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Abstract: Even though applications of direct numerical simulations are on the rise, today the most
usual method to solve turbulence problems is still to apply a closure scheme of a defined order. It is
not the case that a rising order of a turbulence model is always related to a quality improvement. Even
more, a conceptual advantage of applying a lowest order turbulence model is that it represents the
analogous method to the procedure of introducing a constitutive equation which has brought success
to many other areas of physics. First order turbulence models were developed in the 1920s and
today seem to be outdated by newer and more sophisticated mathematical-physical closure schemes.
However, with the new knowledge of fractal geometry and fractional dynamics, it is worthwhile
to step back and reinvestigate these lowest order models. As a result of this and simultaneously
introducing generalizations by multiscale analysis, the first order, nonlinear, nonlocal, and fractional
Difference-Quotient Turbulence Model (DQTM) was developed. In this partial review article of
work performed by the authors, by theoretical considerations and its applications to turbulent
flow problems, evidence is given that the DQTM is the missing (apparent) constitutive equation of
turbulent shear flows.

Keywords: Newton’s law of viscosity; Reynolds shear stress; Kraichnan’s direct interaction approx-
imation; Boussinesq’s closure approximation; Prandtl’s mixing-length model; difference-quotient
turbulence model; fractional derivative; anomalous super diffusion; Lévy statistics; fractal β-model

1. Introduction

Today there is still no consensus on the correct analytical solutions of elementary turbu-
lent flow problems as the turbulent flows in the wake behind a cylinder, the axisymmetric
turbulent jets, plane turbulent Couette and Poiseuille flows, the turbulent flows parallel to
a wall, etc. The absence of finally established correct solutions finds its reason at the basis
of the mathematical-physical problem setting; it is the result of a lack of knowledge of the
correct constitutive equation of turbulence. In this article, the authors demonstrate that a first
order turbulence model, the Difference-Quotient Turbulence Model (DQTM) [1], fulfils all
the requirements of an apparent constitutive equation of turbulence. It is the analogous law
of turbulent to constitutive equations of other areas of physics, e.g., micro-mechanical ma-
terials, nematic liquid crystals, non-Newtonian fluids, etc. Furthermore, it is the analogue
law of turbulent flows to the constitutive equation of laminar flows which is Newton’s law
of viscosity [2]. However, this law is linear and local, whereas the new proposed law for tur-
bulent flows is nonlinear and nonlocal and its Reynolds shear stress mathematically presents
itself as a fractional derivative [3]. Newton’s law of viscosity can be derived by a microscopic
theory, the kinetic theory of gases [4] which as basic constituents considers flying single-size
molecules with a constant number of entities with infinite lifetimes. The analogous theory
of turbulence generalizes this concept by a cascade of multi-size fractal eddies with birth
rates given by Lévy statistics [5] and lifetimes determined by the fractal β-model [6], bringing
also into play the aspects of self-similarity [7] and intermittency [8] which are experimen-
tally well observable phenomena of finite Reynolds number turbulent flows. The analogy
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between the constitutive laws of laminar and turbulent flows is basically given by their
diffusion processes: our constitutive equation of turbulence is derived from anomalous
super diffusion [9] and, in a special case of an eddy distribution with a single-eddy size,
reduces it to ordinary Brownian diffusion which is also the prerequisite for the development
of Newton’s law of viscosity. Therefore, it is no miracle that for elementary turbulent flow
problems this constitutive law of turbulence leads to analytical solutions of impressive
quality. Below, examples and references are given which, for the elementary turbulent
flow problems (listed above), demonstrate convincing agreements between their analytical
solutions and experimental observations or Direct Numerical Simulation (DNS) data.

2. The General Form of Constitutive Equations

Usually, a physical problem is described by a set of equations or differential equations
that have been, e.g., derived by integral balance equations. In ideal cases these problems,
with initial and boundary values, may be uniquely solved. Such examples are electromag-
netic problems, described by the Maxwell equations for electromagnetic fields in vacuum,
or the Euler equations, describing inviscid fluid flows [10]. However, when electromagnetic
fields enter material domains or the fluid is viscous, the response of the material on the
field’s forcing must additionally be known in advance. In a physical problem this important
additional information is contained in a constitutive equation that completes the problem
setting. In mechanics and fluid dynamics these equations are usually stress-strain relations.
The most general description of a constitutive equation is nonlocal and shows memory effect
and is also called to be dispersive, viz.,

τij

(→
x , t
)
=

1
Ω

∫
Γ

∫ t

−∞
µijkl

(→
x , t,

→
x
′
, t′
)

χkl

(→
x
′
, t′
)

dt′dV′, i, j, k, l ∈ {1, 2, 3} (1)

where
→
x is the spatial variable (coordinate) and

→
x
′

the spatial integration variable, mostly
distant from

→
x , µijkl is containing information on the material under consideration, χkl

denotes the applied physical field (external forcing of the system), Ω is the normalization
constant (for its importance, e.g., in turbulent flows, see below) and summations over
repeated indices k and l are assumed. Determinism only allows a time connection of the
physical variables from the past to the present (−∞, t], whereas nonlocality obeys no such
restriction and, in the most general case, shows long-range interactions between spatial
points in the entire domain of physical relevance. Such complex nonlocal descriptions
are found in micro-mechanical materials, elastic multi-phase composites, elasto-visco-
plastic samples, nematic liquid crystals, non-Newtonian fluids, etc. Moreover, the physical
problem may be non-isotropic and then the mathematical formulation of the constitutive
equation is based on tensor calculus. If the dependence on the applied field of the physical
system is weak, a Taylor approximation leads to a linear and local gradient law which in
this special case satisfies the demand to possess an accurate constitutive equation. The
most famous examples of this type are Hooke’s law of elastic materials, in which the stress is
proportional to the material’s dilatation, and Newton’s law of viscosity or friction, respectively,
in which the fluid’s shear stress is proportional to the shear velocity or the local velocity
field gradient. This law is only valid for the description of laminar but not transitional or
turbulent shear flows. In some cases, these laws have been derived from microscopic theories
that yield physical relations for the material dependent quantities µijkl . In other cases,
from first physical principles such results could not be achieved, and relations had to be
extracted by experimental observations and mathematical curve fitting procedures which
delivered approximate equations that are called phenomenological or empirical relations.

3. Constitutive Equation of Laminar Flows
3.1. Newton’s Law of Viscosity

In 1687 in his Philosophiae Naturalis Principia, Isaak Newton [11] published the consti-
tutive equation for steady two-dimensional laminar shear flows that is called Newton’s law
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of viscosity. To introduce it, we assume a flow with velocity u1 in the x1—direction that
is sheared in the perpendicular x2—direction and shows a (linear) velocity profile u1(x2).
Furthermore, the flow does not depend on the x3—direction (u3 ≡ 0, ∂/∂x3 ≡ 0) (see
Figure 1). Then, Newton’s law of viscosity states that the shear stress between fluid layers
at coordinates x2 and x2 + dx2 is proportional to the spatial velocity derivative du1/dx2
at location x2. For a given pressure p and absolute temperature T, the ratio of the shear
stress τ21 to shear rate du1/dx2 is a constant defining the dynamic viscosity µ of the fluid
(see Equation (2) below). By substituting the relation for the generalized dynamic viscosity
µ2112(x2, x2

′) = µδ(x2 − x2
′), where δ denotes the Dirac distribution, and the forcing field

gradient χkl = ∂uk/∂xl
′ into Equation (1), furthermore, applying the two simplifying

conditions for shear flows: |u1| >> |u2|, |∂/∂x1
′| << |∂/∂x2

′| and setting Ω = 1, the
complex integral relation reduces to Newton’s single-term law of viscosity,

τ21 = µ
du1

dx2
(2)
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Figure 1. Dynamic fluid deformation δx1 by the average velocity field u1(x2) of an element of an
incompressible fluid participating in a laminar, transitional, or turbulent shear flow. Reprinted from
Egolf and Hutter, 2019, Springer Edition Cham, Switzerland, reproduced with changes.

Note that in Equation (1) the Dirac distribution constricts the large-scale spatial
dependence to a single point x2 and makes the law local. Furthermore, for constant µ
the relation is proportional to du1 and, therefore, this law is also linear: τ21(αu1 + u2) =
ατ21(u1) + τ21(u2).

3.2. Some Results of the Kinetic Theory of Gases

In a microscopic theory this important law can be derived by first physical principles of
flying atoms or molecules, respectively obeying Brownian motion, that exchange momentum
from the high-fluid-velocity regions to such of low velocity (see Figure 1). This theory is
well established and is called the kinetic theory of gases. Because of space limits the derivation
cannot be presented here (see, e.g., Reference [4]). However, one of its main results is the
formula for the dynamic viscosity, being µ = 1/3ρλumol which contains the product of
a characteristic length λ * (* following conventions in the physical literature, we leave
away average and root mean square (rms) signs), being the mean distance between two
collisions of molecules, also called mean free path length, and the characteristic (rms) flight
velocity of the molecules umol *. The reason that the theory is valid in its linear form is that
a single molecule’s diameter d is several orders of magnitude smaller than the mean free
path length λ, that, on the other hand, is usually smaller than the size of the gas containing
vessel L: d << λ << L (see Figure 2a).
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Figure 2. (a) In the microscopic model of laminar flows in a channel molecules of a single diameter d are flying about with
a mean free path length λ. In Boussinesq’s turbulence closure with a constant eddy viscosity the analogous mechanism
occurs, there are moving eddies of only one size. (b) On the other hand, in Prandtl’s mixing-length model, where the eddy
viscosity is dependent on the mean downstream velocity u1(x2), the eddy diameter d also depends on the x2-coordinate
(pointing in the vertical direction to the top) which leads to a stratification of eddies of different sizes (c) In a real turbulent
flow (roughly sketched in this image) the situation is even more complex: momentum is transferred by a cascade of fractal
eddies (for simplicity they are drawn circular with their mean discretized diameters d0 . . . dN ) and at each location x2

eddies of many different sizes act simultaneously.

4. Constitutive Equations of Turbulent Flows
4.1. The Closure Problem

In fluid mechanics there are strong analogies between the constitutive equations of
laminar and that of turbulent flows. However, there are also essential differences in these
equations and their microscopic theories that must be explained in detail. We start with the
momentum equation of fluid dynamics, also called Navier–Stokes Equation (NSE) [12]. After
a proposal of Reynolds, the main three variables in this equation, namely the three velocity
components, are split into two parts each: ui = ui + ui

′, i ∈ {1, 2, 3}, where ui denotes
an ensemble average (or in a quasi-steady flow the time average) and ui

′ is its fluctuation
quantity for which ui

′ = 0. Then, these two-fold velocities are substituted into the NSE and
the average operator is applied to the entire equation. Formally, this produces the same
equation as the NSE(ui), but now it depends on the averaged velocities, NSE(ui) (why it is
called Reynold’s Averaged Navier Stokes equation (RANS) [13]). As a result of this procedure, it
also contains an additional term. Because of the quadratic products uj∂ui/∂xj in the inertia
terms of the NSE, with help of the mass conservation equation (continuity equation), the
just described recipe produces nine additional second order correlations u′iu

′
j. These are

regrouped to define a symmetric 3 × 3 tensor, being similar as the NSE’s dissipation tensor
τij. Therefore, in analogy to the dissipation stress tensor, the additional turbulent stress
tensor, also called Reynolds stress tensor, τTij = −ρ u′iu

′
j, is obtained. For this tensor, the

general constitutive Equation (1) with an averaged driving term χkl = ∂uk/∂xl
′ leads to

the nonlocal and fractional derivative closure [14,15]

u′iu
′
j(x, t) = − 1

Ω

∫
Γ

∫ t

−∞
νTijkl

(→
x , t,

→
x
′
, t′
) ∂uk

∂xl ′

(→
x
′
, t′
)

dt′dV′, i, j ∈ {1, 2, 3}, (3)

where, with the relation ν = µ/ρ, the generalized turbulent kinematic viscosity νT, in turbu-
lence research also called eddy viscosity εm (index m = momentum), was introduced. Note
the formal equivalence of Equation (3) with the general definition of a fractional derivative,
where the kernel or weighting function/distribution (in our case νTijkl) characterizes the
type of the derivative; if it is, for example, a Riemann–Liouville function, the resulting
fractional derivative is of Riemann–Liouville type, etc.

4.2. Kraichnan’s Direct Interaction Approximation (DIA)

It is highly satisfying that Kraichnan * (* Around 1950 Robert Kraichnan was one of
the last assistants of Albert Einstein at Princeton University. He performed research on
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quantum field theories including the transfer of some of its ideas to the field of turbulence.)
in his Direct Interaction Approximation (DIA)—by completely different means—also
derived Equation (3) [16,17]. The output we got from the application of the Reynolds
method is the new occurrence of six additional second order correlations u′iu

′
j for which

no equations exist. Note that the three non-trivial symmetries, u′iu
′
j = uj

′ui
′, reduce the

number of independent correlations from nine to six. There are two applied solutions to
this problem. The first method is today most frequently applied in turbulence modeling:
by manipulating the NSEs it is possible to introduce a whole cascade of higher order
correlations and equations relating them up to the order infinity. Over the years a multitude
of different methods for handling high order systems of equations have been developed.
However, all these models are irrelevant to our purposes; we believe that they are not
wrong, but possibly superfluous, why we here do not discuss them any further. −The second
method was introduced by early turbulence researchers: in their lowest order approach,
the second order correlations u′iu

′
j are directly described by functions and/or operators

of the first order mean values ui and uj. If these (or in Equation (3) all the generalized
kinematic viscosities νTijkl) are known, they are substituted into the RANS equations and
then the system of equations contains only mean first order variables ui or/and uj. By
this the system of equations becomes closed and solvable. This is the reason why in
turbulence research the equation u′ju

′
i = F

(
ui, uj

)
is called a first order closure scheme.

Now, it is recognized that the DQTM—which is a first order closure equation of turbulence
and a zero-equation turbulence model * (* The name ‘zero-equation turbulence model’ stems
from the absence of transport equations of the turbulent kinetic energy k, the dissipation
rate ε or the vorticity ω, as they occur in high order turbulence models, for example, in
the k-ε model or in the k-ω model.) (see Equation (5) below)—is analogous to constitutive
equations in other areas of physics and, therefore, is the constitutive equation of turbulence. A
small variation in the analogy is that the turbulent stress tensor is not dependent on the
dynamic viscosity, determined by the molecules of the fluid; it depends on the analogous
quantities which in turbulence are virtual particles called eddies. Therefore, this dynamic
viscosity is called eddy viscosity, εm, and it is an apparent viscosity. The kernel in Kraichnan’s

nonlocal stress tensor must be generalized by νTijkl

(→
x , t,

→
x
′
, t′
)
→ νTijkl

(→
x ,
→
u
)

, where, as

we will experience later, the dependence on the spatial variable with an apostrophe,
→
x
′
, in

this term, but not in the derivatives ∂uk/∂xl
′
(→

x
′
, t′
)

, may be removed. This replacement
can be physically explained and motivated. In laminar flows the eddy viscosity is zero:
νTijkl

(→
x ,
→
u
)

= 0, Re < Rec. It is an increasing agitation (e.g., stirring or splashing) in the
fluid that makes the eddy viscosity increase. So, the eddy viscosity is not a (constant)
physical property, it is the result of the dynamics of the fluid. Therefore, it depends on the
difference of the Reynolds numbers Re and Rec: Re− Rec. With Re = (ud/υ), where the
characteristic length d and the fluid’s molecular viscosity υ are constant, in the difference of
the Reynolds number Re− Rec only the velocity difference u− uc, in our case, is assumed
to be a variable. In the eddy viscosity of a Reynolds stress the velocity must be Galilean
invariant and, therefore, it only appears in velocity derivatives or differences, in which
the constant critical velocity

→
u c drops out. Therefore, the dependence νTijkl

(→
x ,
→
u
)

holds.
Finally, we hope that these arguments sufficiently convince also critical readers of the

applicability of the above introduced replacement νTijkl

(→
x , t,

→
x
′
, t′
)
→ νTijkl

(→
x ,
→
u
)

which
was already applied in ancient times of turbulence research by numerous scientists, as,
for example, Prandtl, Görtler, von Kàrmàn, Taylor, Wieghardt, etc. The dependence of
the turbulent kinematic viscosity on the velocity makes the turbulent shear stress τTijkl

nonlinear (this is seen by a substitution of νTijkl

(→
x ,
→
u
)

into Equation (3)), but not nonlocal.
It is the integral representation of the Reynolds stresses in Equations (1) and (3) that is
responsible for their nonlocal properties.
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4.3. The Boussinesq Closure Approximation

Joseph Boussinesq was the first who modeled turbulent momentum transfer in analogy to
molecular momentum transfer. This method led to a turbulent shear stress that we now derive
by making use of our general approach (3). By applying an idea of Prandtl, νT2112

(→
x , t,

→
x
′
, t′
)

is replaced by the eddy viscosity ν2112(x2, x2
′, u1) = εm(x2, u1)δ(x2 − x2

′). Then this viscosity
term, the averaged forcing field gradient χkl = ∂uk/∂xl

′ and the same simplifying conditions
as in the derivation of Newton’s viscosity law (see above), but now for the averaged velocities,
are substituted into Equation (3) which, in analogy to Equation (2), yields:

τT21 = ρεm(x2, u1)
du1

dx2
. (4)

With a constant eddy viscosity εm this is Boussinesq’s closure hypothesis. It is a linear
and local “gradient” constitutive equation of turbulence which he published in 1877 [18].
The nonlinear version (4) also rests local and is still a main core part of present high order
turbulence modeling work (see first method above). Therefore, one is not astonished
that with this local approach so many problems in the past had occurred. To derive the
correct constitutive equation of turbulence all conventional mathematical methods of
physics * (* We exclude fractional calculus from the conventional methods of mathematical
physics applied in the past. However, today in numerous fields of physics this calculus is
becoming increasingly important and wider recognized. It slowly becomes exposed and
evident that fractional calculus is also the right mathematical tool to describe Reynolds
stresses of turbulent flows.) had failed which is one reason that Richard Feynman stated
that turbulence is one of the most important remaining unsolved problems of classical
physics [19], a judgment that is still true today!

4.4. Prandtl’s Mixing-Length Turbulence Model

The microscopic theory leading to closure (4) goes back to Ludwig Prandtl, who in
1925 published his mixing-length turbulence model [20]. As a result of the similarity of
Equations (2) and (4), he applied the ideas of the kinetic theory of gases to derive a kinetic
theory of turbulence. We do not present the development of the model by Prandtl, but will
demonstrate an analogy of the two approaches in a very brief manner. Prandtl’s derivation
led him to the following result for the eddy viscosity εm(x2, u1) = l2|du1/dx2|. Here l
denotes the mixing length of the turbulent momentum transfer by the eddies. Rewritten
this equation yields: εm(x2, u1) = l |du1/dx2|l = l ueddy(x2). This is the analogous result to
ν = 1/3λumol of the kinetic theory of gases (the constant 1/3 may be thought to be absorbed
by l). The mixing length of the eddies l is analogous to the mean free path length of the
molecules λ and as the molecules have their characteristic velocity umol also the eddies
show such a velocity, ueddy. From the second last equation, we see that, if the eddy viscosity
εm and the mixing length l are constant, ueddy also has a single value and is also constant. In
research of turbulence, it is a well-known fact that there is a strong monotonic power law
dependence between the eddy diameter and the eddy velocity. Therefore, a single eddy
velocity corresponds to a single eddy size. As a result, one has a strong analogy between
this turbulence model and the kinetic theory of gases, presented in Figure 2a. In this figure,
one may replace the molecules by small single-size eddies. In this simplest approach, a
single class of eddies of equal size transfers all the turbulent momentum which is surely
not a realistic image of real facts. In a slightly generalized turbulence model, the velocity
ueddy(x2) depends on the spanwise coordinate x2 of the flow. As a result of the strong
monotonic relation the eddy size is now also x2—dependent. Figure 2b shows a picture of
the eddies of this generalized turbulence model, where they are of multiple sizes and show
a stratification. This is a good step toward a more successful turbulence model. However,
studying drawings by Leonardo Da Vinci of turbulent flows [13] shows that he already had
recognized that the situation in these flows is even more complex. As shown in Figure 2c,
he had drawn pictures of interpenetrating eddies of multiple sizes, that act simultaneously
at a given point. In the past the first author had taken this picture as a guideline to develop
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a ‘microscopic theory’ of turbulence leading to the DQTM (see [13,21,22]). The main idea
was to realize a modeling of turbulent momentum transfer based on multi-size, self-similar
and fractal eddies [23].

4.5. The Difference-Quotient Turbulence Model

To discover the constitutive equation of turbulence, one may make a hypothesis and
then prove it by a microscopic theory. In the development of Newton’s law of viscosity, a
Dirac distribution occurs which leads to the (most) local description. Thinking innovatively,
we may now ask the question: “In the opposite case, which kernel leads to the least possible

locality?” In Kraichnan’s nonlocal model νTijkl

(→
x , t,

→
x
′
, t′
)

is usually a decaying function of

the distance between two points in space,
∣∣∣→x −→x ′∣∣∣. Fact is that the less the decrease is, the

more nonlocal the problem will be. Therefore, a kernel, described by a Heaviside distribution
θ, that in a fluid carrier domain is 1 (constant) and outside 0 (zero), shows the least decay
and leads to the strongest nonlocal approach and this shall be further investigated. Now, we
assume a generally large one-dimensional domain x2min ≤ x2 ≤ x2max (see Figure 1). The
position where the averaged velocity u1(x2) is at its minimum is x2min, u1(x2min) =: u1min,
and where it is at its maximum it is x2max, u1(x2max) =: u1max. With an eddy viscosity
dependent on the down-slope diffusivity regime [x2min, x2) and a driving force dependent
on the up-slope driving region [x2, x2max], we postulate a generalized eddy viscosity to
be: νTijkl(x2, x2

′, u1) = εm(x2, u1) θ(x2
′ − x2)·θ(x2max − x2

′). Furthermore, we keep to the
driving field χkl = ∂uk/∂xl

′ and assume simplifying conditions similar as those in the
derivation of Equation (4). Now, the integration interval can be reduced from the entire
flow domain [x2min, x2max] to [x2, x2max], because in the interval [x2min, x2) the Heaviside
integrand is zero. On the other hand, in the reduced region [x2, x2max] it is equal to unity.
Therefore, in the restricted integral of Equation (3) the spatial integration directly acts
on the derivative of the average velocity leading to du1/dx′2 dx′2 = du1. By this the
integration simply produces the velocity difference of the mean velocities evaluated at the
two bounds, x2 and x2max, of the integral: u1max− u1(x2). In the denominator with a similar
integral (with the same Heaviside carrier domain, but without a velocity derivative), the
normalization condition leads to: Ω = x2max − x2. Substituting these results into Equation
(3), with analogies to the derivation of Equation (4), the constitutive equation of turbulence
occurs

τT21 = σρλT [u1(x2)− u1min]
u1max − u1(x2)

x2max − x2
, λT = x2 − x2min, (5)

with σ being a constant. The modified turbulent kinematic viscosity, in analogy to the
kinetic theory of gases, was set to be υT2112(x2, u1) = σλT(u1 − u1min). Also in this expres-
sion, we can recognize the product of a typical length (scale) λT = x2 − x2min, that now can
be a large-scale nonlocal quantity, because it varies between 0 and x2max − x2min which may
span the entire flow domain, and the averaged velocity difference u1max − u1(x2) which at
x2min takes its maximum, u1max − u1min. Note that, just as gradients, space and velocity dif-
ferences are Galilean invariant. It is remarkable that the nonlocal Difference-Quotient Turbu-
lence Model [1,24]—which was discovered by completely different ideas—coincides with the
constitutive equation of turbulence (5). This equation has a geometrical interpretation [13,25].
The Reynolds stress is proportional to the shear velocity: τT2112 = ρεmdγ21/dt (see
Figure 1). Therefore, with δx1 = [u1(x2 + ∆x2)− u1(x2)]∆t and ∆x2 = x2max − x2, it
follows that

dγ21
dt =

lim
∆t→ 0

arctan
(

δx1
∆x2

)
∆t =

lim
∆t→ 0

1
∆t arctan

{
[u1(x2+∆x2)−u1(x2)]∆t

∆x2

}
=
[

u1(x2+∆x2)−u1(x2)
∆x2

]
= u1max−u1(x2)

x2max−x2
,

(6)
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and by combining two of the above equations with εm = σ(x2 − x2min)(u1 − u1min)
Equation (5) directly follows. Note that instead of the limes ∆x2 → 0 the limes toward the
value ∆x2 → x2max − x2 applies which is a quantity that tends toward its maximum to a
large-scale spatial difference. Note that in the difference quotient the velocity u1(x2) may be
nonlinear in x2. Nonlinearity of the Reynolds stress in u1 appears only in the combination
of the generalized eddy viscosity, εm[x2, u1(x2) ], with the difference quotient.

4.6. A ‘Microscopic Theory’ of Turbulence

It is tempting to derive the constitutive law of turbulence (5) also by a ‘microscopic the-
ory’. Because of space reasons, we can only sketch this theory by discussing the main ideas.
A reader interested in the probabilistic/statistical details is guided to references [13,21]. In
a turbulent flow, the higher its forcing and the lower the viscosity of the fluid are (high
Reynolds number), the smaller will be the size of the smallest eddies. Kolmogorov’s
dissipation length defines the low-wave-length cut-off value of the eddy probability dis-
tribution [26]. Eddies with diameters smaller than this length dissipate their turbulent
kinetic energy immediately into heat. Therefore, the smallest eddies are not microscopic
like atoms and molecules, but they still may be exceedingly small. On the other hand,
the largest eddies may have a size comparable to the overall flow domain (see Figure 2c)
which is macroscopic. Therefore, we classify this theory to be more a meso-macroscopic
model *(* To keep the analogy also of the name to the molecular case, we denote this theory
‘microscopic theory,’ where the apostrophes shall remind us of the highly stressed use of
this terminology.) than a microscopic one as, for example, the analogous kinetic theory
of gases. To build this theory, at first for a quasi-steady turbulent flow the steady state
of the spatial eddy distribution is required which we call the space occupation number of
eddies. Other than for the molecules, for which we assume a birth rate zero (a certain
number is already present and rests constant) and lifetimes which are infinite, in a turbulent
flow field eddies are frequently born and die again. Advantageous is that in the field of
mathematics and turbulence a theory of the birth rates of eddies, namely Lévy statistics [5],
and a theory of their lifetimes, the fractal β-model [6], have been developed, so that they
only must be combined. It is appropriate to identify the lifetimes of eddies with their
turnover times. Now, we split up the eddies into discrete classes n with eddies of multiple
sizes dn, n ∈ {0, 1, 2 . . . , N}, where d0 denotes the diameter of the largest and dN of the
smallest eddies of a cascade. The combination of these two theories leads to the occupation
number of eddies of class n, on, and O is the total sum of all eddies. In this modeling
the main relations are self-similar power laws which in their exponents also contain the
Euclidean dimension D and the fractal or Hausdorff–Besicovitch dimension d, respectively.
Then, the momentum transfer of eddy class n to the neighboring class n+1 is determined,
leading to a result of impressive simplicity: pn = (a/b)n p0 [21]. The momentum transfer
depends only on the quantity a which is the mean number of Lévy flights of length bn that
occurs before a rarer flight of length bn+1 is observed, the dimensionless flight length of
the smallest flights, b > 1, the number of the class of Lévy flights (see Figure 3a), n, and
the turbulent momentum transfer of the largest eddies, p0. To obtain the total momentum
transfer at a certain space location this simple scaling relation adds up for a part of the
n′s ∈ {0, . . . , N} as the development of model (5) [22] requires. The summations of the
self-similar expressions lead to results that contain amplification factors times the momen-
tum transfers only of the eddies being members of the largest classes which at maximum
are p0. These amplification factors mathematically represent the action of all medium and
smaller scale eddies (see Figure 3b) with the result that in the constitutive Equation (5) only
two large scales are observable. However, this does not mean that only large eddies are
transporting momentum; all eddies of smaller sizes are also actively and simultaneously
at work by transferring momentum in the x2—direction. Studying this equation, we see
that the largest eddies’ size depends on the coordinate x2 which is very meaningful as, for
example, the active eddies at a location x2 above a wall, which is positioned at x2 = x2min
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(by the no-slip boundary condition the mean velocity at the wall is zero: u1min = 0), can
only have the maximum size being identical to the distance from the wall, x2 − x2min.
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from small to large sizes in the Lévy statistics (l0, l1, . . . , lN ) and in turbulence research (dN , dN−1, . . . , d0 ) is a result of
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4.7. Analytical Solutions of Elementary Turbulent Flow Problems
4.7.1. Introduction

With the new constitutive equation of turbulence (5), the following elementary turbu-
lent shear flows have analytically been solved (where each example listed is accompanied
by the corresponding reference where the flow problem was solved): the turbulent flow
in the wake behind a cylinder [24], the axisymmetric turbulent jet into a quiescent sur-
rounding [24,27] and into a high-velocity constant co-flow [24], plane turbulent Couette
flow [28] and plane turbulent Poiseuille flow [29] and finally the turbulent flow paral-
lel to a wall [21]. To convince readers of the power of the new constitutive equation, in
Sections 4.7.2–4.7.4 and 4.8 we present three elementary flow problems with their essentials
and solutions.

4.7.2. Turbulent Wake Flow

The turbulent wake flow behind a cylinder is in a certain sense special, because it is
possible to derive its Reynolds shear stress by rigorous physical methods. To calculate the
drag on a cylinder in a parallel flow in the x1—direction, the mass (continuity) and the
momentum conservation equation (NSE) are applied in their integral forms. This leads to
the following rigorous physical relation [24,30]

τT2112 = 1/2$(x2 − x2min)/(x1 − p)(u1max − u1)UG (7)

where $ is the density of the incompressible fluid, p is a pole distance upstream of the
cylinder’s center and UG the constant upstream velocity of the parallel horizontal main
flow in the x1 —direction. It is highly satisfying that this result reveals the same large-scale
difference in space, x2− x2min, and mean velocity difference, u1max − u1, which also appear
in Equation (5); but more than this, if Equation (5) is applied to the wake flow problem and
an order-of-magnitude approximation is taken into consideration, the DQTM rigorously
produces this Reynolds shear stress [24]. To the authors best knowledge, until today the
DQTM is the only turbulence model that produces this first-physical-principle Reynolds
stress and this even with the right multiplicative constant! The lack of any gradient in
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this Reynolds shear stress and the occurrence of nonlocal large-scale spatial lengths and
averaged velocities, as occurring in Equation (5), show that nonlocal and fractional calculus
is the right choice to close turbulent flow problems with a corresponding constitutive
equation of turbulence.

4.7.3. The Turbulent Axisymmetric Jet

In this section, we study an axisymmetric turbulent jet flow into a quiescent surround-
ing, where the x1 —direction is identical to the round jet’s axis (the detailed calculations
are in Refs. [24,27]). The flow width of the jet from a virtual origin behind the nozzle
linearly increases with b(x1) = βx1. Now, the radial spatial coordinate x2 is normalized
by the expression η = x2/b(x1). Furthermore, the average downstream velocity is made
dimensionless by f1(η) = u1(x1, x2)/u1(x1, 0) with its value on the jet axis, x2 = 0, where
the mean velocity shows its maximum u1(x1, 0) = u1max(x1) (see in Figure 4a the right
half of the symmetric mean velocity profile with its maximum at η = 0). By combining
the two partial differential equations (the continuity equation and the NSE) with the new
closure of turbulence (5) which is a difference equation, substituting λT = x2max − x2min
and the self-similar coordinate η and function f1, the quasi-two-dimensional flow problem
becomes one-dimensional which is essential to determine analytical solutions of this turbu-
lent flow problem. By this procedure, the following highly nonlinear ordinary differential
equation results:

η f 2
1 f1

′′ − 2
(

f1
′)3 − 3η f1

(
f1
′)2 − f 2

1 f1
′ = 0 (8)

where an apostrophe, ′, denotes the derivative d/dη. Its solution is the Gaussian function
which is self-similar with respect to the dimensionless coordinate in the transverse direction
η and the mean downstream velocity and represented by the equation

f1(η) = exp
(
−1/2 η2

)
(9)

(see Figure 4a). By a substitution of Equation (9) into differential Equation (8), a reader
may prove this by her-/himself. Note the extraordinary complexity of the highly nonlinear
differential Equation (8) and, on the other hand, the high simplicity of its solution (9).
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Figure 4. (a) Theoretical solid line curve calculated with the DQTM and experimental data symbols from Reference [31] of
the average axial (downstream) velocity in the radial direction for different downstream locations. The measured points lie
close to the Gaussian function. (b) Reynolds shear stress with two types of experimental results D (Direct) and I (Indirect)
(see main text). Just as in (a), also in this case the agreement between theory and experiments is excellent. Reprinted with
permission from Egolf and Weiss (1998) © 2021, American Physical Society.

The dimensionless Reynolds shear stress is directly derivable from Equation (5) and is

f21(η) = −β/η f1(1− f1), (10)
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which is shown as Figure 4b. In the figure inset “D” denotes direct experimentally measured
values of − f21 and “I” are measurements of f1, shown in Figure 4a, which, by applying
Equation (10), describing the Reynolds shear stress, were transformed to give indirectly (I)
further values of − f21. The mean velocity f1 and the Reynolds shear stress f21 show an
excellent agreement between the theoretical data [24] and the experimental observations
by Wygnanski and Fiedler [31] (see Figure 4a,b). Also, excellent quality is obtained for the
three normal Reynolds stresses, the turbulent kinetic energy, the production and dissipation
of turbulent kinetic energy and the turbulent convection (see References [12,13,27]).

4.7.4. Plane Turbulent Couette Flow

This type of flow is created by shearing two parallel plane plates of distance 2a with a
fluid in between by keeping the lower plate at rest and moving the higher positioned one
with velocity U > 0 in the positive x1—direction. In the laminar case this is the prototype
flow to demonstrate Newton’s law of viscosity. It is well-known that the continuity and a
reduced and linearized Navier–Stokes equation, supplemented by the constitutive equation
of Newton (Newton’s law of viscosity), lead to a linear differential equation and a linear
velocity profile between the two different velocities of the plates (see Table 1). Note that
(because of the no-slip boundary condition) the plate velocities are identical to the fluid
velocities at the boundaries of these plates, where the dimensionless mean velocity g1
fulfils the boundary conditions given as Equation (11). In these equations η = x2/a, where
a is the half distance between the two plates. If instead of Newton’s law of viscosity the
DQTM is implemented—in this more general case—into the nonlinear, self-similar NSE,
one obtains the following quadratic differential equation with the two boundary conditions
(these and further following results and their calculations are found in [28])

α
dg1
dη + β g1(η)− β g2

1(η)− 1 = 0 ,
g1(−1) = 0, g1(+1) = 1 .

(11)

Table 1. Analogies between laminar and turbulent flow constitutive equations and their solutions for plane laminar and
turbulent shear Couette flows.

Laminar Flow Turbulent
Flow

Laminar
Flow

Turbulent
Flow

Model Newton’s law of
viscosity

Difference-Quotient
Turbulence Model

(DQTM)
Dimensionless

velocity g1 = u1/U g1 = u1/U

Char.
length λ ΛT,2 = x2max − x2

Differential
equation

dg1
dη = 1/2
(Linear)

2(Rec/Re ) dg1
dη +

4 χ g1(1− g1)− 1 = 0
(Nonlinear)

Char.
velocity umol u1 − u1min

Boundary
conditions

g1(−1) = 0
g1(+1) = 1

g1(−1) = 0
g1(+1) = 1

Shear
stress τ12 = µ du1

dx2
τT,12 = µT

u1max−u1
x2max−x2

Mean stream-wise
velocity

g1 = 1/2 (1 + η)
(Linear)

g1 =

1/2 {1 +
√
(1−χ)/χ tan[arctan(√

χ/(1− χ)
)

η]}
(Nonlinear)

(Effective)
dynamic
viscosity

µ = σρλumol
µT =

σρΛT,2(u1 − u1min)
Stress para-

meter Re 1/Rec ≤ 1/Re ≤ ∞ 0 ≤ 1/Re ≤ 1/Rec

Dimen-
sionless
variable

η = x2/x2max η = x2/x2max
Order para-

meter χ
χ = 0,

−1/Re > 1/Rec

Rec/Re =√
χ(1− χ)/arctan

[√
χ/(1− χ)

]
,

0 ≤ 1/Re ≤ 1/Rec
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The solutions of the time-averaged turbulent velocity profiles are S-shaped curves (an
example is shown in Figure 5a by the full line). With the dimensionless averaged down-
stream velocity g1(η) and the relation χ = β/4, it is described by the following equation:

g1(η) =
1
2

{
1 +

√
1− χ

χ
tan
[

arctan
(√

χ

1− χ

)
η

] }
. (12)
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with permission from Egolf and Weiss (1995a) © 2021, American Physical Society.
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Figure 6. Order parameter χ, determined by Equation (13) and compared with experimental results
from Reference [32]. There is a lack of good experimental results at excitations just slightly above
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experimentalists to perform good experimental set-ups and experiments to measure the turbulent
fields at values just slightly above the critical Reynolds number (for more details see in Reference [28]).
Reprinted with permission by Egolf and Weiss (1995a) © 2021, American Physical Society.

In the mathematical process of determining solution (12), the relation between α and
β is revealed. The parameter α is the stress parameter (control parameter) of the flow system,
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which is tightly related to the Reynolds number, and the second parameter β, respectively χ
(normalized β), is the systems order parameter (see Figure 6). This mathematically derived
order parameter relation is

Rec

Re
=

α

αc
=

α

2
=

√
χ (1− χ)

arctan
(√

χ
1−χ

) . (13)

By decreasing the Reynolds number, Re, from high values down toward the critical
Reynolds number, Rec, these mean velocity profiles loose curvature and converge to the
linear laminar profile (see Figure 5a, the linear function is represented by a dashed line).
One may easily show that for the Reynolds shear stress the DQTM directly leads to the
formula g21 = 4χ g1(η) [1− g1(η)]. By a substitution of the right-hand side of Equation (12)
into this equation, it follows that

g21 =
β

4

{
1− 4− β

β
tan2

[
arctan

(√
β

4− β

)
η

] }
(14)

which is shown together with numerical data from Reference [33] as Figure 5b.

4.8. Turbulence: A Critical Phenomenon

In turbulent flow fields universality of rare fluctuations were experimentally observed
and a lack of theory of critical phenomena of turbulence [34,35] was occasionally complained
(see e.g., Refs. [36,37]). Analytical solutions, derived by an application of the DQTM, in a
natural manner reveal theories of critical phenomena with criticalities and in which the two
phases of the fluid are the low-entropy vorticity-rich regions and the high-entropy laminar
streaks. Transition from laminar to transitional and turbulent flows at critical Reynolds
numbers are known since the time of Osborne Reynolds (1842–1912). Theoretical vortisation
curves * (* The name vortisation was proposed by the authors [25] from the word vorticity, in
analogy to the name magnetisation which both are order parameters as function of related
stress parameters of the respective physical systems.), in analogy to magnetisation curves in
magnetism, have been determined for numerous turbulent flow types. Figure 6 presents
the vortisation curve of plane turbulent Couette flow.

In References [13,38], in analogy to the mean field theory of magnetic materials, a
mean field theory of turbulence was developed. The results are meaningful and accurate. This
is explained by the fact that a quasi-steady turbulent flow, with a constant turbulent kinetic
energy flow into and out of the system’s Kolmogorov energy cascade, leads to behavior
that is very similar to that of physical systems in thermodynamic equilibrium. In analogy, a
Curie law of turbulence and a Curie–Weiss law of turbulence were discovered. From the Curie
law of turbulence, in analogy to the Curie law of magnetism, the turbulence intensity has
been determined to be the response function of turbulence, as, for example, compressibility is
of a gas and susceptibility of a para-ferromagnetic phase-change material. Note that results
of fluid dynamic considerations—involving the Difference-Quotient Turbulence Model
(DQTM)—leading to critical phenomenon, are of higher physical relevance than results
extracted only from an ad hoc model like the mean field theory of turbulence.

4.9. The Analogy between Laminar and Turbulent Flows

First order turbulence modeling has the great advantage that it follows the widely
accepted method of introducing a generally valid constitutive equation to solve physical
problems, as it is convention in other areas of physics. This is also the method of treating
laminar flows, namely by applying Newton’s law of viscosity. In turbulence, we propose
the introduction of a new nonlinear, nonlocal and fractional constitutive equation, which
was discovered in April 1985 and is called the Difference-Quotient Turbulence Model
(DQTM). Some results stemming from the application of this model to the elementary
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plane turbulent Couette flows are presented in Section 4.7.4. They show strong analogies
to the laminar case which in this section both are outlined and compared in Table 1.

As may be seen in Figure 6, at criticality Re = Rec ⇒ Re/Rec = 1, the order parameter
is χ = 0. If these values are introduced into the differential equation describing turbulent
plane Couette flows (see in Table 1, third line, sixth row), it follows that dg1/dη = 1/2.
This is the differential equation for laminar plane Couette flows (third line, fifth row) and
leads to the correct linear velocity profile g1 = 1/2 (1 + η) (fifth line, fifth row), fulfilling
the boundary conditions (11) (see also in Table 1, fourth line, fifth and sixth row).

5. Conclusions

This article promotes nonlocal and fractional calculus to model Reynolds shear stresses
with a first order turbulence closure scheme and makes a new proposal for a constitutive
equation of turbulence. This equation, in the limit of the Reynolds number converging to
its criticality from above, conserves the full information of Newton’s law of viscosity of
laminar flows. It also extends Boussinesq’s and Prandtl’s models of turbulent momentum
transfer by a generalization from eddies of a single size to such of a cascade with numerous
classes of fractal eddies of multiple sizes. Six applications of the Difference-Quotient
Turbulence Model, DQTM (constitutive equation of turbulence) to elementary turbulent
flow problems lead to analytical results which, compared with experimental and (direct)
numerical simulation results, are of convincing precision. All the derived non-empirical
analytical solutions are of high simplicity and accuracy.
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