
fluids

Article

A Note on the Steady Navier–Stokes Equations Derived from
an ES–BGK Model for a Polyatomic Gas

Kazuo Aoki 1, Marzia Bisi 2,* , Maria Groppi 2 and Shingo Kosuge 3

����������
�������

Citation: Aoki, K.; Bisi, M.; Groppi,

M.; Kosuge, S. A Note on the Steady

Navier–Stokes Equations Derived

from an ES–BGK Model for a

Polyatomic Gas. Fluids 2021, 6, 32.

https://doi.org/doi:10.3390/

fluids6010032

Received: 8 December 2020

Accepted: 4 January 2021

Published: 8 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, National Cheng Kung University, Tainan 70101, Taiwan;
kazuo.aoki.22v@st.kyoto-u.ac.jp

2 Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy;
maria.groppi@unipr.it

3 Institute for Liberal Arts and Sciences, Kyoto University, Kyoto 606-8501, Japan;
kosuge.shingo.6r@kyoto-u.ac.jp

* Correspondence: marzia.bisi@unipr.it

Abstract: The two-temperature Navier–Stokes equations derived from an ellipsoidal Bhatnagar-
Gross-Krook (ES-BGK) model for a polyatomic gas (Phys. Rev. E 102, 023104 (2020)) are considered
in regimes where bulk viscosity is much greater than the shear viscosity. Possible existence of a
shock-wave solution for the steady version of these hydrodynamic equations is investigated resorting
to the qualitative theory of dynamical systems. Stability properties of upstream and downstream
equilibria are discussed for varying parameters.
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1. Introduction

The investigation of polyatomic gases by means of tools of Kinetic Theory [1,2] and
of Extended Thermodynamics [3] has gained much interest in recent years, due to the
important role that polyatomic constituents play in practical applications. Boltzmann
descriptions model the non-translational degrees of freedom by means of an internal energy
variable, which could be assumed discrete [2,4] or continuous [5]. Since these Boltzmann
equations are very awkward to deal with, simpler kinetic models have been proposed,
mainly of Bhatnagar-Gross-Krook (BGK) type, replacing integral Boltzmann operators
by proper relaxation operators driving distribution functions towards the Maxwellian
equilibrium configuration. Various BGK models have been proposed for polyatomic gases,
possibly also involving mixtures of monoatomic and polyatomic particles and simple
chemical reactions [6–13]. Unfortunately, classical BGK approximations are not able to fit
the correct Prandtl number [1]. This has motivated the construction of ellipsoidal (ES)–
BGK models, with non-isotropic attractors involving parameters that could be adjusted
to recover physical transport coefficients [14–17]. Several open problems are still in order
for such models, even for monoatomic gases, especially for gas mixtures; a comparison
of existing models for binary mixtures may be found in [18]. However, relaxation models
with non-Gaussian attractors have been proposed also for polyatomic gases [14,19,20], and
this research line is still very active, focusing the attention also on mixtures and on the
separation between rotational and vibrational internal energies [21,22].

The starting point of the present paper is the kinetic ES–BGK model for a single
polyatomic gas, originally proposed in [14] and then reformulated in a systematic way
in [19]. In this model the gas distribution depends also on a continuous internal energy,
and the gas is assumed to be polytropic (or calorically perfect), namely with a constant
ratio of specific heats at constant pressure/volume, depending only on the number of
particle degrees of freedom. The non-isotropic attractor involves two auxiliary parameters,
θ ∈ (0, 1] and ν ∈ [− 1

2 , 1), to be chosen to fit the Prandtl number and the bulk viscosity,
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typical of polyatomic gases and due to internal energy. Two different temperatures naturally
appear at the macroscopic level: the classical kinetic temperature due to motion of particles,
and an internal temperature due to vibrational and rotational degrees of freedom.

A standard Chapman–Enskog expansion [23] of this kinetic model provides classical
hydrodynamic equations at Euler or Navier–Stokes level [14,24], with constitutive laws for
shear and bulk viscosities and for thermal conductivity depending also on the additional
parameters θ, ν. As usual, Navier–Stokes system is composed by 5 equations for density,
mean velocity and global temperature. However, it is well known that in polyatomic gases
there could be significant differences in relaxation times of different internal modes, there-
fore the one-temperature description is not enough to capture the flow properties [3,25–27].
For this reason, the most common description beyond the Euler level for polyatomic parti-
cles consists of a set of 6-moment equations, where global temperature is separated into
the translational part and the internal one [28,29]. In the paper [30], two-temperature
Navier–Stokes equations have been formally derived from the ES–BGK model proposed
in [14] in the asymptotic limit where the parameter θ is as small as the Knudsen number.
This corresponds to assuming that the bulk viscosity (appearing in the correction to the
classical scalar pressure due to the polyatomic structure) is much larger than shear viscos-
ity. In other words, the difference between translational and internal temperature is not
negligible during the evolution; this holds for instance for carbon dioxide CO2, which is
known to have slowly relaxing internal modes [26,27].

In papers [30,31] the shock-wave structure for a polyatomic gas with large bulk
viscosity has been numerically investigated both for the ES–BGK kinetic equations and
for the two-temperature hydrodynamic approximation. A shock-wave solution occurs
when physical quantities undergo steep but continuous changes across a thin layer of a few
mean free paths. The shock-wave problem for polyatomic gases has been studied in the
literature also based on Extended Thermodynamics [32,33], or for different hydrodynamic
closures [34], derived from kinetic models involving a discrete set of internal energy levels
for molecules [35]. Profiles of different types appear, which become increasingly steep
for increasing Mach number. It is well known that multi-temperature descriptions could
give rise to other interesting phenomena in case of gas mixtures, such as the occurrence of
(multiple) discontinuities in shock profiles [36–38]. Such shock waves may be generated in
explosions [39,40], and could give rise to combustion phenomena [41,42]. The occurrence
of shock waves in the atmosphere is well known, for instance in the re-entry of space
vehicles [43] or during the passage of a meteoroid [44]. Therefore, a deep knowledge of
conditions allowing shock-wave formation in polyatomic gases or in gas mixtures could be
very useful for practical applications.

An analytical approach to the investigation of the stationary shock-wave solution may
be found in [45], where the half-space problems of evaporation and condensation for the
steady Navier–Stokes equations are investigated, owing to methods of qualitative theory
of dynamical systems. In these problems, a semi-infinite expanse of a gas is bounded
by its plane condensed phase at x = 0 with a given surface temperature, and a steady
flow of the gas at infinity is evaporating from or condensing onto the condensed phase.
Both evaporation and condensation phenomena may be dealt with simultaneously by
fixing the asymptotic state with positive velocity and formally considering the flow in
the interval 0 < x < +∞ for evaporation and −∞ < x < 0 for condensation. In this
formulation, the shock-wave profile may be regarded as the evaporation solution which
remains bounded for all x > 0, since it represents the heteroclinic orbit tending to the fixed
state for x → +∞ and to the other equilibrium of the steady Navier–Stokes equations
for x → 0. The same analysis has been recently performed also for a binary mixture of
monoatomic gases [46].

Following this last approach, in the present paper the possibility of the existence of
the shock–wave profiles numerically constructed in [30,31] will be discussed from the
mathematical point of view. More specifically, the steady two-temperature Navier–Stokes
equations will be reformulated as a system of seven first–order ordinary differential equa-
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tions (ODEs) in normal form, which may be reduced to a set of four independent equations
owing to the physical conservation laws. Properties of the two admissible steady states
(upstream and downstream equilibria) will be discussed for varying parameters, showing
that in the supersonic regime the upstream state has an unstable manifold, which may
give origin to the shock-wave orbit that for x → +∞ enters the stable (two-dimensional)
manifold of the downstream equilibrium. It will be also shown that both equilibria are
globally unstable, and this motivates also from the analytical point of view the non-trivial
numerical algorithm used in [30,31] for the construction of the shock profiles, obtained as
the steady solution of an evolution problem with proper boundary conditions.

The paper is organized as follows. In Section 2 macroscopic fields of a polyatomic
gas are defined and the basic features of the ES–BGK model proposed in [14,19] are
summarized. Then, in Section 3 the scaling and the main steps of the Chapman–Enskog
procedure leading to six-field Navier–Stokes equations are presented. Section 4 is devoted
to the investigation of the steady Navier–Stokes equations, and in particular of the stability
properties of upstream and downstream equilibria for varying parameters, with comments
on the possible existence of a shock-wave solution. Finally, Section 5 contains some
concluding remarks.

2. The Kinetic Ellipsoidal Bhatnagar-Gross-Krook (ES–BGK) Model

In this section, the ES–BGK type model proposed in [14] for a single polyatomic gas
is summarized. To take into account the internal degrees of freedom, the distribution
function f of the gas is assumed to depend also on a continuous energy variable E , ranging
on the positive real axis. One has thus to deal with f (t, x, v, E), where t denotes time, x the
space variable, and v the velocity variable. The main macroscopic fields are recovered by
integrating the distribution function, multiplied by suitable weights, with respect to both v
and E . More precisely, mass density ρ, mean velocity u and pressure tensor p are provided by

ρ =
∫
R3

∫ ∞

0
f dE dv , u =

1
ρ

∫
R3

∫ ∞

0
v f dE dv ,

p =
∫
R3

∫ ∞

0
(v− u)⊗ (v− u) f dE dv .

(1)

Here and below, for convenience the particle mass is assumed to be m = 1. The parameter
δ ≥ 2 denotes the number of internal degrees of freedom of the gas molecule, and γ the
ratio between specific heats at constant pressure and at constant volume, which reads as

γ =
δ + 5
δ + 3

. (2)

A polyatomic gas is characterized by a translational temperature Ttr, related to the three
translational degrees of freedom, and by an internal temperature Tint, related to the en-
ergy of the internal modes and to the number δ. These partial temperatures are defined,
respectively, as

Ttr =
1

3ρ

∫
R3

∫ ∞

0
|v− u|2 f dEdv , (3)

Tint =
2
δρ

∫
R3

∫ ∞

0
E f dEdv (4)

(where the Boltzmann constant has been set equal to 1 for simplicity). Global temperature T
is then deduced as a weighted sum of Ttr and Tint as

T =
3Ttr + δTint

3 + δ
. (5)
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Also, the global heat flux vector is defined by a sum q̄ = q+qint where q is the translational
contribution to the heat flux and qint is the internal contribution:

q =
1
2

∫
R3

∫ +∞

0
|v− u|2(v− u) f dE dv , qint =

∫
R3

∫ +∞

0
E (v− u) f dE dv . (6)

The kinetic equation of ES–BGK type for the evolution of the distribution f proposed
in [14] reads as

∂ f
∂t

+ v · ∇x f = Ac(T) ρ (G − f ). (7)

On the right-hand side, the quantity Ac(T) ρ represents the collision frequency of gas
molecules, which is independent of the kinetic variables v and E , but dependent on
macroscopic fields ρ and, possibly, T. The relaxation operator drives the distribution f
toward the ellipsoidal attractor G provided by

G =
ρ E δ/2−1

(2π)3/2 [det(T )]1/2 Tδ/2
rel Γ(δ/2)

exp
(
− 1

2
(vi − ui)T −1

ij (vj − uj)−
E

Trel

)
. (8)

The fictitious temperature Trel is a proper average, by means of a parameter θ ∈ (0, 1],
of global and internal temperatures:

Trel = θT + (1− θ)Tint . (9)

The distribution G is not Maxwellian, since it involves a non-isotropic tensor T ij defined
through temperatures, pressure tensor, θ and an additional parameter ν ∈ [−1/2, 1) as

(T )ij = (1− θ)
[
(1− ν)Ttrδij + ν

pij

ρ

]
+ θTδij (10)

or equivalently, using the viscous stress tensor ωij = pij − ρTtrδij, as

(T )ij = (1− θ)
[

Ttrδij + ν
ωij

ρ

]
+ θTδij . (11)

The collision equilibrium of the ES–BGK model (7) corresponds to f = G; this equality
implies that all temperatures coincide (Trel = Tint = Ttr = T), therefore the equilibrium
profile is provided by the expected Maxwellian distribution, with explicit dependence also
on the internal energy E (see [5,19] for further details). The present kinetic model preserves
the conservations of mass, momentum and total energy, and the validity of the H-theorem
(entropy dissipation) is guaranteed [14,19].

The new parameters θ and ν allow adjustment of the values of Prandtl number (that
in classical BGK model is forced to be one), and of the bulk viscosity typical of polyatomic
gases. Indeed, to fix the values of parameters ν, θ, and of the function Ac(T) one can
fit some experimental data with the values of transport coefficients (shear viscosity µ,
thermal conductivity κ, Prandtl number Pr, bulk viscosity µb) corresponding to classical
Navier–Stokes equations derived from this model [24]:

µ =
1

1− ν + θ ν

T
Ac(T)

, κ =
δ + 5

2
T

Ac(T)
,

Pr =
1

1− ν + θ ν
, µb =

1
θ

2 δ

3(3 + δ)

µ

Pr
.
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3. Chapman-Enskog Asymptotic Expansion

It is well known [1] that if appropriate dimensionless variables are introduced,
measuring each quantity in terms of a typical unit measure, the dimensionless version of
the kinetic equation reads as

Sh
∂ f
∂t

+ v · ∇x f =
1

Kn
Ac(T)ρ(G − f ), (12)

where Sh stands for the Strouhal number representing the ratio between typical macroscopic
and kinetic velocities, and Kn is the Knudsen number, ratio of the particle mean free path
to a macroscopic length. In the present asymptotic analysis leading to fluid-dynamic
equations it is assumed as usual Sh = 1, and a collision dominated regime in which
Kn� 1 is considered. For simplicity, the same symbols will be used for the dimensionless
quantities and for the corresponding dimensional ones. At the end of the asymptotic
procedure, one may formally come back to the dimensional version of equations by simply
setting Kn = 1.

In the paper [14] it has been proved that the ratio between the bulk viscosity (correction
to the classical scalar pressure due to the internal degrees of freedom) and the shear
viscosity is inversely proportional to the parameter θ. This motivated the investigation,
in [30] and in the present paper, of the asymptotic regime where θ is of the same order
of magnitude of the Knudsen number. Indeed, this regime allows description of the
macroscopic behavior of gases, such as carbon dioxide CO2, with a bulk viscosity much
larger than other transport coefficients. Specifically, here the Knudsen number is cast
as Kn = β θ, where β denotes a positive constant of the order of unity; consequently,
the rescaled ES–BGK equation reads as

βθ
∂ f
∂t

+ βθv · ∇x f = Ac(T)ρ(G(θ)− f ) , (13)

where the notation G(θ) is used to emphasize that the attractor (8) explicitly depends on
the small parameter θ.

In the formal limit θ → 0, in Equation (13) only the leading-order relaxation opera-
tor appears:

Ac(T) ρ(G|θ=0
− f ) = 0 ,

where, noting that for θ → 0 one has Trel = Tint,

G|θ=0
=

ρE δ/2−1

(2π)3/2[det(T |θ=0
)]1/2 Tδ/2

int Γ(δ/2)

× exp
(
− 1

2
(vi − ui)(T −1

ij )|θ=0
(vj − uj)−

E
Tint

) (14)

with
(T ij)|θ=0

= Ttrδij + ν
ωij

ρ
. (15)

This leading-order operator has six collision invariants such that∫
R3

∫ +∞

0
ϕ(v, E)

(
G|θ=0

− f
)

dE dv = 0, provided by the weight functions

ϕ(v, E) = 1, v,
1
2
|v|2, E ,

corresponding to the six macroscopic fields

ρ, u, Ttr, Tint. (16)
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The Chapman–Enskog expansion [23] is a formal power series expansion in terms of the
small parameter θ. According to such procedure, the above quantities (16) represent the six
hydrodynamic variables to be left unexpanded in the asymptotic expansion. The resulting
fluid-dynamic equations will correspond to evolution equations, at the Navier–Stokes
level, for such six hydrodynamic quantities. In view of the Navier–Stokes approximation,
a truncation to the first order is sufficient, thus the distribution is expanded as

f = f (0) + θ f (1) .

The fact that the six fields (16) must remain unexpanded implies that

ρ(0) = ρ, u(0) = u, T(0)
tr = Ttr, T(0)

int = Tint,

and, equivalently, the constraints

ρ(1) = 0, u(1) = 0, T(1)
tr = 0, T(1)

int = 0.

Consequently, also global temperature remains unexpanded: T = (3 Ttr + δTint)/(3 + δ).
On the other hand, auxiliary fields Trel and T ij appearing in the attractor (8) depend on the
expansion parameter θ explicitly and through the expansion of the viscous stress ωij:

Trel = Tint + θ (T − Tint), T ij = Ttrδij + ν
ω
(0)
ij

ρ
+ θ

[
(T − Ttr)δij + ν

ω
(1)
ij

ρ

]
,

and consequently

T(0)
rel = Tint , T(1)

rel = T − Tint ,

T (0)
ij = Ttrδij + ν

ω
(0)
ij

ρ
, T (1)

ij = (T − Ttr)δij + ν
ω
(1)
ij

ρ
.

(17)

By inserting the expansion of the distribution f and of the macroscopic fields into
the rescaled kinetic Equation (13), a formal limit θ → 0 simply provides at the lead-
ing order f (0) = G(0), where G(0) is analogous to G|θ=0

provided in (14), but with the

leading-order tensor T (0)
ij given in (17). Taking account of the fact that the pressure tensor

of f (0), given by p(0)ij = ρTtrδij + ω
(0)
ij , is coinciding with the same second order moment

of G(0), which results in ρTtrδij + νω
(0)
ij , and recalling that ν 6= 1, the leading-order viscous

stress tensor turns out to vanish, i.e., ω
(0)
ij = 0, as physically expected at the Euler level.

The leading-order solution may thus be cast as

f (0) =
ρE δ/2−1

(2π Ttr)3/2 Tδ/2
int Γ(δ/2)

exp
(
− |v− u|2

2 Ttr
− E

Tint

)
. (18)

Macroscopic equations for the six hydrodynamic fields at Navier–Stokes accuracy can
be obtained by inserting the Chapman–Enskog expansions up to the first order into the
weak form of the kinetic equation (13), which dividing by θ reads as

β
∂

∂t

(∫
R3

∫ +∞

0
ϕ(v, E)[ f (0) + θ f (1)] dE dv

)
+ β∇x ·

(∫
R3

∫ +∞

0
vϕ(v, E)[ f (0) + θ f (1)] dEdv

)
(19)

= Ac(T)ρ
∫
R3

∫ +∞

0
ϕ(v, E)[G(1) − f (1)] dE dv .
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With ϕ(v, E) = 1, the continuity equation is recovered

∂ρ

∂t
+∇x · (ρu) = 0 , (20)

then ϕ(v, E) = v gives the expected momentum equation

∂(ρu)
∂t

+∇x · [ρu⊗ u + ρTtrI + θ ω(1)] = 0 , (21)

the weight function ϕ(v, E) = 1
2
|v|2 provides an equation for kinetic energy (or, equiva-

lently, for the translational temperature)

∂
∂t

(
3
2 ρTtr +

1
2 ρ|u|2

)
+∇x ·

[(
5
2 ρTtr +

1
2 ρ|u|2

)
u + θ u ·ω(1) + θ q(1)

]
= Ac(T)

β ρ2 3
2 (T − Ttr) ,

(22)

while ϕ(v, E) = E yields an equation for the internal temperature

∂

∂t

(
ρ

δ

2
Tint

)
+∇x ·

(
ρ

δ

2
Tintu + θ q(1)

int

)
=

Ac(T)
β

ρ2 δ

2
(T − Tint) . (23)

In (22) and (23), the quantities q(1) and q(1)
int represent the first-order corrections of kinetic

and internal heat fluxes defined in (6). The sum of these equations correctly reproduces the
conservation of total energy.

Notice that on the right-hand sides of (22)–(23) there are no contributions due to
moments of f (1), since the macroscopic fields corresponding to collision invariants are not
expanded. There appear only contributions due to G(1), and specifically to T(1)

rel and to the

trace of T (1)
ij ; these terms are complete, in the sense that Trel and the trace of T ij do not

contain higher powers of the parameters θ, therefore there is no need to use the next order
of the expansion G(2) on the right-hand side of (20).

To close the set of Equations (20)–(23) one has to express the quantities ω(1), q(1) and
q(1)

int in terms of the six unknowns (ρ, u, Ttr, Tint). To this aim, the first-order terms (O(θ))
of the rescaled ES–BGK Equation (13) are considered, i.e.,

β
∂ f (0)

∂t
+ βv · ∇x f (0) = Ac(T)ρ

(
G(1) − f (1)

)
, (24)

from which the first-order correction of the distribution function is deduced as

f (1) = G(1) − β

Ac(T)ρ

(
∂ f (0)

∂t
+ v · ∇x f (0)

)
. (25)

The explicit calculation of the derivatives of the leading-order distribution f (0) given in
(18) leads to

∂ f (0)

∂t
+ v · ∇x f (0) = f (0)

{
1
ρ

(
∂ρ

∂t
+ v · ∇xρ

)
− (v− u)

Ttr
·
(

∂u
∂t

+ v · ∇xu
)

+

(
|v− u|2
2(Ttr)2 −

3
2 Ttr

)(
∂Ttr

∂t
+ v · ∇xTtr

)
+

(
E

(Tint)
2 −

δ

2 Tint

)(
∂Tint

∂t
+ v · ∇xTint

)}
.

As usual in the Chapman–Enskog procedure [23], the temporal derivatives can be elimi-
nated from this expression using the Euler equations for the macroscopic fields, which are
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essentially provided by the leading-order (O(θ0)) terms of Equations (20)–(23). The distri-
bution G(1) may then be computed as

G(1) =
(

∂G
∂θ

)
|θ=0

,

and skipping all intermediate computations (the interested readers can find further details
in [30]) one finally gets

f (1) = f (0)
{

ν

ρ

1
2T2

tr
(vi − ui)ω

(1)
ij (vj − uj)

− β

Ac(T)ρ

[
1

Ttr
∇xu : (v− u)⊗ (v− u)− 1

3
|v− u|2

Ttr
∇x · u

+

[
|v− u|2

2Ttr
− 5

2

]
(v− u) · ∇xTtr

Ttr
+

(
E

Tint
− δ

2

)
(v− u) · ∇xTint

Tint

]}
. (26)

At this point, the needed first-order corrections can be recovered as suitable moments of
the distribution f (1). Viscous stress is provided by

ω
(1)
ij =

∫
R3

∫ ∞

0
(vi − ui)(vj − uj) f (1) dE dv− 1

3

∫
R3

∫ ∞

0
|v− u|2 δij f (1) dE dv

= ν ω
(1)
ij −

β Ttr

Ac(T)

[
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∇x · uδij

]
,

that yields

ω
(1)
ij = − β Ttr

Ac(T)(1− ν)

[
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∇x · uδij

]
. (27)

Analogously, kinetic and internal heat fluxes read, respectively, as

q(1) =
1
2

∫
R3

∫ ∞

0
|v− u|2 (v− u) f (1) dE dv = −

(
β

Ac(T)
5
2

Ttr

)
∇xTtr , (28)

q(1)
int =

∫
R3

∫ ∞

0
E v f (1) dE dv = −

(
β

Ac(T)
δ

2
Ttr

)
∇xTint . (29)

In conclusion, by inserting results (27)–(29) into Equations (20)–(23) and coming
back to the dimensional form, which formally means to set Kn = β θ = 1, the system of
two-temperature Navier–Stokes equations for a polyatomic gas reads as

∂ρ

∂t
+∇x · (ρu) = 0 , (30)

∂(ρu)
∂t

+∇x ·
[

ρu⊗ u + ρTtr I − Ttr

Ac(T)(1− ν)

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∇x · uδij

)]
= 0 , (31)

∂
∂t

(
3
2 ρTtr +

1
2 ρ|u|2

)
+∇x ·

[(
5
2 ρTtr +

1
2 ρ|u|2

)
u

−u · Ttr
Ac(T)(1−ν)

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3∇x · uδij

)
− 1

Ac(T)
5
2 Ttr∇xTtr

]
= θ Ac(T)ρ2 3δ

2(3+δ)
(Tint − Ttr) ,

(32)

∂

∂t
(
ρTint

)
+∇x ·

(
ρTintu−

1
Ac(T)

Ttr∇xTint

)
= θ Ac(T)ρ2 3

3 + δ
(Ttr − Tint) . (33)

Notice that the parameter θ, typical of the considered ES–BGK model and able to account
for the ratio between bulk and shear viscosity, appears only in the collision contribution
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on the right-hand side, and measures the relaxation speed of temperatures. The other
parameter ν appears in the shear viscosity coefficient, allowing thus to fit the Prandtl
number of the gas considered in physical applications.

4. Shock-Wave Solution for Steady Navier–Stokes Equations

To investigate the existence of a shock-wave solution of Navier–Stokes
Equations (30)–(33), it is convenient to replace the variable Ttr by the global tempera-
ture T. Indeed, by substituting the expression

Ttr =
1
3
[
(3 + δ)T − δ Tint

]
into (30)–(33), the system becomes

∂ρ

∂t
+∇x · (ρu) = 0 , (34)

∂(ρu)
∂t

+∇x ·
[

ρu⊗ u +
1
3

ρ
[
(3 + δ)T − δ Tint

]
I

− (3 + δ)T − δ Tint
3Ac(T)(1− ν)

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∇x · uδij

)]
= 0 , (35)

∂

∂t

(
ρ T +

1
3 + δ

ρ|u|2
)
+∇x ·

{
1
3

(
5 T − 2 δ

3 + δ
Tint

)
ρ u +

1
3 + δ

ρ|u|2 u

− 2
3

(
T − δ

3 + δ
Tint

)
u

Ac(T)(1− ν)
·
(

∂ui
∂xj

+
∂uj

∂xi
− 2

3
∇x · uδij

)

+
1

3 Ac(T)
[
(3 + δ)T − δ Tint

][
− 5

3
∇xT +

2δ

3(3 + δ)
∇xTint

]}
= 0 , (36)

∂

∂t
(
ρTint

)
+∇x ·

(
ρTintu−

1
3Ac(T)

[
(3 + δ)T − δ Tint

]
∇xTint

)
= θ Ac(T)ρ2(T − Tint) . (37)

From now on, a stationary flow of an ideal polyatomic gas in the x-direction will be
considered; assuming axial symmetry around x-axis, the problem is thus one-dimensional
in space. The steady one-dimensional version of Navier–Stokes Equations (34)–(37) reads as

d
dx

(ρ u) = 0 , (38)

d
dx

[
ρ u2 +

1
3

ρ
[
(3 + δ)T − δ Tint

]
− [(3 + δ)T − δ Tint]

3Ac(T)(1− ν)

4
3

du
dx

]
= 0 , (39)

d
dx

{
1
3

(
5 T − 2 δ

3+δ Tint

)
ρ u + 1

3+δ ρ u3 − 2
3

(
T − δ

3+δ Tint

)
u

Ac(T)(1−ν)
4
3

du
dx

+ 1
3 Ac(T)

[
(3 + δ)T − δ Tint

][
− 5

3
dT
dx + 2δ

3(3+δ)
dTint

dx

]}
= 0 ,

(40)

d
dx

(
ρTint u− 1

3Ac(T)
[
(3 + δ)T − δ Tint

]dTint
dx

)
= θ Ac(T)ρ2(T − Tint) . (41)

By defining

U =
du
dx

, τ =
dT
dx

, τint =
dTint

dx
, (42)
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equations (38)–(42) constitute a system of seven first-order ODEs for the seven unknown fields

ρ , u , T , Tint , U , τ , τint.

A simple integration of the conservation equations (38)–(40) provides the following con-
straints

ρ u = Ja , (43)

Ja u +
1
3

Ja

u
[
(3 + δ)T − δ Tint

]
− [(3 + δ)T − δ Tint]

3Ac(T)(1− ν)

4
3

du
dx

= Jb , (44)

1
3

(
5 T − 2 δ

3 + δ
Tint

)
Ja +

1
3 + δ

Ja u2 − 2
3(3 + δ)

[
(3 + δ)T − δ Tint

] u
Ac(T)(1− ν)

4
3

du
dx

+
1

3 Ac(T)
[
(3 + δ)T − δ Tint

][
− 5

3
dT
dx

+
2δ

3(3 + δ)

dTint
dx

]
= Jc , (45)

where Ja, Jb, Jc denote suitable constants. The relations (43)–(45) identify thus three macro-
scopic quantities that remain constant during the flow; these constraints allow the elimina-
tion of three unknowns, namely to recover them in terms of the other ones as

ρ =
Ja

u
, (46)

U = (Ja u− Jb)
3
4

3 Ac(T)(1− ν)

(3 + δ)T − δ Tint
+

Ja

4 u
3 Ac(T)(1− ν) , (47)

τ =
2δ

5(3 + δ)
τint −

9 Ac(T)
5[(3 + δ)T − δ Tint]

(
Jc − Ja T +

1
3 + δ

Ja u2 − 2
3 + δ

Jb u
)

, (48)

so that finally one has to study a system of four first-order ODEs for the unknowns u, T,
Tint, τint, which may be cast in normal form as

du
dx

=
3
4

Ac(T)(1− ν)

[
3 (Ja u− Jb)

(3 + δ)T − δ Tint
+

Ja

u

]
, (49)

dT
dx

= χ
(
u, T, Tint, τint) , (50)

dTint
dx

= τint , (51)

dτint
dx

= − θ
3[Ac(T)]

2

(3 + δ)T − δ Tint

(
Ja

u

)2
(T − Tint) +

3 Ac(T) Ja + δ τint
(3 + δ)T − δ Tint

τint

+

[
A′c(T)
Ac(T)

− 3 + δ

(3 + δ)T − δ Tint

]
τint χ

(
u, T, Tint, τint) , (52)

where the function χ
(
u, T, Tint, τint) reads as

χ
(
u, T, Tint, τint)

=
2δ

5(3 + δ)
τint −

9 Ac(T)
5[(3 + δ)T − δ Tint]

(
Jc − Ja T +

1
3 + δ

Ja u2 − 2
3 + δ

Jb u
)

. (53)
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Some properties of the above system can be investigated by using the qualitative
theory of dynamical systems. In particular, in such frame a steady shock-wave solution
can be seen as a heteroclinic orbit connecting two proper equilibrium states at ±∞. In this
regard, the steady states (fixed points) of the ODEs system (49)–(52) will be explicitly
determined. From equation (51), the equilibrium condition

τint = 0

is immediately recovered. Then, taking into account this result, from Equation (52) the
constraint

Tint = T

must hold in any equilibrium configuration. Consequently, Equation (49) provides

T = − u
(

u− Jb
Ja

)
,

which, inserted into the right-hand side of (50), yields an algebraic second order equation
for u:

4 + δ

3 + δ
Ja u2 − 5 + δ

3 + δ
Jb u + Jc = 0 . (54)

The constants Ja, Jb, Jc are determined by the conditions (43)–(45). Let E1 indicate
the upstream equilibrium (as x → −∞), whose macroscopic quantities are denoted by
the subscript 1, and E2 the downstream equilibrium (as x → +∞), whose macroscopic
quantities are denoted by the subscript 2. It should be noted that in the present formulation,
E1 is characterized by the quartet (u1, T1, (Tint)1, (τint)1) = (u1, T1, T1, 0), and E2 by
(u2, T2, (Tint)2, (τint)2) = (u2, T2, T2, 0). If the macroscopic fields at upstream infinity are
fixed as

ρ1 = ρ∞ , u1 = u∞ , T1 = (Tint)1 = T∞ , U1 = τ1 = (τint)1 = 0 ,

then constants Ja, Jb, Jc read as

Ja = ρ∞ u∞ , Jb = ρ∞ u2
∞ + ρ∞ T∞ , Jc =

1
3 + δ

ρ∞ u3
∞ +

5 + δ

3 + δ
ρ∞ u∞ T∞ . (55)

Defining in the usual way the upstream Mach number as

M =

√
u2

∞
γ T∞

where γ =
5 + δ

3 + δ
, (56)

Equation (54) may be cast as

γ + 1
2

M2

u∞
u2 −

(
γ M2 + 1

)
u +

(
γ− 1

2
M2 + 1

)
u∞ = 0 ,

which provides the solutions

u1 = u∞ , u2 =
(γ− 1)M2 + 2
(γ + 1)M2 u∞ .
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Consequently, the system (49)–(52) admits the upstream equilibrium E1 and the down-
stream equilibrium E2 defined as

E1 = (u1, T1, T1, 0) = (u∞, T∞, T∞, 0) ,

E2 = (u2, T2, T2, 0)

=

(
(γ− 1)M2 + 2
(γ + 1)M2 u∞ ,

(
2 γ M2 − γ + 1

)[
(γ− 1) M2 + 2

]
(γ + 1)2M2 T∞ ,

(
2 γ M2 − γ + 1

)[
(γ− 1) M2 + 2

]
(γ + 1)2M2 T∞ , 0

)
.

(57)

Notice that T2 > 0, hence the equilibrium E2 is admissible, only if M2 > (γ− 1)/(2 γ),
and this threshold is strictly less than 1.

The stability properties of the equilibria Eeq = (ueq, Teq, Teq, 0), with eq = 1, 2, will be
now investigated. To this aim, the Jacobian matrix of the right-hand side of (49)–(52) is
computed, keeping only the terms that do not vanish at equilibrium states. Skipping all
intermediate computations, the Jacobian matrix evaluated at the equilibria reads as

J|eq =


a11 a12 a13 0

a21 a22 0 a24

0 0 0 1

0 a42 a43 a44

 (58)

where

a11 =
3
4

Ac(Teq) (1− ν) Ja

(
1

Teq
− 1

u2
eq

)
,

a12 = − 3
4

Ac(Teq) (1− ν)
(3 + δ)(Ja ueq − Jb)

3 T2
eq

,

a13 =
3
4

Ac(Teq) (1− ν)
δ (Ja ueq − Jb)

3 T2
eq

,

a21 = − 3 Ac(Teq)
5 Teq

2
3 + δ

(Ja ueq − Jb) ,

a22 =
3 Ac(Teq)

5 Teq
Ja , a24 =

2 δ

5 (3 + δ)
,

a42 = − θ
[Ac(Teq)]

2

Teq

(
Ja

ueq

)2
,

a43 = θ
[Ac(Teq)]

2

Teq

(
Ja

ueq

)2
, a44 =

Ac(Teq)
Teq

Ja .

The eigenvalues of the Jacobian matrix (58) are the solutions λi, i = 1, . . . , 4, to the fourth
order equation

λ4 − tr(J|eq) λ3 +
[

a11 a22 + a11 a44 + a22 a44 − a24 a42 − a12 a21 − a43

]
λ2

+
[

a11 a24 a42 − a11 a22 a44 + a12 a21 a44 + a11 a43 + a22 a43

]
λ + det(J|eq) = 0 .

(59)

Unfortunately, the coefficients of λ2 and λ in (59) are not manageable from the analytical
point of view, thus a complete investigation of the sign of eigenvalues for varying param-
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eters may be performed only resorting to numerical routines. However, some analytical
considerations could be done on the trace and the determinant of the Jacobian matrix (58),
representing the sum and the product of the eigenvalues, respectively.

The trace of the matrix J|eq reads as

tr(J|eq) =
Ac(Teq)

Teq
Ja

[
3
4
(1− ν)

(
1− Teq

u2
eq

)
+

8
5

]
.

For the equilibrium E1 it holds

tr(J|E1
) =

Ac(T∞)

T∞
Ja

[
3
4
(1− ν)

(
1− 1

γ M2

)
+

8
5

]
therefore

tr(J|E1
) > 0 ⇐⇒ M2 >

1
γ

15(1− ν)

32 + 15(1− ν)

and the threshold on the right-hand side is strictly less than 1. Therefore for M2 > 1,
the supersonic range in which steady shock wave is usually admissible, the sum of the
eigenvalues of the Jacobian matrix J|E1

is strictly positive; consequently, J|E1
admits at

least one eigenvalue with positive real part, and correspondingly the equilibrium E1 is a
source, with an unstable manifold of dimension at least 1 which may give origin to the
shock-wave solution.

For the equilibrium E2, after some computations one has

tr(J|E2
) =

Ac(T2)

T2
Ja

[
3
4
(1− ν)

γ(γ− 3) M2 + 3 γ− 1
γ(γ− 1) M2 + 2 γ

+
8
5

]
thus

tr(J|E2
) > 0 ⇐⇒ γ

[
15(1− ν)(γ− 3) + 32(γ− 1)

]
M2 + 15(1− ν)(3γ− 1) + 64γ > 0 .

Since ν < 1 and 1 < γ < 5/3, only the coefficient of M2 could be negative. More precisely,
setting

γ∗ =
45(1− ν) + 32
15(1− ν) + 32

, M∗ =
1
γ

15(1− ν)(3γ− 1) + 64γ

15(1− ν)(3− γ)− 32(γ− 1)

(notice that γ∗ > 1 and M∗ > 1), it can be checked that if γ > γ∗ then tr(J|E2
) > 0, while if

γ < γ∗ then tr(J|E2
) > 0 only if M2 < M∗. Note that for ν < −1/15 the threshold γ∗

overcomes 5/3, thus only the case γ < γ∗ is in order. When tr(J|E2
) < 0, the existence

of at least an eigenvalue with a negative real part, and therefore of a stable manifold,
is guaranteed, and therefore a heteroclinic orbit connecting equilibria E1 (at x → −∞) and
E2 (at x → +∞) should exist.

As concerns the determinant of the Jacobian matrix J|eq, it may be cast as

det(J|eq) =
9

20
(1− ν) θ

[Ac(Teq)]4

T2
eq

(
Ja

ueq

)2

×
[
− (Ja)

2

(
1

Teq
− 1

u2
eq

)
+

2
3 + δ

(Ja ueq − Jb)
2

T2
eq

]
. (60)

It is easy to check that in E1 the content of the square brackets in (60) reads as− ρ2
∞ γ(M2 − 1),

therefore
det(J|E1

) < 0 if M2 > 1 ,

det(J|E1
) > 0 if M2 < 1 .
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Computations in equilibrium E2 are much longer; skipping all intermediate details, in E2
the content of the square brackets in (60) reads as

(Ja)2 T1

(T2)2
1

(γ + 1) M2

[
2 γ M4 − (3 γ− 1) M2 + γ− 1

]
,

that turns out to vanish for M2 = 1 and M2 = γ−1
2 γ (Mach value corresponding to vanish-

ing T2). In conclusion

det(J|E2
) > 0 if M2 > 1 ,

det(J|E2
) < 0 if

γ− 1
2 γ

< M2 < 1 .

Consequently, in both equilibria E1, E2 an eigenvalue of the Jacobian matrix vanishes
for M2 = 1, therefore the properties of the equilibria (dimension of stable and unstable
manifolds) change across M2 = 1. Notice that since the determinant of the Jacobian
matrix is proportional to the parameter θ, in problems with large bulk viscosity (thus
with very small θ), an eigenvalue is almost vanishing for any Mach number, in both
upstream and downstream equilibria. Moreover, the above analysis shows that for
M2 > 1, the upstream equilibrium E1 has at least a real negative eigenvalue, therefore a
stable manifold. The occurrence of an eigenvalue very close to zero together with the fact
that the four eigenvalues, at least in the equilibrium E1, do not have real parts of the same
sign, could cause some numerical problems in the construction of shock-wave solutions.

4.1. Numerical Analysis of the Steady Shock Wave

To carry on the investigation of stability of upstream and downstream steady states,
the real part of eigenvalues of J|E1

and J|E2
versus Mach number will be computed owing

to a proper Matlab routine, for varying parameters. In the reference case, the same values
adopted in numerical simulations performed in the papers [30,31] are used: several degrees
of freedom δ = 4, the Prandtl number Pr = 0.761 and the ratio of the bulk viscosity µb to
the shear viscosity µ equal to 10, which correspond to ν = −0.33 and θ = 0.05.

Figure 1 shows that in both equilibria one eigenvalue is close to 0. In the upstream
equilibrium E1 two eigenvalues of the Jacobian are very close to each other, but they are both

real (a zoom of the results for M ∈ [0.8, 1.3] is plotted in Figure 2). For
√

γ−1
2 γ < M < 1, the

upstream equilibrium E1 has two positive and two negative real eigenvalues in its Jacobian
(one of the negative ones is close to 0), while in the downstream equilibrium E2 three
eigenvalues are positive, and one is slightly below 0. Please note that E2 is strongly unstable
(the one-dimensional stable manifold corresponds to an almost vanishing eigenvalue),
and this is consistent with the fact that in the subsonic regime the shock-wave solution
connecting upstream and downstream equilibria is physically not admissible. On the other
hand, for M > 1, besides the almost vanishing (negative) eigenvalue due to the smallness
of the parameter θ, the equilibrium E1 has three positive eigenvalues while E2 has two
positive and one negative eigenvalues. The shock-wave solution starting from E1 should
thus enter the stable manifold of E2. Since E2 is not asymptotically stable (the highest
eigenvalue is positive), it is not easy to numerically capture the heteroclinic orbit which
tends to E2 for x → +∞. An analogous drawback occurs when reversing the x-axis (setting
x̂ = −x) and trying to construct the trajectory connecting E2 to E1; indeed, again E1 is not
an attractor, since the small eigenvalue becomes positive in the reverse setting. The plots
corresponding to the same data of the reference case but with θ = 0.0005, choice adopted
in the shock-wave figures reported in the paper [30], are not shown here, since results are
very similar, but with an eigenvalue almost vanishing for any Mach (of the order of 10−3).
Notice that in [30] the steady shock-wave profile has been obtained following a different
approach, namely as the limiting (steady) solution of an evolution problem (with also time
derivatives) having as boundary conditions the equilibrium states.
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Figure 1. Eigenvalues of the Jacobian J|E1
(left) and J|E2

(right) versus Mach number. Reference case,
with δ = 4, θ = 0.05, Pr = 0.761 which corresponds to ν = −0.33.
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Figure 2. Zoom of the reference case described in Figure 1.

The number of degrees of freedom δ does not affect very much the nature of eigen-
values. See the case δ = 2 in Figure 3 and the case δ = 8 in Figure 4. The modulus of
eigenvalues at equilibrium E1 is slightly decreasing with respect to δ, while the modulus of
eigenvalues at E2 increases versus δ; however, the sign and the nature of each eigenvalue
do not change.

Moreover, the trend of eigenvalues versus Mach number does not show evident
changes even when the parameter θ becomes higher, namely in situations with bulk
viscosity comparable to other transport coefficients. Figure 5 shows the case relevant to
θ = 0.3 and Pr = 0.761, providing thus ν = −0.448; note that in both equilibria the
difference between the two highest eigenvalues is larger (hence more visible in the figures)
than in the reference case. Of course, the physical validity of the present Navier–Stokes
equations is not guaranteed in regimes with high θ, since the Chapman–Enskog procedure
leading from the kinetic to the hydrodynamic description was based on the assumption of θ
with the same order of magnitude as the Knudsen number [30]. Moreover, high values of θ
together with physical Prandtl numbers could provide ν lower than −0.5, not admissible
for the ES–BGK model [14] described in Section 2; for instance, θ = 0.5 and Pr = 0.761
would yield ν = −0.628.
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Figure 3. Eigenvalues of the Jacobian J|E1
(left) and J|E2

(right) versus Mach number. Lower number
of degrees of freedom: δ = 2, θ = 0.05, Pr = 0.761 which corresponds to ν = −0.33.
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Figure 4. Eigenvalues of the Jacobian J|E1
(left) and J|E2

(right) versus Mach number. Higher number
of degrees of freedom: δ = 8, θ = 0.05, Pr = 0.761 which corresponds to ν = −0.33.
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Figure 5. Eigenvalues of the Jacobian J|E1
(left) and J|E2

(right) versus Mach number. Higher value
of θ: δ = 4, θ = 0.3; Pr = 0.761 as in the reference case: it provides ν = −0.449.
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Some changes in the modulus of eigenvalues and in the trends of the highest ones
occur if the value for the parameter ν is increased with respect to the reference case.
Figures 6 and 7 show the results relevant to the options ν = 0 (corresponding to a classical
isotropic BGK, see the tensor T defined in (11)) and ν = 0.5, respectively.
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Figure 6. Eigenvalues of the Jacobian J|E1
(left) and J|E2

(right) versus Mach number. Case with ν

increased with respect to the reference case: δ = 4, θ = 0.05, ν = 0 (corresponding to Pr = 1).
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Figure 7. Eigenvalues of the Jacobian J|E1
(left) and J|E2

(right) versus Mach number. Case with ν

increased with respect to the reference case: δ = 4, θ = 0.05, ν = 0.5 (corresponding to Pr = 1.9).

It should be noted that all eigenvalues at upstream and downstream equilibria remain
real for varying parameters, and the dimensions of stable and unstable manifolds remain
the same as in the reference case. This latter result follows also from the determinant of the
Jacobian matrix, given in (60), computed at the equilibria; indeed, a change in the sign of
one eigenvalue would imply the change of sign also of the determinant, and this occurs
only if θ becomes negative or ν exceeds 1 (not admissible options), or if one passes from
the supersonic to the subsonic regime. The fact that both equilibria are unstable (even
reversing the x-axis) implies that the construction of the shock-wave orbit as solution of the
set of ODEs (49)–(52) is not easily manageable in practice from a numerical point of view;
for this reason, the strategy presented in [30], which aims at obtaining the shock-wave
solution as the limiting solution of a sort of Riemann problem, seems to be more suitable
for the present frame.

Using that procedure, the shock profiles for M = 2 and parameters δ, θ, ν used in
Figures 5–7 are constructed; corresponding results are shown in Figures 8–10, respectively.
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The numerical method is the same finite-difference scheme used in the paper [30], so details
are skipped here. The domain is restricted to −Dn ≤ η ≤ Dp and the grid points are
chosen as ηi (i = −Nn, −Nn + 1, . . . , 0, . . . , Np − 1, Np) in such a way that η−Nn = −Dn,
η0 = 0, and ηNp = Dp; the length of the grid interval [ηi−1, ηi] is denoted by ∆ηi, i.e.,
∆ηi = ηi − ηi−1, and tn (n = 0, 1, 2, . . . ) stands for the discrete time, i.e., tn = n∆t
with ∆t being the constant time step. The values used in the present computations are
(Dn, Nn) = (56.4, 1000), (Dp, Np) = (113, 2000), ∆ηi = 0.0564, and ∆t = 2.82× 10−4. In the
figures, the plots of the normalized macroscopic fields

ρ̌ =
ρ− ρ1

ρ2 − ρ1
, ǔ =

u− u2

u1 − u2
, Ť =

T − T1

T2 − T1
, Ťtr =

Ttr − T1

T2 − T1
, Ťint =

Tint − T1

T2 − T1
,

will be shown versus the normalized space variable x/l1, where l1 = (8RT1/π)1/2/Ac(T1)ρ1
( where Ac(T) has been set to be constant). Denoting by hn

i the value of the function h(t, η)
at t = tn and η = ηi, where h indicates ρ, u, Ttr, etc., the following quantity is checked as a
measure of accuracy of our computation

d = max
−Nn<i<Np

|(ρn
i un

i − ρ1 u1)/(ρ1 u1)|

(which should be zero theoretically); it turns out to be d = 1.2 × 10−6 (in Figure 8),
1.3× 10−6 (in Figure 9), and 5.7× 10−6 (in Figure 10).

In Figure 8, corresponding to θ = 0.3, the profiles are smooth, and a temperature
overshoot occurs for translational temperature Ttr. It is worth noting that in the present
numerical simulation the convergence to the shock-wave solution is much faster than in
cases discussed in the paper [30], corresponding to a smaller θ (of the order of 10−4 there):
indeed, the parameter θ, appearing on the right-hand side of equation for Tint, measures
the relaxation speed of temperatures. On the other hand, in Figures 9 and 10 where the
value of the parameter ν is increased, a more evident difference appears between the
values assumed by translational and internal temperatures in the intermediate part of the
shock profile, and global temperature T, which may be seen as a weighted average of the
two partial temperatures, shows a quite steep profile close to the upstream equilibrium,
followed by a flatter tail reaching the downstream value.

For the values of M, δ, and Pr in Figures 8–10, the profiles should approach those with
a double-layer structure composed of a thin front layer with a steep change and a thick rear
layer with a slow relaxation, which is called Type-C profile in [32,47], as θ becomes small.
This tendency can be observed in Figures 9 and 10, where θ is relatively small (θ = 0.05).
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Figure 8. Profiles of ρ̌, ǔ, Ť, Ťtr, and Ťint at M = 2 in the case of δ = 4, θ = 0.3, and Pr = 0.761
(ν = −0.449, µb/µ = 1.669). In the left figure, the solid line indicates ρ̌, the dashed line ǔ, and
the dash-dotted line Ť; in the right figure, the solid line indicates Ťtr, the dashed line Ťint, and the
dash-dotted line Ť.
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Ť
in
t,
Ť

Figure 9. Profiles of ρ̌, ǔ, Ť, Ťtr, and Ťint at M = 2 in the case of δ = 4, θ = 0.05, and ν = 0 (Pr = 1,
µb/µ = 7.619). See the caption of Figure 8.
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Figure 10. Profiles of ρ̌, ǔ, Ť, Ťtr, and Ťint at M = 2 in the case of δ = 4, θ = 0.05, and ν = 0.5
(Pr = 1.905, µb/µ = 4). See the caption of Figure 8.

5. Concluding Remarks

In this paper, the shock-wave structure has been investigated for a system of two-
temperature Navier–Stokes equations, suitable for polyatomic gases with bulk viscosity
much greater than shear viscosity, as CO2 [48]. Besides usual continuity equation and
momentum equation, this set of PDEs contains two separate evolution equations for
translational temperature Ttr and internal temperature Tint. The steady version of the
macroscopic system has been considered, and owing to conservation laws and to proper
changes of variables, it has been transformed into a set of four independent first-order
ODEs. Our analytical study of the shock-wave solution follows the ideas outlined in [45]
which, in the frame of the evaporation–condensation problem, describes the shock-wave
profile as the solution that remains bounded for all values of the space variable x, since
it represents the heteroclinic orbit connecting the upstream equilibrium of the steady
equations to the downstream one. The stability properties of such equilibria have been
investigated, resorting to the qualitative theory of dynamical systems. In more detail,
the signs of eigenvalues of the Jacobian matrix have been computed at upstream and
downstream equilibria, by an analytical investigation of the matrix trace and determinant
(sum and product of eigenvalues, respectively), and by means of numerical computations.
It has been established that in the supersonic regime, with Mach number greater than one,
the upstream state has a three-dimensional unstable manifold (which may give origin to
the shock-wave profile), while the downstream one has a two-dimensional stable manifold
(which may attract the heteroclinic orbit), therefore the existence of a shock-wave solution
is possible. Moreover, it has been checked that an eigenvalue is of the same order of
magnitude as the ratio between shear and bulk viscosities, therefore very small for CO2.
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Simulations for various values of the parameters involved in the kinetic model, such as
the number of degrees of freedom δ and the parameters θ and ν contained in the original
ES–BGK model, have been shown and commented on.

Since neither the upstream nor the downstream equilibria are asymptotically stable,
it is quite difficult to numerically construct the shock-wave profile as a heteroclinic orbit
for the set of ODEs. This difficulty in reaching the downstream state has already been
pointed out in [49] for ordinary (one-temperature) Navier–Stokes equations. The situation
is slightly better when the x-axis is reversed, since in this formulation the upstream
equilibrium (to be reached for − x → +∞) has only one positive eigenvalue, with very
small magnitude. However, the weak stability of equilibria suggests that the most suitable
numerical strategy is the algorithm used in the paper [30], which recovers the shock wave
as the steady solution of an evolution problem with proper boundary conditions (a sort of
Riemann problem). The analysis performed in this paper allows thus to justify the use
of a finite-difference scheme for an apparently much more complicated time-dependent
problem to numerically provide a steady shock-wave solution. Such a numerical procedure
has been adopted in this paper to show the shock-wave profiles even in cases with the
ratio between shear and bulk viscosity much greater than in CO2. Therefore, the obtained
profiles are not typical of the real CO2 gas. However, even if the ratio is not so small as
in CO2 gas, the profiles tend to exhibit a double-layer structure, consisting of a thin front
layer and a thick rear layer, which appears for CO2 gas [30–32,47] and is called Type-C
profile in [32,47]. The presence of these profiles in other asymptotic regimes is worth
investigating in the future, even starting from different kinetic models for polyatomic
gases. Another interesting work, already in progress, concerns the derivation of suitable
slip boundary conditions for the present macroscopic equations, following the procedure
outlined in [24,50] for different Navier–Stokes systems. Moreover, this kind of analytical
and numerical analysis could be repeated for other kinetic models. Indeed, a single ES–
BGK model might not recover all possible situations. For instance, it has been shown that
the models proposed in [14,20] cannot adjust the translational thermal conductivity, once
the total thermal conductivity is fixed [51]; for this reason, they are not good enough to
describe thermal transpiration, which is strongly related to translational (and not total)
conductivity [52,53]. Different models are needed for this problem, in the spirit of the
one proposed in [54] and possibly with also velocity-dependent relaxation frequencies, to
take into account the influence of the intermolecular potential of the original Boltzmann
collision kernel. The analysis of the shock-wave structure in these models would be also
useful in view of applications.

Author Contributions: Methodology, K.A., M.B., M.G., S.K.; formal analysis, K.A., M.B., M.G.,
S.K.; investigation, K.A., M.B., M.G., S.K.; software, S.K.; supervision, K.A.; writing—original draft
preparation, M.B.; writing—review and editing, K.A., M.B., M.G., S.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Ministero dell’Istruzione, dell’Università e della Ricerca of
the Italian Government, through the PRIN project Multiscale Phenomena in Continuum Mechanics:
Singular Limits, Off-Equilibrium and Transitions (grant number 2017YBKNCE).

Institutional Review Board Statement: Not relevant.

Informed Consent Statement: Not relevant.

Data Availability Statement: All data are provided in the paper.

Acknowledgments: The authors M.B. and M.G. thank the support by the University of Parma, and by
the Italian National Group of Mathematical Physics (GNFM-INdAM). This study was initiated while
K.A. was visiting the Department of Mathematical, Physical and Computer Sciences, University of
Parma. He wishes to thank the Department for the invitation and hospitality.

Conflicts of Interest: The authors declare no conflict of interest.



Fluids 2021, 6, 32 21 of 22

References
1. Cercignani, C. The Boltzmann Equation and Its Applications; Springer: New York, NY, USA, 1988.
2. Giovangigli, V. Multicomponent Flow Modeling; Birkhäuser: Boston, MA, USA, 1999.
3. Ruggeri, T.; Sugiyama, M. Rational Extended Thermodynamics beyond the Monatomic Gas; Springer International Publishing: Cham,

Switzerland, 2015.
4. Groppi, M.; Spiga, G. Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas. J. Math. Chem. 1999, 26,

197–219. [CrossRef]
5. Desvillettes, L.; Monaco, R.; Salvarani, F. A kinetic model allowing to obtain the energy law of polytropic gases in the presence of

chemical reactions. Eur. J. Mech. B/Fluids 2005, 24, 219–236. [CrossRef]
6. Arima, T.; Ruggeri, T.; Sugiyama, M. Extended thermodynamics of rarefied polyatomic gases: 15-field theory incorporating

relaxation processes of molecular rotation and vibration. Entropy 2018, 20, 301. [CrossRef] [PubMed]
7. Baranger, C.; Dauvois, Y.; Marois, G.; Mathé, J.; Mathiaud, J.; Mieussens, L. A BGK model for high temperature rarefied gas flows.

Eur. J. Mech. B/Fluids 2020, 80, 1–12. [CrossRef]
8. Bisi, M.; Cáceres, M.J. A BGK relaxation model for polyatomic gas mixtures. Commun. Math. Sci. 2016, 14, 297–325. [CrossRef]
9. Bisi, M.; Monaco, R.; Soares, A.J. A BGK model for reactive mixtures of polyatomic gases with continuous internal energy.

J. Phys. A Math. Theor. 2018, 51, 125501. [CrossRef]
10. Bisi, M.; Travaglini, R. A BGK model for mixtures of monoatomic and polyatomic gases with discrete internal energy. Physica A

2020, 547, 124441. [CrossRef]
11. Morse, T.F. Kinetic model for gases with internal degrees of freedom. Phys. Fluids 1964, 7, 159–169. [CrossRef]
12. Rahimi, B.; Struchtrup, H. Macroscopic and kinetic modelling of rarefied polyatomic gases. J. Fluid Mech. 2016, 806, 437–505.

[CrossRef]
13. Struchtrup, H. The BGK model for an ideal gas with an internal degree of freedom. Transp. Theor. Stat. Phys. 1999, 28, 369–385.

[CrossRef]
14. Andries, P.; Le Tallec, P.; Perlat, J.P.; Perthame, B. The Gaussian-BGK model of Boltzmann equation with small Prandtl number.

Eur. J. Mech. B/Fluids 2000, 19, 813–830. [CrossRef]
15. Brull, S. An ellipsoidal statistical model for gas mixtures. Commun. Math. Sci. 2015, 13, 1–13. [CrossRef]
16. Groppi, M.; Monica, S.; Spiga, G. A kinetic ellipsoidal BGK model for a binary gas mixture. EPL Europhys. Lett. 2011, 96, 64002.

[CrossRef]
17. Holway, L.H. Kinetic theory of shock structure using an ellipsoidal distribution function. In Rarefied Gas Dynamics; (Proc. Fourth

Internat. Sympos., Univ. Toronto, 1964); Academic Press: New York, NY, USA, 1966; Volume I, pp. 193–215.
18. Todorova, B.N.; Steijl, R. Derivation and numerical comparison of Shakhov and Ellipsoidal Statistical kinetic models for a

monoatomic gas mixture. Europ. J. Mech. B/Fluids 2019, 76, 390–402. [CrossRef]
19. Brull, S.; Schneider, J. On the ellipsoidal statistical model for polyatomic gases. Contin. Mech. Thermodyn. 2009, 20, 489–508.

[CrossRef]
20. Holway, L.H., Jr. New statistical models for kinetic theory: Methods of construction. Phys. Fluids 1966, 9, 1658–1673. [CrossRef]
21. Mathiaud, J.; Mieussens, L. BGK and Fokker-Planck models of the Boltzmann equation for gases with discrete levels of vibrational

energy. J. Stat. Phys. 2020, 178, 1076–1095. [CrossRef]
22. Todorova, B.N.; White, C.; Steijl, R. Modeling of nitrogen and oxygen gas mixture with a novel diatomic kinetic model. AIP Adv.

2020, 10, 095218. [CrossRef]
23. Chapman, S.; Cowling, T.G. The Mathematical Theory of Non-Uniform Gases, 3rd ed.; Cambridge University Press: Cambridge, UK,

1991.
24. Hattori, M.; Kosuge, S.; Aoki, K. Slip boundary conditions for the compressible Navier–Stokes equations for a polyatomic gas.

Phys. Rev. Fluids 2018, 3, 063401. [CrossRef]
25. Bruno, D.; Giovangigli, V. Relaxation of internal temperature and volume viscosity. Phys. Fluids 2011, 23, 093104. [CrossRef]
26. Kustova, E.; Mekhonoshina, M. Multi–temperature vibrational energy relaxation rates in CO2. Phys. Fluids 2020, 32, 096101.

[CrossRef]
27. Kustova, E.; Mekhonoshina, M.; Kosareva, A. Relaxation processes in carbon dioxide. Phys. Fluids 2019, 31, 046104. [CrossRef]
28. Arima, T.; Ruggeri, T.; Sugiyama, M.; Taniguchi, S. On the six–field model of fluids based on extended thermodynamics. Meccanica

2014, 49, 2181–2187. [CrossRef]
29. Bisi, M.; Ruggeri, T.; Spiga, G. Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended

thermodynamics. Kinet. Relat. Mod. 2018, 11, 71–95. [CrossRef]
30. Aoki, K.; Bisi, M.; Groppi, M.; Kosuge, S. Two–temperature Navier–Stokes equations for a polyatomic gas derived from kinetic

theory. Phys. Rev. E 2020, 102, 023104. [CrossRef]
31. Kosuge, S.; Aoki, K. Shock-wave structure for a polyatomic gas with large bulk viscosity. Phys. Rev. Fluids 2018, 3, 023401.

[CrossRef]
32. Taniguchi, S.; Arima, T.; Ruggeri, T.; Sugiyama, M. Overshoot of the non–equilibrium temperature in the shock wave structure of

a rarefied polyatomic gas subject to the dynamic pressure. Int. J. Non-Linear Mech. 2016, 79, 66–75. [CrossRef]
33. Taniguchi, S.; Arima, T.; Ruggeri, T.; Sugiyama, M. Shock wave structure in rarefied polyatomic gases with large relaxation time

for the dynamic pressure. J. Phys. Conf. Ser. 2018, 1035, 012009. [CrossRef]

http://doi.org/10.1023/A:1019194113816
http://dx.doi.org/10.1016/j.euromechflu.2004.07.004
http://dx.doi.org/10.3390/e20040301
http://www.ncbi.nlm.nih.gov/pubmed/33265392
http://dx.doi.org/10.1016/j.euromechflu.2019.11.006
http://dx.doi.org/10.4310/CMS.2016.v14.n2.a1
http://dx.doi.org/10.1088/1751-8121/aaac8e
http://dx.doi.org/10.1016/j.physa.2020.124441
http://dx.doi.org/10.1063/1.1711128
http://dx.doi.org/10.1017/jfm.2016.604
http://dx.doi.org/10.1080/00411459908205849
http://dx.doi.org/10.1016/S0997-7546(00)01103-1
http://dx.doi.org/10.4310/CMS.2015.v13.n1.a1
http://dx.doi.org/10.1209/0295-5075/96/64002
http://dx.doi.org/10.1016/j.euromechflu.2019.04.001
http://dx.doi.org/10.1007/s00161-009-0095-3
http://dx.doi.org/10.1063/1.1761920
http://dx.doi.org/10.1007/s10955-020-02490-7
http://dx.doi.org/10.1063/5.0021672
http://dx.doi.org/10.1103/PhysRevFluids.3.063401
http://dx.doi.org/10.1063/1.3640083
http://dx.doi.org/10.1063/5.0021654
http://dx.doi.org/10.1063/1.5093141
http://dx.doi.org/10.1007/s11012-014-9886-0
http://dx.doi.org/10.3934/krm.2018004
http://dx.doi.org/10.1103/PhysRevE.102.023104
http://dx.doi.org/10.1103/PhysRevFluids.3.023401
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.11.003
http://dx.doi.org/10.1088/1742-6596/1035/1/012009


Fluids 2021, 6, 32 22 of 22

34. Pavic-Colic, M.; Madjarevic, D.; Simic, S. Polyatomic gases with dynamic pressure: Kinetic non–linear closure and the shock
structure. Int. J. Non-Linear Mech. 2017, 92, 160–175. [CrossRef]

35. Bisi, M.; Spiga, G. A two–temperature six–moment approach to the shock wave problem in a polyatomic gas. Ric. Mat. 2019, 68,
1–12. [CrossRef]

36. Artale, V.; Conforto, F.; Martalò, G.; Ricciardello, A. Shock structure and multiple sub–shocks in Grad 10–moment binary mixtures
of monoatomic gases. Ric. Mat. 2019, 68, 485–502. [CrossRef]

37. Bisi, M.; Martalò, G.; Spiga, G. Shock wave structure of multi–temperature Euler equations from kinetic theory for a binary
mixture. Acta Appl. Math. 2014, 132, 95–105. [CrossRef]

38. Conforto, F.; Mentrelli, A.; Ruggeri, T. Shock structure and multiple sub-shocks in binary mixtures of Eulerian fluids. Ric. Mat.
2017, 66, 221–231. [CrossRef]

39. Huang, S.; Wang, J.; Li, Z.; Wang, Y.; Jin, X.; Wang, K. Influence of an explosion air shock wave on arc quenching inside a cylinder.
AIP Adv. 2020, 10, 025326. [CrossRef]

40. Medici, E.F.; Allen, J.S.; Waite, G.P. Modeling shock waves generated by explosive volcanic eruptions. Geophys. Res. Lett. 2014, 41,
414–421. [CrossRef]

41. Choi, J.Y.; Jeung, I.S.; Yoon, Y. Scaling effect of the combustion induced by shock–wave boundary-layer interaction in premixed
gas. Symp. Combust. 1998, 27, 2181–2188. [CrossRef]

42. Fedorov, A.F.; Shul’gin, A.V. Point model of combustion of aluminum nanoparticles in the reflected shock wave. Combust. Explos.
Shock Waves 2011, 47, 289–293. [CrossRef]

43. Kunova, O.V.; Nagnibeda, E.A. State–to–state description of reacting air flows behind shock waves. Chem. Phys. 2014, 441,66–76.
[CrossRef]

44. Artem’eva, N.A.; Shuvalov, V.V. Interaction of shock waves during the passage of a disrupted meteoroid through the atmosphere.
Shock Waves 1996, 5, 359–367. [CrossRef]

45. Bobylev, A.V.; Ostmo, S.; Ytrehus, T. Qualitative analysis of the Navier-Stokes equations for evaporation–condensation problems.
Phys. Fluids 1996, 8, 1764–1773. [CrossRef]

46. Bisi, M.; Groppi, M.; Martalò, G. The evaporation–condensation problem for a binary mixture of rarefied gases. Contin. Mech.
Thermodyn. 2020, 32, 1109–1126. [CrossRef]

47. Taniguchi, S.; Arima, T.; Ruggeri, T.; Sugiyama, M. Thermodynamic theory of the shock wave structure in a rarefied polyatomic
gas: Beyond the Bethe-Teller theory. Phys. Rev. E 2014, 89, 013025. [CrossRef] [PubMed]

48. Cramer, M.S. Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 2012, 24, 066102. [CrossRef]
49. Elizarova, T.G.; Khokhlov, A.A.; Montero, S. Numerical simulation of shock wave structure in nitrogen. Phys. Fluids 2007, 19,

068102. [CrossRef]
50. Aoki, K.; Baranger, C.; Hattori, M.; Kosuge, S.; Martalò, G.; Mathiaud, J.; Mieussens, L. Slip boundary conditions for the

compressible Navier–Stokes equations. J. Stat. Phys. 2017, 169, 744–781. [CrossRef]
51. Wang, P.; Su, W.; Wu, L. Thermal transpiration in molecular gas. Phys. Fluids 2020, 32, 082005. [CrossRef]
52. Mason, E.A. Molecular relaxation times from thermal transpiration measurements. J. Chem. Phys. 1963, 39, 522–526. [CrossRef]
53. Gupta, A.D.; Storvick, T.S. Analysis of the heat conductivity data for polar and nonpolar gases using thermal transpiration

measurements. J. Chem. Phys. 1970, 52, 742–749. [CrossRef]
54. Wu, L.; White, C.; Scanlon, T.J.; Reese, J.M.; Zhang, Y.H. A kinetic model of the Boltzmann equation for non–vibrating polyatomic

gases. J. Fluid Mech. 2015, 763, 24–50. [CrossRef]

http://dx.doi.org/10.1016/j.ijnonlinmec.2017.04.008
http://dx.doi.org/10.1007/s11587-018-0370-3
http://dx.doi.org/10.1007/s11587-018-0421-9
http://dx.doi.org/10.1007/s10440-014-9939-3
http://dx.doi.org/10.1007/s11587-016-0299-3
http://dx.doi.org/10.1063/1.5129426
http://dx.doi.org/10.1002/2013GL058340
http://dx.doi.org/10.1016/S0082-0784(98)80067-2
http://dx.doi.org/10.1134/S0010508211030051
http://dx.doi.org/10.1016/j.chemphys.2014.07.007
http://dx.doi.org/10.1007/BF02434011
http://dx.doi.org/10.1063/1.868959
http://dx.doi.org/10.1007/s00161-019-00814-x
http://dx.doi.org/10.1103/PhysRevE.89.013025
http://www.ncbi.nlm.nih.gov/pubmed/24580338
http://dx.doi.org/10.1063/1.4729611
http://dx.doi.org/10.1063/1.2738606
http://dx.doi.org/10.1007/s10955-017-1886-8
http://dx.doi.org/10.1063/5.0018505
http://dx.doi.org/10.1063/1.1734288
http://dx.doi.org/10.1063/1.1673048
http://dx.doi.org/10.1017/jfm.2014.632

	Introduction
	The Kinetic Ellipsoidal Bhatnagar-Gross-Krook (ES–BGK) Model
	Chapman-Enskog Asymptotic Expansion
	Shock-Wave Solution for Steady Navier–Stokes Equations
	Numerical Analysis of the Steady Shock Wave

	Concluding Remarks
	References

