure 5a the Froude number changes from its upstream value F = 0.4789, increases
until F = 0.6 at the maximum bump, which is then decreases back to the original value
F = 0.4789, therefore this steady flow is fully subcritical. Moreover, the numerical steady
surface agrees with the analytical steady solution.

3.1.2. Example 2: Smooth Transcritical Steady Flow

In this second simulation, we will simulate a transcritical steady flow, i.e., a situation
where the flow changes from subcritical to supercritical. Notice that for E1 = F2/1 + 1,
with F = 0.4789, the Equation (10) has two solutions: h1 = 1 and h2 = 0.4008. For this
second simulation, we use the same parameters as in the first simulation in Section 3.1.1,
except that dm = dc (the critical height of the bump (12)), and the downstream boundary is
now taken to be h = h2 = 0.4. Not long after the simulation begins, the steady surface starts
to developed; it appears in the form of a smooth transcritical flow as shown in Figure 5b.
On the energy curve, this steady flow is recognized as a path that starts from the point
(E1, 1) on the subcritical leg, which moves to the left as the bump height increases, until
the maximum height dm = dc, at which the flow becomes critical, and turns around to
the supercritical branch. It then continues along the supercritical branch until it meets the
condition of the outflow boundary h = h2 = 0.4. During the process, the Froude number
starts at F = 0.4789, over the channel bump the Froude number keeps increasing, until it
reaches F = 1 exactly at the crest of the bump; the Froude number keeps increasing until the
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channel base is back to a constant. On this transcritical steady surface, the flow accelerates
smoothly from the subcritical flow on the upstream side, and the supercritical flow on the
downstream side. This result is again perfectly match with the analytical solution.

Figure 5. Various flow over a bump through a constant channel width for −10 ≤ x ≤ 10, for cases
(a) subcritical, (b) smooth transcritical, (c) transcritical with shock, (d) supercritical.

3.1.3. Example 3: Transcritical Steady Flow with a Shock

In reference to Figure 2 (Left), the values h1 and h2 are the only outflow boundary con-
ditions that produce smooth solutions; h1 produces a symmetric subcritical flow, whereas
h2 an asymmetric transcritical flow. Therefore, in this third simulation, we conducted a
computation with the same parameter as the second simulation, except that the outflow
water height differs from h2. Here, we take the outflow water height to be h = 0.9. This
choice of the downstream boundary condition will results in the formation of a transcritical
flow with a shock as observed in Figure 5c.

Similar to the previous case, the Froude number starts at F = 0.4789, it increases over
the bump, until it reaches F = 1 exactly at the crest of the bump dm = dc, the Froude
number keeps increasing over the channel bump. When the channel base is flat again, the
Froude number experiences a sudden decrease towards a subcritical flow.

3.1.4. Example 4: Supercritical Steady Flow

In this fourth simulation, we use the same scheme to simulate a steady supercritical
flow. Here, the initial condition is h(x, 0) = 1, u(x, 0) = 5, which corresponds to a
supercritical flow with Froude number F = 5/

√
g. For the simulation, two boundary

conditions are imposed on the upstream, a discharge of q(0, t) = 5 and fixed depth of
h(0, 1) = 1. As shown in Figure 5d, a supercritical steady flow is developed, and the
Froude number is larger than unity throughout the channel. Furthermore, in response
to the channel bump (23) with dm = 0.1, this steady supercritical flow has a positive
bump on the surface. This can be explained via the supercritical leg of the energy curve
on Figure 2 (Right). Starting from the point (E1, 1), which represents the upstream flow
condition, as the channel base increases, the energy E decreases and water height h increases.
At the crest of the bump dm, the water height reaches its maximum, beyond which the water
height decreases back to its initial height h = 1. Moreover, this numerically computed
steady surface shows a good agreement with the analytical steady solution.
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3.2. Simulation of Flow through a Contraction

In this subsection, we investigate the steady flow as response to a contraction of the
channel width b(x), over a constant bathymetry d(x) = 0. The same principles as in
Section 3.1 are applied here, i.e., when the upstream Froude number is known, and the
channel width b(x) is known, the steady surface is uniquely determined from Equation (14).
For all numerical simulations conducted here, the computational domain is −L ≤ x ≤ L,
time t > 0, with the spatial grid size ∆x = 0.01, and ∆t = 0.001, so that the CFL number
is 0.30. Similar to the previous simulations, all steady flow simulations conducted here
will be compared with the analytical steady solutions from (14). The comparison shows a
perfect agreement, with the RMSE-error ±1% resumed in Table 1. The channel width used
in this simulation is

b(x) = 1− (1− bm) exp
(
−
(

x− x0

2.5

)2)
. (24)

where bm denotes the minimum width achieved at x = x0 = 0, the mid point of the channel.

3.2.1. Example 1: Subcritical Steady Flow

In this simulation, we use the initial condition h(x, 0) = 1, u(x, 0) = 1.5, and adopt
two boundary conditions: the upstream discharge q(0, t) = 1.5 and the downstream water
level h(L, t) = 1. The flow enters the rectangular channel of a flat base, and a varying width
b(x) as in (24) with a contraction bm = 0.86. Similar like the previous, not long after the
simulation begins, the steady situation is reached, and the result is depicted in Figure 6a.
As shown in the Froude number curve, its upstream value is F = 0.47, which increases up
to F = 0.6 in the contraction region, and decreases back to F = 0.47 on the downstream
part. Therefore, this steady flow is fully subcritical. The steady surface that appears in
the form of a negative bump, can be explained through the curve k(h) in Figure 4 (left).
The upstream condition with normal width b = 1 (or [b] = 1) corresponds to the point
(h1 = 1, [b] = 0), as the flow passes through the contraction, [b] gets increases up to the
maximum value (bm), which follows by the decreases of water level hm, see Figure 4 (left).
Further, as the width increases back to the normal width, [b] decreases back to zero, and on
the curve k(h) the water level is back to the normal water height h = 1.

Figure 6. Various steady flows in a rectangular channel with a contraction for−10 ≤ x ≤ 10, for cases
(a) subcritical, (b) smooth transcritical, (c) transcritical with shock, (d) supercritical.
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3.2.2. Example 2: Smooth Transcritical Steady Flow

In this second simulation, a smooth transcritical flow due to a contraction is simulated.
The same set up as in the previous is used, except that here we use a downstream water
level h(L, t) = 0.40, and the narrowest width bm = bc that corresponds to the critical flow
condition. In the case with the upstream Froude number F = 0.4, Equation (15) results in
bc = 0.74. In this setting, the steady flow that is developed has the form of a transcritical
flow, as shown in Figure 6b. Furthermore, the Froude number starts from F = 0.4789 on
the upstream part, and as the channel width decreases, the Froude number increases up to
unity F = 1, exactly at the narrowest bc, and further increases till the channel width is back
to the normal width.

On the curve k(h), as in Figure 4 (Left), this steady transcritical flow is recognized as a
path that starts from the point (h1 = 1, 0). As the channel width decreases, the solution
moves along the subcritical leg all the way to bm = bc, becomes critical, and “turns” around
to the supercritical leg, and further till it meets the condition of the downstream boundary
h(L, t) = 0.4. This steady flow is indeed consider as a transcritical flow, with the subcritical
flow on the left-side of the narrow, and changes smoothly to be a supercritical flow on the
right side.

3.2.3. Example 3: Transcritical Steady Flow with a Shock

The formation of a shock in the transcritical flow as a response of contraction is
considered. In the same setup as the previous simulation, a channel width with the narrow
bm = bc and downstream boundary condition h(L, t) = 0.90 is used. As the downstream
water level differs from h2 = 0.4 and h1 = 1, the resulting transcritical steady flow produces
a shock wave front. The numerical steady result is shown in Figure 6c. The plot of the
Froude number curve shows that this steady flow is subcritical on the left-side of the
narrow, and supercritical on the right-side until the shock position, beyond which the flow
is back to the subcritical flow.

3.2.4. Example 4: Supercritical Steady Flow

In this subsection, a supercritical steady flow is developed on a rectangular channel
over a flat base with varying width b(x) as in (24), with bm = 0.85. Under the same set up
and boundary conditions as in Section 3.1.4, the numerical simulation produces this steady
supercritical flow as shown in Figure 6d. Moreover, the Froude number is greater than
unity, all the way throughout the channel, which confirm the supercritical type of flow.

From the above observation, we assume that our numerical MCS-scheme shows a
good convergence in simulating transient solution to the steady state. This holds for various
different flow types—subcritical, supercritical, and transcritical, including the transcritical
flow with a shock. All these numerical steady solutions show good agreement with the
steady solutions obtained directly from the energy relation (10) (or (14)) which is solved
using the root finding algorithm. These type of solutions are referred as the analytical
steady solutions. For all eight cases conducted here, the numerical steady solutions show
a perfect agreement with the analytical solutions, with the RMSE error summarized in
Table 1. Moreover, when the steady state was reached, the flow discharge is constant.

3.3. Simulation of Flow over a Bump and through a Contraction

Finally, here we conducted flow simulation as a response to both a contraction
and a bump. The channel width and the bump used in this simulation is (24) and
(23), with bm = 0.69 and dm = 0.19, respectively. The initial condition used are
h(x, 0) = 0.8, u(x, 0) = 0, and the computation uses the spatial grid size ∆x = 5.10−4,
and ∆t = 5.35−5, so that the CFL number is 0.3. Boundary conditions used here are; a
hard wall boundary on the left, and an absorbing boundary on the right. The computed
water level at subsequent times is plotted in Figure 7. As time progresses, water on the
downstream part is draining out, by the implementation of the absorbing right boundary,
whereas on the upstream part, the water is being trapped by the hard wall and the bump.
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Further observation, the color scale in Figure 7 shows the horizontal velocity at subsequent
times. As shown in the figure, the downstream horizontal velocity is always larger than
the upstream velocity, as expected.

Figure 7. Plot the surface h(x, t) at subsequent times of a drainage simulation in a channel with a
bump and contraction. The color scale indicates the horizontal velocity of u(x, t).

4. Experimental Validation

Experimental validation of the MCS-scheme will be conducted using two laboratory
experiments established in [3]. For that purpose, the MCS-scheme (16)–(22) is used, with
an additional friction term −C f |u|u on the right hand side of Equation (2). Here, C f is the
drag coefficient parameter, expressed in terms of the Manning coefficient n as

C f =

(
gn2

h1/3

)
. (25)

4.1. Dam Break Flow in a Channel with a Contraction

Consider a rectangular channel with a flat base, with a top-view configuration shown
in Figure 8 (Left). In this dam break experiment, a volume of water on the upstream part
was hold by a gate, located 6.1 m to the right of the left boundary. The channel has a normal
width 0.5 m, with a sudden contraction to width 0.1 m, this contraction is located 7.9 m
from the gate. Along the channel four wave gauges are installed, see Figure 8 (left).

In the simulation, the grid size ∆x = 0.05 m, ∆t = 0.008 s were used. The Manning
coefficient n = 0.01 and threshold area Athres = 0.01 m2 were taken. The left boundary is a
hard wall, whereas the right boundary is an absorbing boundary. The initial water level is
set to be 0.3 m on the left side of the gate, and 0.003 m on the right side. As soon as the
simulation starts, the water in the reservoir rapidly flows down towards the downstream
part, and the recorded water level at Gauge 1 is presented in Figure 9a. At Gauge 2, the
recorded water level shows a shock front arriving at time t = 3 s, see Figure 9b, later a
rarefaction wave appears which causes a drop in the water level upstream of the dam,
measured at Gauge 1. In Figure 9a, the water level suddenly increases with the arrival of
the shock front after about 3 s. Another abrupt change of depth is noted later at t = 8 s,
which is due to the reflected shock from the constriction. The water level in Figure 9c is
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recorded by Gauge 3, located inside the contraction area. Here, there is only one shock
wave that was arrived at about 4 s.

Figure 8. (a) Top view of the channel with a strong contraction used in experiment 1. (b) Side view
of the channel with a triangular obstacle used in experiment 2. Locations of the four gauges along
the channel are indicated by crosses: Gauge 1 (blue), Gauge 2 (green), Gauge 3 (magenta), and Gauge
4 (brown).

In Figure 9d the sudden increase at water level happened after time t = 5 s.

Figure 9. Water levels at four wave gauges, showing the comparison between the MCS-scheme
(blue), experiments [3] (red), and 2d-numerical results [17] (green).

As shown in Figure 9, the numerical results of the quasi-1-dimensional MCS scheme
can capture the whole process accurately enough. The results obtained show a good
agreement with the experimental data [3]. Further, as shown at Gauges 2–4, our numerical
calculations can predict the arrival of the shock fronts, accurate enough. Some discrepancies
were shown at Gauges 1–3, especially on areas where some turbulence occur, that is
because our scheme has not taken the turbulence effect into account. Moreover, our
numerical results has shown the same trend with results from the 2-dimensional numerical
scheme [17]. Of course, calculations with the quasi-1-dimensional MCS-scheme are much
cheaper than calculations with 2-dimension scheme.
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4.2. Dam Break Flow in a Channel with a Triangular Obstacle

In this second test, we conducted a dam break simulation in a channel of uniform
width, with a triangle obstacle on the channel base. The triangle height is 0.4 m, and located
13 m on the downstream side of the reservoir, see Figure 8 (Right). Initially, the reservoir
holds a water level height 0.75 m, and the triangle holds a water height 0.15 m to create
a puddle, while the area between the reservoir and the triangle is dry. Our simulation
was conducted using ∆x = 0.05 m, ∆t = 0.04 s, the Manning coefficient n = 0.0125, and
threshold area Athres = 0.01, whereas both boundaries were set to be hard walls. After the
dam breaks, a wall of water is rapidly released and propagates downstream. This wall
of water will hit the triangle, and climbing up the obstacle and form a shock wave that
propagates further downstream. This obstacle also creates a reflected shock wave which
propagates upstream. The shock waves will be reflected from the boundary wall, and
interact again with the obstacle. The process continues for sometime, creating somewhat
complex behavior. During simulation, the water level is recorded at four wave gauges, and
the results are shown in Figure 10.

Figure 10. Water levels at four wave gauges, showing the comparison between the MCS-scheme
(blue), experiments [3] (green), and 2d-numerical results [17] (red).

In Figure 10, the recorded water level at four wave gauges was plotted together
with the experimental data [3] and the 2-dimensional numerical results [17]. As shown
in Figures 9 and 10, our quasi-1-dimensional MCS scheme can describe this physical
processes well enough. Furthermore, our comparison with experimental data shows some
fair agreement, also our numerical calculation predicts the shock fronts correctly. However,
some discrepancies are observed, which is also detected by other authors [3,4,17]. This
may be due to the absence of turbulence effects and the hydrostatic assumption used in
the model.

5. Conclusions

An extension of the MCS scheme for channels of varying width and depth has been
proposed. Formulation of the method has maintained the conservative properties of the
Saint-Venant Equations. By validation with a steady analytical solution, our scheme was
able to simulate various steady flow for a wide range of Froude number. Good agreement
was also obtained in the validation of experimental data, which required the wet-dry
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algorithm, as well as friction in their calculations. This study demonstrated the success of
the MCS scheme as a quasi-1-dimensional model suitable for simulating flows in channels
with varying widths and depths. However, the scheme developed here is still limited
to rectangular cross section channels, and the slope of the channel bed should also not
be too steep. In the case of applications for actual river flow, the scheme needs further
development, also taking into account the branching of river flows that are commonly
found in nature.
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