
fluids

Article

The Finite Size Lyapunov Exponent and the Finite Amplitude
Growth Rate

Thomas Meunier 1,* and J. H. LaCasce 2

����������
�������

Citation: Meunier, T.; LaCasce, J.H.

The Finite Size Lyapunov Exponent

and the Finite Amplitude Growth

Rate. Fluids 2021, 6, 348. https://

doi.org/10.3390/fluids6100348

Academic Editor: Pavel S. Berloff

Received: 9 August 2021

Accepted: 23 September 2021

Published: 2 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
2 Department of Geosciences, University of Oslo, 0315 Oslo, Norway; j.h.lacasce@geo.uio.no
* Correspondence: tmeunier@whoi.edu

Abstract: The finite size Lyapunov exponent (FSLE) has been used extensively since the late 1990s
to diagnose turbulent regimes from Lagrangian experiments and to detect Lagrangian coherent
structures in geophysical flows and two-dimensional turbulence. Historically, the FSLE was defined
in terms of its computational method rather than via a mathematical formulation, and the behavior of
the FSLE in the turbulent inertial ranges is based primarily on scaling arguments. Here, we propose
an exact definition of the FSLE based on conditional averaging of the finite amplitude growth rate
(FAGR) of the particle pair separation. With this new definition, we show that the FSLE is a close proxy
for the inverse structural time, a concept introduced a decade before the FSLE. The (in)dependence
of the FSLE on initial conditions is also discussed, as well as the links between the FAGR and other
relevant Lagrangian metrics, such as the finite time Lyapunov exponent and the second-order velocity
structure function.

Keywords: finite size Lyapunov exponent; finite amplitude growth rate; two-dimensional turbulence;
Lagrangian fluid dynamics

1. Introduction

Lagrangian relative dispersion experiments, consisting in the simultaneous release of
large numbers of particle pairs and studying their separation characteristics, are a powerful
way to assess turbulent properties of a flow. Various metrics have been used to study pair
dispersion. An example is the “relative dispersion”, which derives from averaging squared
pair separations at fixed times. Similar such time-based metrics include the relative diffusivity
and the separation kurtosis (e.g., [1–3]).

It was recognized though that such averaging could potentially smear out depen-
dences if the dispersive properties vary with scale. Thus, separation-based averages were
introduced. Among the most well-known of these is the finite size Lyapunov exponent
(FSLE), first introduced by Aurell et al. [4] and Artale et al. [5] as a measure of the chaoticity
in turbulent flows. The FSLE has been used extensively subsequently [3,6–13].

Aurell et al. [4] defined the FSLE as the ensemble-averaged inverse time T−1 necessary
for a given perturbation δv to grow by a given factor α, multiplied by the natural logarithm
of this factor:

λ(δv) =
〈 1

T(δv)

〉
ln(α), (1)

In the limit of small perturbations, the FSLE recovers the finite time Lyapunov exponent.
Our subsequent focus is on particles in turbulent flows, so we take δv to be the distance

between two particles r = |x2 − x1|, where x2 and x1 are the individual positions of the
particles. Defining a series of geometrically-increasing reference separations ri (i ∈ [1, N]),
with α =

ri+1
ri

, the FSLE is:
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λi = ln(α)
〈 1

Ti

〉
(2)

where Ti is the time for the separation to grow from ri to αri (also referred to as the “exit
time” [14]). Note that for finite amplitude perturbations, the FSLE depends on the chosen
norm [15]. In this work, we chose the Euclidian norm of the separation vector, the most
common norm used in two-dimensional and geophysical turbulence.

The FSLE has been used frequently to analyze in situ data [6–8]). In a number of studies,
an alternate expression was used, in which the ensemble-average of the inverse exit time
is replaced by the inverse ensemble-average of the exit time [3,5,9,10,12,13,16]. It should
be emphasized that the inverse of the ensemble-average 1

〈T〉 and the ensemble-average

of the inverse 〈 1
T 〉 are generally not equal. Hereafter, we employ the original definition

Equation (2). As shown below, this is advantageously related to the separation growth rate,
so that an analytical expression of the FSLE becomes possible.

Cencini and Vulpiani [15] lamented the lack of mathematical rigor in the definition of
FSLE, which is based on a computational procedure. As such, we lack analytical expressions
for the FSLE, except under exponential pair dispersion. The method also involves several
arguably arbitrary computational choices. Pair separations generally do not increase mono-
tonically in time, so one must decide which “crossing time” to use for the bins: that of the
first crossing, the fastest crossing or a mean of all crossing times. The choice can affect the
results. Using the fastest crossing for example biases the measure to periods of rapid growth.

There are also technical issues with the FSLE. If the pair separation velocity exceeds
(α− 1)ri/δt (where δt is the sampling rate), the separation will cross two successive thresh-
olds in one time step [3,9,17]. If a minimum time is used, the FSLE can saturate, yielding the
false impression of exponential growth [3,8,17]. This issue is usually avoided by increasing
the separation factor, α, or by interpolating the pair separations to smaller time steps [3,9].
Such interpolation can alter the slope of FSLE and hence the inferred growth law.

Furthermore, by recording only times for increasing growth one neglects converging
pairs. Thus, only positive FSLEs are obtained. With synthetic trajectories, obtained from
modelled velocity fields, this can be addressed by integrating trajectories forward and
backward in time, yielding positive and negative FSLEs, respectively. This is commonly
done to detect Lagrangian coherent structures, where repelling (attracting) structures are
associated with positive (negative) FSLEs [18–20]. However, such backward integrations
are of course not possible with in situ data.

Following Letz and Kantz [21], Cencini and Vulpiani [15] proposed an alternate scale-
dependent growth indicator:

λ̃(ri) =
1

2〈r2(t)〉
d〈r2(t)〉

dt

∣∣∣
〈r2〉=r2

i

, (3)

=
d
dt

〈
ln
(

r(t)
)〉∣∣∣

〈ln(r)〉=ln(ri)
(4)

This measure can be positive or negative. However, the latter authors dismissed λ̃(ri) as a
proper proxy for FSLE because it is not strictly a separation-based metric, as the relative
dispersion involves averaging in time. Such averaging potentially combines contributions
from different dispersive regimes. The authors also noted that λ̃(ri) is potentially sensitive
to the initial conditions.

Hereafter, we propose a rigorous derivation of λ̃ (that we refer to as the Cencini–
Vulpiani exponent; CVE) by introducing a new variable: the single-realization finite am-
plitude growth rate, γ (FAGR). The derivation advantageously reveals the links to other
dispersion metrics, such as the Finite time Lyapunov exponent, the relative diffusivity and
velocity structure functions. We show too that the CVE can be an exact proxy for FSLE,
under the appropriate conditional averaging. Thus, it is possible to build a mathematical
definition of the FSLE using the CVE.
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2. Numerical Experiment

We will test the various metrics using three 2D simulations described in [22]. The code
solves the 2D vorticity equation:

∂ζ

∂t
+ J(ψ, ζ) = F − rζ (5)

where ψ is the streamfunction, ζ = ∇2ψ the relative vorticity and J(a, b) the Jacobian
function. The forcing, F , is applied with random phases in an isotropic wavenumber
band, which is varied. Rayleigh dissipation is used, with a constant (Ekman) coefficient of
r = 0.1. Small-scale variance is removed via an exponential cut-off filter [23]. The forcing
amplitude was adjusted so that the equilibrated kinetic energy was 1.0. The domain is
doubly periodic, with 512× 512 grid points.

We will focus on three simulations hereafter. The velocity variance spectra for these
are shown in Figure 1. In run A (panel a), the forced wavenumber range lies between
k = [1, 5], yielding an enstrophy inertial range (non-local dispersion) approximately be-
tween k = [10, 100]. The spectral slope is somewhat steeper than the expected k−3 [24] due
to the dissipation. In run B (panel b), the forced wave numbers range between k = [100, 120],
yielding an energy inertial range (local dispersion) with a k−5/3 spectrum in the range
k = [10, 100]. In run C, the forcing is applied at intermediate wavenumbers (k = [30, 35]).
An energy cascade occurs at smaller wavenumbers, again with a k−5/3 spectrum. The spec-
tral slope at high wavenumbers in this case is at≈k−4, again due to the imposed dissipation.
However, such a slope will produce exponential (non-local) dispersion nevertheless [25].

Figure 1. The kinetic energy spectra of the three model runs. Run A, which is characterized by a
an enstrophy inertial range is shown in panel (a). Run B, which exhibits an energy inertial range,
is shown in panel (b). Run C, in which the spectrum exhibits an energy inertial range between
approximately k = 10 and 30 (k−5/3 spectrum), and an enstrophy inertial range at wavenumbers
exceeding k = 40, is shown in panel (c).

Particles were deployed after the kinetic energy had equilibrated, and trajectories
were “unwrapped” as particles exited the original domain, allowing separations to exceed
the domain scale 2π × 2π. The particles were deployed on square grids with a spacing
δx = 0.01. Initial separations ranged between 10−2 and approximately 5, and each interval
of 0.01 contains 1000 pairs.

In some cases, the FSLE and CVE are computed using a selected single initial separa-
tion (e.g., r = 0.01). Then the initial pair separation has a Dirac distribution (e.g., [26,27]).
However, a well-known advantage of FSLE over other Lagrangian metrics is its insensi-
tivity to initial conditions, allowing the use of all available pairs regardless of their initial
separation [3]. This permits larger numbers of pairs and hence improved statistics. Thus,
we also considered the case with a flat (Heaviside) distribution, with separations ranging
from 0.01 to 5. When unspecified hereafter, the initial conditions correspond to this flat
distribution. A schematic view of the initial separation distributions used in this study is
shown in Figure 2.
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Figure 2. Schematic representation of the initial separations used in this study. The reference initial
condition consists of a Heaviside distribution between 0.01 and 5 (black/grey dashed line). The Dirac
distributions (approximated as narrow Gaussian distributions), centred at some varying reference
separations are used in the study of the dependence of FSLE to initial conditions (Section 5), and are
represented as colored lines.

3. The Finite Amplitude Growth Rate
3.1. Definition

Since the pair separation r(t) is positive definite and a continuous function of time,
there exists a time-dependent function γ(t) such that the value of r at time t + δt is related
to the value of r at time t following:

r(t + δt) = r(t)eγ(t)δt. (6)

Hereafter, we refer to the function γ(t) as the single-realization finite amplitude growth
rate (FAGR). From Equation (6), we may express γ(t) as a function of separation and time:

γ(t) =
1
δt

ln
( r(t + δt)

r(t)

)
(7)

=
ln[r(t + δt)]− ln[r(t)]

δt
. (8)

In the small time step asymptotic limit, ln[r(t)] is continuous and differentiable. Thus, we have:

lim
δt→0

γ(t) =
d
dt

ln[r(t)], (9)

or equivalently:

γ(t) =
1

r(t)
dr(t)

dt
. (10)

When ensemble-averaged over all pairs at constant separation ri, the FAGR γ(t) recovers
the CVE λ̃(t).

3.2. Properties

Through appropriate averaging and/or integration, it is possible to express a number
of meaningful Lagrangian metrics in terms of γ.
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For example, the finite time Lyapunov exponent (FTLE), λT , is defined for an initial
separation r(0) = δ0 as:

λT(t) = lim
δ0→0

1
t

ln
( r(t)

δ0

)
. (11)

e.g., [28–30]. Integrating Equation (10) from 0 to time t, we get:∫ t

0
γ(τ)dτ = ln

( r(t)
δ0

)
(12)

Dividing both sides by time, t, the FTLE is seen to be the time-average value of the FAGR
from the initial time to time t for infinitesimal initial separation:

λT = lim
δ0→0

〈
γ
〉t

0 , (13)

〈·〉t0 ≡ 1
t

∫ t

0
· dτ (14)

The second-order velocity structure function, the ensemble-average squared separa-
tion velocity at constant separation, can also be expressed in terms of γ. From Equation (10),
the separation velocity, u = dr

dt , can be written:

u(t) = γ(t)r(t). (15)

Ensemble averaging the squared velocity at a given separation yields:

S2(r) =
〈
u2〉

r = r2〈γ2〉
r , (16)

where 〈·〉r denotes averaging at constant separation. The simple relationship between γ and
S2 is convenient, as S2 is related to the Eulerian energy spectrum via the Hankel transform [22].

The relative diffusivity can also be written in terms of γ. Although a scale-dependent
function, similar to the velocity structure functions, it is computed by averaging at constant
time rather than separation:

K(t) =
1
2

〈dr2

dt

〉
t
. (17)

From Equation (10), we have:
K(t) =

〈
γ(t)r2(t)

〉
t (18)

Using Equations (12) and (14), we can express the diffusivity in terms of the initial separa-
tion, δ0, the FAGR and the FTLE, λT :

K(t) =
〈
δ2

0γ(t)e2tλT(t)
〉

t. (19)

If the initial separation δ0 is continuously distributed with a probability density function,
p(δ0), we have:

K(t) =
∫ δmax

δmin

〈
γe2tλT

〉
(δ0,t)δ

2
0 p(δ0)dδ0. (20)

Here, the averaging is performed on pairs with an initial separation δ0 at a fixed time. If all
pairs have the same initial separation (Dirac distribution), we have:

K(t) = δ2
0
〈
γe2tλT

〉
t, (21)

where
〈
·
〉

t represents averaging all pairs at a given time t.
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One can furthermore use γ to express Babiano et al. [31]’s instantaneous relative
dispersion coefficient, a time-independent proxy for the relative diffusivity:

X(r) =

〈(
1
2

d
dt

r2

)2〉1/2

r

,

= r2
〈

γ2
〉1/2

r
, (22)

where
〈
·
〉

r
represent averaging pairs with constant separation r.

4. Finite Size Lyapunov Exponents

To express the FSLE λ in terms of the FAGR, γ, we use a similar procedure as for the
FTLE, integrating Equation (10) from time t to a later time t + T, yielding:∫ t+T

t
γ(τ)dτ = ln

( r(t + T)
r(t)

)
. (23)

Introducing the time average operator
〈
·
〉t+T

t = 1
T
∫ t+T

t · dτ, we have:

r(t + T) = r(t)exp
{

T
〈
γ
〉t+T

t

}
(24)

Now assume that Ti is the time required for the separation to grow from a reference separation
ri to another separation ri+1. Averaging between time t and t + Ti is then equivalent to
averaging between separations ri and ri+1. Then for each particle pair:

ln(ri+1/ri)

Ti
=

〈
γ
〉ri+1

ri
. (25)

The reference separations are assumed to increase geometrically, i.e., ri+1 = αri. By ensem-
ble averaging Equation (25) over all pairs, we may define the variable λ̂(ri, α):

λ̂(ri, α) =
〈〈

γ
〉αri

ri

〉
=
〈 1

Ti

〉
ln(α) (26)

Then, noting that 1
r

dr
dt =

1
2r2

dr2

dt , one finds that λ̂ is exactly equal to the CVE λ̃:〈〈
γ
〉αri

ri

〉
=

〈
γ
〉

ri
(27)

=
1

2r2
i

d
dt
〈r2〉ri , (28)

= λ̃(ri) (29)

where
〈
·
〉

ri
is the ensemble average over all pairs at separation ri.

The only difference between CVE and FSLE then lies in the ensemble averaging.
The FSLE assumes pair separations grow between adjacent reference separations, thereby
neglecting decaying pair separations. In Equation (26), the averaging is performed over all
separations between the two thresholds, both growing and decaying. Thus, we can recover
the FSLE from λ̂ by averaging only positive values of 〈γ〉ri+1

ri :

λi =
〈〈

γ
〉ri+1

ri

〉
〈γ〉ri+1

ri >0
(30)

The FSLE computed from Equation (30) (λγ, green circles) and the FSLE computed
from the pair separations using the first crossing criterion (λ, black diamonds) are compared
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in Figure 3 for the three model runs. The two agree well, exhibiting the same patterns and
slopes over the same separations. The plateau at small separations, indicating exponential
growth, is clear with both methods. The values of λγ are somewhat larger, due to the
aforementioned time step bias of the first crossing procedure (the FSLE from Equation (30)
is not subject to this). In contrast, the CVE, λ̃, is nearly one order of magnitude smaller at
all scales. It also lacks clearly distinct power law slopes, and the exponential growth range
is less obvious. This supports Cencini and Vulpiani [15]’s statement that the CVE (where
averaging is performed on all pairs) cannot be used as a proxy for FSLE (where averaging
is only performed on separating pairs).

Figure 3. Comparison between the FSLE computed with Equation (30) (λγ, green circles), the FSLE
computed from the pair separations using the first crossing time (λ, black diamonds), and the CVE
(λ̃, red asterisks). The k−2/3 slope is indicated by the dotted gray line. The panels correspond to the
experiments A (a), B (b) and C (c).

In the limit of small bin widths, Equation (30) can be expressed as:

limα→1 λ(r) =
〈
γ
〉
(r,γ>0) , (31)

where
〈
γ
〉
(r,γ>0) represents averaging positive values of γ at constant separation. Defining

a positive scale-averaged equivalent to the relative diffusivity:

Ks(r) =
1
2

〈dr2

dt

〉
(r, dr2

dt >0)
(32)

=
1
r2

〈
γ
〉
(r,γ>0) (33)

we obtain an alternative definition of FSLE:

λ(r) =
Ks(r)

r2 . (34)

This closely resembles the inverse of Babiano et al. [31]’s “structural time”, τ, which derives
from the instantaneous dispersion coefficient in Equation (22):

τ(r) =
r2

X(r)
. (35)

We refer hereafter to the reciprocal of this, λB ≡ τ−1, as the inverse structural time (IST).
Comparisons between the scale-averaged positive relative diffusivity Ks(r) and the

instantaneous dispersion coefficient X(r) are shown in Figure 4. For all three runs, Ks(r)
and X(r) exhibit a strikingly similar behaviour at all scales. Although the three runs exhibit
different regimes, the ratio X/Ks (not shown) is approximately constant, with mean values
of 1.25, 1.22, and 1.23 for runs A, B, and C, respectively. The similarity between Ks(r) and
X(r) is not trivial. At a given reference separation, X(r) is the root mean square of the
single-realization relative diffusivity 1

2
dr2

dt , using the entire distribution in the averaging
(including negative values), while Ks(r) only uses positive values. While the link between
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Ks(r) and X(r) is an interesting topic, it is beyond the scope of the present paper and will
remain to be investigated.

[a] [b] [c]

Figure 4. Comparison between the instantaneous dispersion coefficient X (green diamonds), and the
scale-averaged positive relative diffusivity Ks (blue squares). The solid black line represents a r2

slope and the dashed grey line a r4/3 slope. Panels (a–c) show the results for the model runs A, B,
and C, respectively.

Figure 5 compares the FSLE computed in the asymptotic limit (Equation (34)) and
the IST. As expected from the agreement between X(r) and Ks(r), the close similarity
of the curves confirms that FSLE in the small α limit is a proxy for the IST. While the
lack of an analytical link between X(r) and Ks(r) in the present work prevents definitive
conclusions, this result is appealing and holds for 3 simulations with different turbulent
regimes, including finite inertial ranges.

[a] [b] [c]

Figure 5. Comparison between FSLE computed using the assymptotic limit Equation (34) (black
circles and line) and Babiano et al. [31]’s inverse structural time (grey squares and line). The left hand
side panel (a) is for the model run A, the center panel (b) for model run B, and the right-hand side
panel (c) for model run C.

The instantaneous dispersion coefficient X(r) is directly linked to the longitudinal
second-order velocity structure function S2l(r) [2]:

X(r) = r
√

S2l(r), (36)

so the IST can also be expressed in terms of S2l(r):

λB(r) = r
√

S2l(r), (37)

In turn, LaCasce [22] showed that the Eulerian velocity variance spectrum was linked with
the longitudinal second-order velocity structure function via the inverse Hankel transform:

E(K) =
1
2

∫ ∞

0

[
Et −

S2l(r)
2

]
K2r2 J1(Kr)dr, (38)
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where Et is the total kinetic energy, K is the wavenumber, and J1 is the first-order Bessel
function. Hence, the Eulerian velocity variance spectrum and the IST λB are linked:

E(K) =
1
2

∫ ∞

0

[
Et −

λ2
B(r)r

2

2

]
K2r2 J1(Kr)dr, (39)

Thus, if confirmed in further analytical, experimental and numerical studies, the equiva-
lence between FSLE and IST would yield intersting properties for FSLE, with a direct link
to the Eulerian velocity variance spectrum.

5. Dependence on Initial Conditions

Cencini and Vulpiani [15] argued that the major difference between the CVE and the
FSLE is that the former depends on initial conditions while the latter does not. To explore
this, we computed the CVE and FSLE for different initial separations. In each case, all pairs
have the same initial separation (the initial separation PDF is a delta function). We then
vary the separation from the smallest to the largest reference separation threshold ri, as in
Figure 2.

The results are compared to the reference calculation (which uses all available pairs,
i.e., Heaviside-distributed initial separations) in Figures 6 and 7 for the CVE and FSLE, re-
spectively. For all three runs, the CVE converges to the reference FSLE for separations larger
than the initial separation, as pairs are on average separating at these scales. The values for
smaller scales are more variable, as pairs must first converge. Thus, the smaller scales have
more negative values on average. In contrast, the FSLE converges to the reference FSLE at
all scales.

We then compare the distribution of γ values used in the averages for a given ref-
erence separation threshold. The results for a reference separation ri = 0.35 are shown
in Figures 8 and 9, for the CVE and FSLE, respectively . In the case of the CVE, for initial
separations larger than the reference separation, γ has a Gaussian distribution centered at
0, showing that growing and decaying separations are equally likely. For initial separations
smaller than the reference separation, the distributions are skewed towards positive γ. In
contrast, the distribution of γ used in the FSLE computation is not sensitive to the initial
separation, with similar PDFs obtained for all initial conditions.

Thus, the difference between the CVE and FSLE is the conditional averaging over
positive values of the FAGR with the FSLE. The ensemble of all pairs whose separation cross
the interval [ri, ri+1] can be decomposed into two sub-ensembles of pairs with an initial
separation of ri or ri+1. If we write γi and γi+1 to identify the FAGR of these sub-ensembles,
the ensemble averaging of Equation (25) can be written:

〈
γ
〉

=
Ni
N
〈
γi
〉
+

Ni+1

N
〈
γi+1

〉
(40)

Thus, 〈γ〉 is a weighted average of positive and negative FAGRs: pairs with initial separa-
tion ri can only enter the interval if γi is positive, and oppositely for γi+1. Hence, the CVE
is the weighted average of the positive and negative FSLEs and transforming the CVE to
the standard FSLE is equivalent to suppressing the last term of (40).
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Figure 6. (a) CVE (λ̃) computed using different initial conditions (Dirac δ distributions centred on
the reference separation thresholds) for model run A. The initial separation is color coded. The dots
and diamonds represent the FSLE and CVE, respectively, computed using the reference (Heaviside
distribution) initial separation. The colored ticks on the top x-axis correspond to the color-coding of
the plain lines. (b) Same as (a) for run B. (c) Same as (a) for run C.

Figure 7. (a) FSLE (λ) computed using different initial conditions (Dirac δ distributions centred on
the reference separation thresholds) for model run A. The initial separation is color coded. The dots
and diamonds represent the FSLE and CVE, respectively, computed using the reference (Heaviside
distribution) initial separation. The colored ticks on the top x-axis correspond to the color-coding of
the plain lines. (b) Same as (a) for run B. (c) Same as (a) for run C.

Figure 8. (a) Probability density function of the values of γ used in the computation of the CVE λ̃ at
the reference separation threshold ri = 0.35 for model run A. Each line represents a different initial
separation. Green and red lines represent initial separations that are smaller and larger than the
reference separation ri, respectively. (b) Same as (a) for model run B. (c) Same as (b) for model run C.
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Figure 9. (a) Probability density function of the values of γ used in the computation of the FSLE λ at
the reference separation threshold ri = 0.35 for model run A. Each line represents a different initial
separation. Green and red lines represent initial separations that are smaller and larger than the
reference separation ri, respectively. (b) Same as (a) for model run B. (c) Same as (b) for model run C.

6. Concluding Remarks

By introducing the FAGR, based on the separation of individual pairs, we have derived
an alternative mathematical definition of the FSLE. The FAGR can also be used to derive
other common dispersion metrics, like the FTLE and the second-order structure function.
With vanishing bin sizes, the new FSLE is also a close proxy to the IST; both are linked
to a form of the separation-averaged relative diffusivity (the instantaneous dispersion
coefficient X(r) for the IST, and the separation-averaged positive diffusivity Ks(r) for the
FSLE). Interestingly, while Babiano et al. [31]’s structural time has not been adopted to the
same degree as the FSLE in relative dispersion studies, it is an equivalent concept, and was
introduced over a decade earlier. Further, the IST was shown to be linked to the Eulerian
velocity variance spectrum through an exact relationship; in contrast, the relationship
between FSLE and the Eulerian velocity variance spectrum is based on scaling arguments.
It might thus be relevant to favor the use of the IST over the FSLE to infer turbulent regimes
from particle pair statistics, although the present results suggest they are likely equivalent.

The FAGR also elucidates the FSLE’s dependence on initial separations. By condi-
tional averaging over positive values of the FAGR (corresponding to separating pairs),
the FSLE effectively reduces the sensitivity to initial condition. The CVE on the other hand,
by averaging both positive and negative FAGR, is strongly sensitive.

To conclude, we enumerate some advantages of the alternative FSLE definition pro-
posed here over the traditional computation algorithm.

1. Since the method relies on averaging all positive FAGR, it does not require arbitrary
choices between the first, fastest, or average crossing times.

2. The FAGR suppresses the need for higher frequency interpolation at small separation
scales, and short-separation scales are more reliably represented.

3. The FAGR can be computed and averaged over any given separation set, and the
latter is not required to increase geometrically nor to be regular.

4. The negative FSLE can be easily obtained by changing the averaging condition from
〈γ〉 > 0 to 〈γ〉 < 0.

The new method could thus bring more computational flexibility and reliability to the
FSLE, in particular for short separation scales. Note too that, since for very small initial
separation the CVE converges towards FSLE, another definition, more analogous to that of
FTLE could also be considered:

λ(r) = lim
r(0)→0

{ 1
δt

ln
( r(t + δt)

r(t)

)}
. (41)
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