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Abstract: The onset of convection in the form of magneto-inertial waves in a rotating fluid sphere
permeated by a constant axial electric current is studied in this paper. Thermo-inertial convection is a
distinctive flow regime on the border between rotating thermal convection and wave propagation.
It occurs in astrophysical and geophysical contexts where self-sustained or external magnetic fields
are commonly present. To investigate the onset of motion, a perturbation method is used here with
an inviscid balance in the leading order and a buoyancy force acting against weak viscous dissipation
in the next order of approximation. Analytical evaluation of constituent integral quantities is enabled
by applying a Green’s function method for the exact solution of the heat equation following our
earlier non-magnetic analysis. Results for the case of thermally infinitely conducting boundaries and
for the case of nearly thermally insulating boundaries are obtained. In both cases, explicit expressions
for the dependence of the Rayleigh number on the azimuthal wavenumber are derived in the limit of
high thermal diffusivity. It is found that an imposed azimuthal magnetic field exerts a stabilizing
influence on the onset of inertial convection and as a consequence magneto-inertial convection with
azimuthal wave number of unity is generally preferred.

Keywords: rotating thermal magnetoconvection; linear onset; sphere

1. Introduction

Buoyancy-driven motions of rotating, electrically conducting fluids in the presence of
magnetic fields represent a fundamental aspect of the dynamics of stellar and planetary
interiors, see, e.g., in [1–4]. The problem of magnetic field generated and sustained by
convection is rather difficult to attack both analytically and numerically because of its es-
sential nonlinearity and scale separation [5,6]. Valuable insights can be gained by studying
magnetoconvection, the simpler case of an imposed magnetic field, which has received
much attention ever since the early work of Chandrasekhar [7], see in [8,9]. For instance, the
propagation of rotating magnetoconvection modes excited in the deep convective region of the
Earth’s core has been proposed as a possible mechanism for explaining features of observed
longitudinal geomagnetic drifts [10,11], see also the recent review of Finlay et al. [12]. A rather
detailed classification of magnetoconvection waves in a rotating cylindrical annulus has
been recently attempted by Hori et al. [13] and the authors of [14] who proceeded further
to make useful comparisons with nonlinear spherical dynamo simulations and to provide
estimates for the strength of the “hidden” azimuthal part of the magnetic field within the
core. These authors used the rotating annulus model of Busse [15,16] and only considered
values of the Prandtl number of the order unity. However, both spherical geometry as well as
small values of the Prandtl number are essential features of a planetary or a stellar interior [17].
At sufficiently small values of the Prandtl number, a different style of convection exists
that is sometimes called inertial or equatorially-attached convection or thermo-inertial
waves [18–21]. In this limit, convection oscillates so fast that the viscous force does not enter
the leading-order balance. The latter is then reduced to the Poincaré equation in a rotating
spherical system [22–24]. On the longer time scale of the next order of approximation the
buoyancy force maintains convection against the weak viscous dissipation. This regime of
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convection thus represents a transition between thermal convection and wave propagation
in rapidly rotating geometries. It is important to understand how this regime of inertial
convection is affected by an imposed magnetic field.

With this in mind, we study in the present paper the onset of magneto-inertial-
convection. In particular, we consider a rotating fluid sphere permeated by a constant axial
electric current as proposed by Malkus [11] in the limit of low viscosity and high thermal
diffusivity (small Prandtl number). A similarly configured problem was also investigated
by Zhang and Busse [25] who derived an explicit dependence of the critical Rayleigh
number on the imposed field strength but were not able to obtain an explicit dependence
on the azimuthal wavenumber of the modes as this requires the evaluation of a volume
integral of the temperature perturbation [25]. In an earlier paper, we proposed a Green’s
function method for the exact solution of the heat equation [26] which then allowed the
analytical evaluation of the integral quantities needed to find a fully explicit expressions for
the critical Rayleigh number and frequency for the onset of convection and to study mode
competition. Here, we apply the same approach to the case of magneto-inertial convection
and we consider both value and flux boundary conditions for the temperature.

In the following we start with the mathematical formulation of the problem in Section 2.
The special limit of a high ratio of thermal to magnetic diffusivity will be treated in Section 3.
The general case requires the symbolic evaluation of lengthy analytical expressions and will
be presented in Section 4. A discussion of the results and an outlook on related problems
will be given in the final Section 5 of the paper.

2. Mathematical Formulation of the Problem

We consider a homogeneously heated and self-gravitating sphere as illustrated in
Figure 1. The sphere is filled with incompressible and electrically conducting fluid char-
acterized by its magnetic diffusivity η, kinematic viscosity ν, thermal diffusivity κ, and
density $. The sphere is rotating with a constant angular velocity Ωk where k is the axial
unit vector. The gravity field is given by g = −gr0r, where r is the position vector with
respect to the center of the sphere, r is its length measured in fractions of the radius r0 of
the sphere, and g is the amplitude of the gravitational acceleration. Following Malkus [11],
we assume that the fluid sphere is permeated by a toroidal magnetic field B ∼ k× r. As
the Lorentz force like the centrifugal force can be balanced by the pressure gradient, a
static state of no motion exists with the temperature distribution TS = T0 − βr2

0r2/2. We
employ the Boussinesq approximation and assume constant material properties η, ν, κ, and
$ everywhere except in the buoyancy term where the density is assumed to have a linear de-
pendence on temperature with a coefficient of thermal expansion α ≡ (d$/dT)/$ = const.

z

x

y

rθ

φ

Ω

Figure 1. Geometrical configuration of the problem. A part of the outer spherical surface is removed
to expose the interior of sphere to which the conducting fluid is confined.
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In order to study the onset of magnetoconvection in this system, we consider the
linearized momentum, magnetic induction, heat, continuity, and solenoidality equations:

∂tũ + τk× ũ +∇(π − b̃ · j× r) + (j× r) · ∇b̃− j× b̃ = Θ̃r + Pm∇2ũ, (1a)

∂tb̃− (j× r) · ∇ũ + j× ũ = ∇2b̃, (1b)

R̂ r · ũ +∇2Θ̃− (P/Pm)∂tΘ̃ = 0, (1c)

∇ · ũ = 0, ∇ · b̃ = 0, (1d)

respectively, that govern the evolution of infinitesimal velocity perturbations ũ, tempera-
ture perturbations Θ̃, and magnetic field perturbations b̃ away from the static state. The
equations have been non-dimensionalized using the radius r0 as a unit of length, r2

0/η as
a unit of time, η2/gαr4

0 as a unit of temperature, and
√

µ$η/r0 as a unit of magnetic flux
density. The dimensionless magnetic field takes the form j× r + b̃, where j = jk is the
vector of the density of the imposed electric current. The problem is then characterized
by five dimensionless parameters, namely, the Rayleigh number, the Coriolis parameter,
the Prandtl number, the magnetic Prandtl number Pm, and the non-dimensional current
density given by

R̂ =
αgβr6

0
ηκ

, τ =
2Ωr2

0
η

, P =
ν

κ
, Pm =

ν

η
, j, (2)

respectively. In fact, in the results obtained below the two Prandtl numbers enter only as
their ratio S = P/Pm = η/κ. To signify that in our definition of the Rayleigh number the
magnetic diffusivity replaces the kinematic viscosity we have attached a hat to R̂.

3. Perturbation Analysis Results

Without loss of generality we assume that the velocity, the magnetic field, and the
temperature perturbations have an exponential dependence on time t and on the azimuthal
angle φ. Further, as both the velocity field and the magnetic field are solenoidal we use the
poloidal-toroidal decomposition

ũ = u exp
(
i(ωτt + mφ)

)
=
(
∇× (∇v× r) +∇w× r

)
exp

(
i(ωτt + mφ)

)
, (3a)

b̃ = b exp
(
i(ωτt + mφ)

)
=
(
∇× (∇h× r) +∇g× r

)
exp

(
i(ωτt + mφ)

)
, (3b)

Θ̃ = Θ exp
(
i(ωτt + mφ)

)
. (3c)

Equation (1b) can now be written in the form

b =
mγ

ω
u− i

ωτ
∇2b, (4)

where the parameter γ is defined as γ = j/τ, and in the ∇-operator the φ-derivative is
replaced by its eigenfactor im. This allows us to transform Equation (1a) in the form

iω
(

1− m2

ω2 γ2
)

u +
(

1− m
ω

γ2
)

k× u−∇π̌ =
1
τ

Θr +
Pm

τ
∇2u +

m2γ2

ω2τ
∇2u

+
2mγ2

iω2τ
k×∇2u +

mγ

ωτ
∇2bb +

2γ

iωτ
k×∇2bb +

Pm

τ
∇2ub, (5)

where π̌ is the effective pressure. In Equation (5), the magnetic field b appears only in the
form of the boundary layer correction bb, which is required as the basic dissipationless
solution does not satisfy all boundary conditions [25]. For the same reason, the Ekman
layer correction ub must be introduced [22].
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Following the procedure of earlier papers [22,26], we use a perturbation approach and
solve Equation (1a) in the limit of large τ, using the ansatz

u = u0 + τ−1u1 + ..., ω = ω0 + τ−1ω1 + ..., b = b0 + τ−1b1 + ..., (6)

The heat equation is solved unperturbed.

3.1. Zeroth-Order Approximation

In the following we shall assume the limit of large τ such that in zeroth order of
approximation the right hand side of Equation (5) can be neglected. The left hand side
together with the condition ∇ · u = 0 is of the same form as the equation for inertial
modes [22,26]. In the nonmagnetic case, the inertial modes corresponding to the sectorial
spherical harmonics yield the lowest critical Rayleigh numbers for the onset of convec-
tion [26]. We shall assume that this property continues to hold as long as the parameter γ
is sufficiently small so that the nonmagnetic limit is approached in the left-hand side of
Equation (5). The sectorial inertial modes are given by

v0 = Pm
m (cos θ) f (r), w0 = Pm

m+1(cos θ)ψ(r), (7a)

with

f (r) = rm − rm+2, ψ(r) = rm+1 2im(m + 2)
(2m + 1)(λ0(m2 + 3m + 2)−m)

, (7b)

where λ0

λ0 =
1

m + 2

1±

√
m2 + 4m + 3

2m + 3

, (7c)

is the frequency of the inertial modes. The sectorial magneto-inertial modes are then
described by the same velocity field (7a) and by a magnetic field b0 = mγu0/ω0. In the
above expressions, the subscript 0 refers to the dissipationless solution of Equation (1). The
frequency ω0 of the magneto-inertial waves is determined by

λ0 =
ω2

0 −m2γ2

ω0 −mγ2 , (8)

which yields

ω0 =
λ0

2
±

√
λ2

0
4

+ mγ2(m− λ0). (9)

With account of (7c), this dispersion relation allows for a total of four different frequencies
ω0. For small values of γ2, these are given by

ω01,2 =
1

m + 2

1±

√
m2 + 4m + 3

2m + 3


+ m2γ2(m + 2)

1±

√
m2 + 4m + 3

2m + 3

−1

−mγ2, (10a)

ω03,4 =−m2γ2(m + 2)

1±

√
m2 + 4m + 3

2m + 3

−1

+ mγ2. (10b)
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The upper sign in expression (10a) refers to retrogradely propagating modified inertial
waves, while the lower sign corresponds to the progradely traveling variety. The effect
of the magnetic field tends to increase the absolute value of the frequency in both cases.
Expression (10b) describes the dispersion of the slow magnetic waves. The upper sign
refers to the progradely traveling modified Alfven waves and the lower sign corresponds
to retrogradely propagating modified Alfven waves.

3.2. First-Order Approximation

The magneto-inertial waves described by expressions (7a) satisfy the condition that
the normal component of the velocity field vanishes at the boundary. This property
implies that the normal component of the magnetic field vanishes there as well. Additional
boundary conditions must be specified when the full dissipative problem described by (5)
is considered. We shall assume a stress-free boundary with either a fixed temperature (case
A) or a thermally insulating boundary (case B),

r · u = r · ∇(r× u)/r2 = 0 and
{

Θ = 0 (case A)
∂rΘ = 0 (case B)

}
at r = 1. (11)

Additionally, we shall assume an electrically insulating exterior of the sphere which requires

g = 0 at r = 1 (12)

and the matching of the poloidal magnetic field to a potential field outside the sphere.
After the ansatz (6) has been inserted into Equation (5) such that terms with u1 appear

on the left hand side, while those with u0 and ω0 appear on the right hand side, we obtain
the solvability condition for the equation for u1 by multiplying it with u∗0 and averaging it
over the fluid sphere,

iω1

〈
|u0|2

〉(
1 +

(
m2

ω2
0
−

m(ω2
0 −m2γ2)

ω2
0(ω0 −mγ2)

)
γ2

)
(13)

= 〈Θr · u∗0〉+
(
〈u∗0 · ∇2u0〉

mγ

ω0
+ 〈u∗0 · ∇2b0b〉

)(
m
ω
−

ω2
0 −m2γ2

ω2
0 −mω0γ2

)
γ

τ
,

where the brackets 〈...〉 indicate the average over the fluid sphere and the ∗ indicates the
complex conjugate. We have neglected all terms connected with viscous dissipation, i.e., we
have assumed the vanishing of Pm, as we wish to focus on the effect of ohmic dissipation.
The effects of viscous dissipation have been dealt with in the earlier paper [26]. Because
〈u∗0 · ∇2u0〉 vanishes, as demonstrated in [27], we must consider only the influence of the
boundary layer magnetic field b0b. It is determined by the equation

iω0τb0b = ∇2b0b. (14)

As the solutions of this equation are characterized by gradients of the order
√

τ, the
boundary layer correction needed for the poloidal component is of the order

√
τ smaller

than the correction needed for the toroidal component. For large τ we need to take into
account only the contribution g0b given by

g0b = −g0(r = 1) exp
(
−(1 + is)(1− r)

√
|ω0|τ/2

)
= −mγ

ω0
w0(r = 1) exp

(
−(1 + is)(1− r)

√
|ω0|τ/2

)
, (15)
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where s denotes the sign of ω0. The solvability condition thus becomes reduced to

iω1

〈
|u0|2

〉(
1 +

(
mγ2(m−ω0)

ω0(ω0 −mγ2)

))
(16)

=
1
τ
〈Θr · u∗0〉 −

3
2

mγ2(m−ω0)(s + i)
(ω0 −mγ2)

√
2|ω0|τ

∫ 1

−1
|Pm+1

m |2d(cos θ)

× (m + 1)(m + 2)

∣∣∣∣∣∣∣∣
2m(m + 2)

(2m + 1)
(

ω2
0−m2γ2

ω0−mγ2 (m + 1)(m + 2)−m
)
∣∣∣∣∣∣∣∣
2

.

3.2.1. Explicit Expressions in the Limit τS� 1

Equation (1c) for Θ can most easily be solved in the limit of vanishing ω0τS. In this
limit, we obtain for Θ,

Θ = Pm
m (cos θ) exp(imϕ + iωτt)q(r), (17)

with

q(r) = R̂
(

m(m + 1)rm+4

(m + 5)(m + 4)− (m + 1)m
− m(m + 1)rm+2

(m + 3)(m + 2)− (m + 1)m
− crm

)
, (18)

where the coefficient c is given by

c =


m(m + 1)

(m + 5)(m + 4)− (m + 1)m
− m(m + 1)

(m + 3)(m + 2)− (m + 1)m
, case A,

(m + 4)(m + 1)
(m + 5)(m + 4)− (m + 1)m

− (m + 2)(m + 1)
(m + 3)(m + 2)− (m + 1)m

, case B.
(19)

As Θ and the left hand side of Equation (16) is imaginary, the real parts of the two terms on
the right hand side must balance. We thus obtain for R̂ the result

R̂ = s
√

τ

2|ω0|
γ2(m−ω0)

(ω0 −mγ2)

∣∣∣∣∣∣∣
m(m + 2)

ω2
0−m2γ2

ω0−mγ2 (m + 1)(m + 2)−m

∣∣∣∣∣∣∣
2

(20)

×(2m + 9)(2m + 7)(2m + 5)2(2m + 3)
m + 2
m + 1

1
b

,

where the coefficient b assumes the values

b =

{
m(10m + 27) case A,

14m2 + 59m + 63 case B.
(21)

Obviously the lowest value of R̂ is usually reached for m = 1, but the fact that there
are four different possible values of the frequency ω0 complicates the determination of
the critical value R̂c. Expression (20) is also of interest, however, in the case of spherical
fluid shells when the (m = 1)-mode is affected most strongly by the presence of the inner
boundary. Convection modes corresponding to higher values of m may then become
preferred at onset as their r-dependence decays more rapidly with distance from the outer
boundary according to relationships (7b).
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3.2.2. Solution of the Heat Equation in the General Case

For the solution of Equation (1c), in the general case it is convenient to use the Green’s
function method. The Green’s function G(r, a) is obtained as solution of the equation[

∂rr2∂r +
(
− iω0τS r2 −m(m + 1)

)]
G(r, a) = δ(r− a), (22)

which can be solved in terms of the spherical Bessel functions jm(µr) and ym(µr),

G(r, a) =

{
G1(r, a) = A1 jm(µr) for 0 ≤ r < a,

G2(r, a) = Ajm(µr) + Bym(µr) for a < r ≤ 1,
(23)

where

µ ≡
√
−iω0τS, A1 = µ

(
ym(µa)− jm(µa)

ym(µ)

jm(µ)

)
, (24a)

A = −µjm(µa)
ym(µ)

jm(µ)
, B = µjm(µa). (24b)

A solution of Equation (1c) can be obtained in the form

q(r) = −m(m + 1)R̂
(∫ r

0
G2(r, a)

(
am − am+2

)
a2da +

∫ 1

r
G1(r, a)

(
am − am+2

)
a2da

)
. (25)

Evaluations of these integrals for m = 1 yield the expressions

q(r) =



2R̂
(ω0τS)2

(
r(µ2 + 10)− µ2r3 −

10
(
µr cos(µr)− sin(µr)

)
r2
(
µ cos µ− sin µ

) )
case A,

2R̂
(ω0τS)2

(
r(2µ2 + 10)− µ2r3 −

(µ2 − 10)
(
µr cos(µr)− sin(µr)

)
r2
(
2µ cos µ− (2− µ2) sin µ

) )
case B.

(26)

Lengthier expressions are obtained for m > 1. This first-order approximation of the
temperature perturbation is illustrated in Figure 2 for the preferred modes of inertial mag-
netoconvection. The preferred modes of convection at onset are determined by minimizing
the values of the critical Rayleigh number R̂ at given values of the other parameters. The
critical Rayleigh number R̂ and frequency ω1 are calculated on the basis of Equation (16)
using expressions (26). In the case m = 1 we obtain

R̂ =
189
20

s
√

2τγ2(ω0 − 1)√
|ω0|(ω0 − γ2)(6 λ0 − 1)2 (27)

×



(
µ−4 − 525µ−8 − 175 Re

{
sin µ

µ6(µ cos µ− sin µ)

})−1
case A,(

µ−4 + 231µ−8 + 7 Re

{
(µ5 − 8µ3 + 9µ) cos µ− 9 sin µ

µ8
(
(µ2 − 2) sin µ + 2µ cos µ

) })−1

case B,

where Re{} indicates the real part of the term enclosed by {}.
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(Case A)
S=0.0001, γ=0.1 S=0.05, γ=0.1 S=0.09, γ=0.1 S=0.13, γ=0.1

(Case B)
S=0.0001, γ=0.1 S=0.05, γ=0.1 S=0.1, γ=0.1 S=0.15, γ=0.1

Figure 2. Contour plots of the (normalized) temperature perturbation Θ(r) of the preferred mode given by Equations (17)
and (26) in case A (top row) and case B (bottom row) with values of S and γ as specified in the panels and τ = 104, m = 1
and frequency ω01. Expressions (17) and (18) for the limit τS� 1 appear identical to the plots in the first column.

4. Discussion

Expressions (27) have been plotted as functions of S in Figures 3c and 4c for cases
A and B, respectively. Four distinct curves appear as there are four possible values of ω0
for each m. For values S of the order 10−2 or less, expressions (20) are well approached.
The retrograde mode corresponding to the positive sign in (7c) always yields the lower
value of R̂, but it loses its preference to the progradely traveling modified Alfven mode
corresponding to the upper sign in (10b) as S becomes of the order 10−1 or larger. This
transition can be understood on the basis of the increasing difference in phase between Θ
and ur with increasing S. While the mode with the largest absolute value of ω is preferred
as long as Θ and ur are in phase, the mode with the minimum absolute value of ω becomes
preferred as the phase difference increases as the latter is detrimental to the work done by
the buoyancy force. The frequency perturbation ω1 usually makes only a small contribution
to ω which tends to decrease the absolute value of ω. This transition shifts towards smaller
values of S and γ as τ is increased as illustrated in Figure 5. The magneto-inertial convective
modes corresponding to higher values of m = 1 . . . 8 exhibit similar behavior as Figures 3d
and 4d demonstrate for the cases A and B, respectively. The value m = 1 is always the
preferred value of the wavenumber, except possibly in a very narrow range near γ = 0.03,
as indicated by Figure 3a,b in the case A, and possibly near γ = 0.02 in the case B and
Figure 4a,b. The axisymmetric mode m = 0, given for comparison in Figures 3c,d and 4c,d,
is never preferred in contrast to the purely non-magnetic case where it becomes the critical
one near the transition from retrograde to prograde inertial convection modes as seen in
Figure 6.
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Figure 3. Case A. (a) The critical Rayleigh number R̂c as a function of the wave number m for γ = 0.1 and τ = 102 . . . 106

increasing from bottom with log-scale decades given by the five thick lines. (b) The critical Rayleigh number R̂c as a function
of γ for S = 1 and m = 1 . . . 8 increasing from bottom. (c) Competition of modes with increasing S for γ = 0.1 and m = 1.
Explicit expressions (20) in the limit τS� 1 are shown by broken lines. (d) The critical Rayleigh number R̂c as a function of
S for γ = 0.1 and m = 1 . . . 8 increasing from bottom. The axisymmetric mode m = 0 is given for comparison in panels (c,d)
by a dot-dashed line. In panels (b–d) τ = 104.
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increasing from bottom with log-scale decades given by the five thick lines. (b) The critical Rayleigh number R̂c as a function
of γ for S = 1 and m = 1 . . . 8 increasing from bottom. (c) Competition of modes with increasing S for γ = 0.1 and m = 1.
Explicit expressions (20) in the limit τS� 1 are shown by broken lines. (d) The critical Rayleigh number R̂c as a function of
S for γ = 0.1 and m = 1 . . . 8 increasing from bottom. The axisymmetric mode m = 0 is given for comparison in panels (c,d)
by a dot-dashed line. In panels (b–d) τ = 104.
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Figure 5. The boundary where the transition from modes characterised by ω01 to modes characterised by ω03 occurs in
various cross-sections of the parameter space. The value of the parameters are m = 1, S = 1, γ = 0.1, and τ = 5000 where
they are not varied on the axes. Case A is denoted by a solid lines and Case B by broken lines.
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Figure 6. Competition of modes with increasing τP in the non-magnetic case discussed in [26]. The Rayleigh number R as a
function of τP for m = 0 (thick dash-dotted lines) and m = 1 (thin lines). Results based on the explicit expressions (4.6)
and (3.4) from [26] are shown in solid lines and broken lines, respectively, in the case m = 1. (a) Case A, fixed temperature
boundary conditions. (b) Case B, insulating thermal boundary conditions.

For very large values of τ and S, the Rayleigh number R̂ increases in proportion to√
τ(τS)2 for fixed m. In spite of this strong increase, Θ remains of the order τ3/2S on the

right hand side of Equation (1a). The perturbation approach thus continues to be valid for
τ −→ ∞ as long as S� 1 can be assumed. For any fixed low value of S, however, the onset
of convection in the form of prograde inertial modes will be replaced with increasing τ at
some point by the onset in the form of columnar magneto-convection because the latter
obeys an approximate asymptotic relationship for R of the form τ4/3 (see, for example,
Eltayeb et al. [28]). This second transition depends on the value of S and will occur at
higher values of τ and R for lower values of S. There is little chance that magneto-inertial
convection occurs in the Earth’s core, for instance, as S is of the order 30,000 while the
usual estimate for τ is 1015, but it might be relevant for understanding of rapidly rotating
stars with strong magnetic fields.

5. Conclusions

A main result of the analysis of this paper is that for small values of the magnetic
Prandtl number Pm and γ an azimuthal magnetic field exerts a stabilizing influence on the
onset of convection in the form of sectorial magneto-inertial modes. As a consequence,
magneto-convection with azimuthal wave number m = 1 is generally preferred at onset
for both thermally-infinitely conducting and thermally-insulating boundaries. In contrast,
in the absence of a magnetic field, inertial modes with azimuthal wave number m = 1 are
preferred, but only in the case of thermally-insulating boundaries, while in the case with
infinitely conducting thermal boundaries large azimuthal wave numbers are preferred soon
after moderately large rotation is reached [26] and magnetic field is absent. Axisymmetric
magneto-convection is never the preferred mode at onset while in the non-magnetic case it
appears to be realized in a minute region of the parameter space only. These results are
also in contrast to previous magnetoconvection results obtained for larger values of Pm
where a destabilizing role of the azimuthal magnetic field has been found.

The region of the parameter space investigated in the present paper differs consider-
ably from those analyzed in previous work. Most authors have emphasized regimes of high
magnetic flux density where the magnetic field exerts a destabilizing influence and strongly
decreases the critical Rayleigh number for onset of convection (see, for example, in [28,29]).
Unfortunately, no explicitly analytical results are possible in that region of the parameter
space. Moreover, the choice of parameter values has often been motivated by applications
to the problem of the geodynamo in which case the parameter S is large, perhaps as large
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as 105, when molecular diffusivities are used. On the other hand, small values of S may
be relevant for magneto-convection in stars where a high thermal diffusivity is generated
by radiation.
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