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Abstract: The problem of Rayleigh–Bénard’s natural convection subjected to a temporally periodic
cooling condition is solved numerically by the Lattice Boltzmann method with multiple relaxation
time (LBM-MRT). The study finds its interest in the field of thermal comfort where current knowledge
has gaps in the fundamental phenomena requiring their exploration. The Boussinesq approximation
is considered in the resolution of the physical problem studied for a Rayleigh number taken in the
range 103 ≤ Ra ≤ 106 with a Prandtl number equal to 0.71 (air as working fluid). The physical
phenomenon is also controlled by the amplitude of periodic cooling where, for small values of
the latter, the results obtained follow a periodic evolution around an average corresponding to the
formulation at a constant cold temperature. When the heating amplitude increases, the physical
phenomenon is disturbed, the stream functions become mainly multicellular and an aperiodic
evolution is obtained for the heat transfer illustrated by the average Nusselt number.

Keywords: Rayleigh–Bénard convection; time periodical cooling; Lattice Boltzmann method

1. Introduction

The building sector is one of the largest energy consuming sectors. It represents a
large proportion of total energy consumption, much higher than industry and transport
in many countries [1–5]. The major challenge to guarantee good comfort is that energy
consumption and the level of comfort are often in conflict in a room [6].

In a confined space, thermal comfort depends on the operation of controlled instal-
lations (i.e., heating, ventilation and air conditioning) [7]. Therefore, to assess the energy
performance of the building, a thermal analysis is essential in order to predict the thermal
responses and calculate building loads (heating/cooling). The key of good thermal comfort
is the temperature control. To assess it, two models exist: physical or white-box models
based on the energy and mass balance equations, and data-driven or black box models
based on artificial neural network and developed after sufficient data are available.

In order to propose an adequate design of the indoor environment where people work
and live, several papers have been published on the thermal comfort of buildings [8–10].
Rayleigh–Bénard (RB) convection is a classical problem of natural convection. It appears
in several applications of engineering and building, such as thermal comfort by using
floor heating or ceiling cooling. The other challenge is the energy storing, so either phase
change materials or liquid storing are integrated to enhance the thermal building inertia.
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Chandrasekhar [11] and Drazin and Reid [12] implemented a full report on the lineariza-
tion theory. Moreover, many numerical studies of RB natural convection in rectangular
enclosures have been carried out for Newtonian fluids [13–15]. Other researchers were
interested in the Rayleigh-Bénard convection in viscoplastic fluids leading to numerical
and experimental investigations [14–17]. The Rayleigh number (Ra) is the parameter that
quantifies the intensity of the thermal driving in convection. For sufficiently large Ra,
Rayleigh–Bénard convection flow becomes turbulent. Significant progress in our under-
standing of turbulent convection has been obtained by both experimental and numerical
studies [18–20]. The Rayleigh–Bénard convection with all the issues illustrated above
becomes more complex in the case of time-dependent boundary conditions [21]. The
Rayleigh–Bénard problem, with linear temperature increase, was studied by Kaviany [22]
and extended later on by Kaviany and Vogel [23], with the inclusion of solute concentration
gradients. The solute gradient represents either the phase diagram solute redistribution
near phase change interface or the stabilized long-term energy storing solar pound. Ac-
cording to the results of the Rayleigh–Bénard convection studies, a sufficient condition has
been found to control the frequency of heat pulsation in order to initiate convection in a
periodically heated and cooled cavity from top wall [24].

Aniss et al. [25] have studied the influence of the gravitational modulation on the sta-
bility threshold in the case of a Newtonian fluid confined in Hele-Shaw cell and subjected
to vertical periodic motion. A time-dependent perturbation expressed in Fourier series has
been applied to the wall temperature according to Bhadauria and Bhatia [26]. They found
that it is possible to advance or delay the onset of convection. Umavathi [27] also inves-
tigated the effect of external modulation on the thermal convection in a porous medium
saturated by a nanofluid. It was found in this last study that the low frequency symmetric
thermal modulation is destabilizing while moderate and high frequency symmetric modu-
lation is always stabilizing. Recently, Himraneet et al. [28] have studied numerically the
Rayleigh–Bénard convection using the Lattice Boltzmann method. The authors considered
periodic heating at the lower wall of the cavity. For high values of Rayleigh number, they
obtained an unsteady regime in the form of temporal evolution with several frequencies.
Abourida et al. [29] have examined Rayleigh–Bénard convection in a square enclosure
with a top wall submitted to constant or sinusoidal cold temperature and sinusoidally
heated bottom wall. It was observed that by varying the two imposed temperatures, basic
differences were noted in comparison to the case of variable hot temperature and that
of constant boundary temperature conditions. Raji et al. [30] have presented Rayleigh–
Bénard convection inside square enclosure with a time-periodic cold temperature in the top
wall. They proved that the variable cooling can lead to a significant improvement in heat
transfer compared to constant cooling, particularly at certain low periods. The influence
of thermoelectric effect on the Rayleigh–Bénard instability has been well investigated by
researchers [31–33].

The literature review has shown that Rayleigh–Bénard’s convection problem is still
relevant and often considered with constant boundary conditions whereas reality suggests
that heating and cooling conditions are modulated over time (i.e., scrolling of the days). In
the present study, the problem of time-periodic cooling applied to Rayleigh–Bénard convec-
tion is investigated using Lattice Boltzmann method with multiple relaxation time (LBM-
MRT). The study finds its interest in the field of thermal comfort where current knowledge
has gaps in the fundamental phenomena (theoretical funds) requiring their exploration.

2. Mathematical Formulation

Lattice Boltzmann method was adopted for the resolution of fluid flow and transports
phenomena. This method has non-linearity in its mathematical formulation and therefore
approximates the temporal variation wall temperature (totally explicitly unsteady). Fluid
flow is described as a movement of particles. In two-dimensional domain, the particles’
moving is done by distribution functions with DnQm model, where “n” denote dimensions
and “m” discrete velocities [34]. In our study, we used D2Q9 model for dynamic field
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and D2Q5 for thermal model. Finally, collisions and advection terms are computed by the
Boltzmann equation of the distribution functions [35,36]:

fi(x + eiδt, t + δt)− fi(x, t) = Ω( fi) + δtFi (1)

where fi is the distribution function with velocity ei at lattice node x at time t, δt is the
discrete time step, Ω( fi) is the collision operator and Fi is the implemented external forces
term. Then, the collision operator in indicial form is as follows:

fi(x + eiδt, t + δt)− fi(x, t) = −1/τ
[

fi(x, t)− f eq
i (x, t)

]
+ δtFi (2)

where f eq
i is the equilibrium function which is expressed by:

f eq
i = wiρ

[
1 + 3eiv + 9(eiv)

2/2− 3v2/2
]

(3)

The factors wi are given as:
{

4
9 , 1

9 , 0, 0, 1
9 , 1

36 , 0, 0, 1
36

}
, τ is the relaxation time without

dimension. The nine discrete velocities are defined as follows:

ei =


(0, 0); i = 0
c[cos((i− 1)π/2), sin((i− 1)π/2)]; i = 1, 2, 3, 4√

2c[cos((2i− 9)π/2), sin((2i− 9)π/2)]; i = 5, 6, 7, 8
(4)

The collision term is expressed in the Multiple Relaxation Time model (MRT)
D’Humières [37], where better stability is observed with a wide range of Prandtl Number
values [38].

Ω = −M−1C[mi(x, t)−mi
eq(x, t)] (5)

The flow field formulation becomes:

fi(x + eiδt, t + δt)− fi(x, t) = −M−1C[mi(x, t)−mi
eq(x, t)] + M−1δt(1− C/2)D (6)

where M is the projection matrix of fi and f eq
i into the moment space. So, the expression of

m = M f and meq = M f eq are given by:

ρ
e
φ

jx − (δt/2)ρFx
qx

jy − (δt/2)ρFy
qy
pxx
pxy


=



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1





f0
f1
f2
f3
f4
f5
f6
f7
f8


. (7)

The fluid density ρ, components moment jx and jy are the conserved quantities. The
six other moments are non-conserved ones and are relaxed linearly in time namely: energy
e, energy squared φ, energy flux in the two directions qx, qY and diagonal/off-diagonal
component of the strain-rate tensor pxx, pxy. The collision operator is carried out in the
moment space and in indicial form:

m∗i (x, t) = mi(x, t)− C[mi(x, t)−mi
eq(x, t)] (8)

For the thermal model, the two-dimensional D2Q5 model with five velocities is used
in this work. This model was chosen and validated by several authors in the literature [30]
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due to its simplicity and accuracy. The Boltzmann equation with multi-relaxation time can
be written as:

gi(x + eiδt, t + δt)− gi(x, t) = −N−1E[ni(x, t)− ni
eq(x, t)] (9)

where gi(x, t) is distribution function of temperature, N is projection matrix of gi and geq
i

into the moment space, and with the same procedure of temperature (first population)
n = Ng. The transformation matrix N is given by:

n0
n1
n2
n3
n4

 =


1 1 1 1 1
0 1 0 −1 0
0 0 1 0 −1
−4 1 1 1 1
0 1 −1 1 −1




g0
g1
g2
g3
g4

 (10)

The boundary conditions, according to their macroscopic mathematical formulation
are illustrated in Figure 1 for velocities:

U(0, Y, t) = U(1, Y, t) = U(X, 0, t) = U(X, 1, t) = 0 (11)

V(0, Y, t) = V(1, Y, t) = V(X, 0, t) = V(X, 1, t) = 0 (12)
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Temperature boundary conditions:

θ(X, 1, t) = Amp · sin(2π f t) (13)

θ(X, 0, t) = 1 (14)

∂θ(X, Y, t)
∂X

∣∣∣∣
X=0

= 0 and
∂θ(X, Y, t)

∂X

∣∣∣∣
X=1

= 0 (15)

The instantaneous and average Nusselt number Nu(t) at hot and cold wall (Y = 0 and
Y = 1) is obtained as:

Nuh(X, 0, t) = −∂θ(X, Y, t)
∂Y

∣∣∣∣
Y=0

and Nuhavg(t) =
∫ 1

0
Nu(X, t)dX (16)
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Nuc(X, 1, t) = −∂θ(X, Y, t)
∂Y

∣∣∣∣
Y=1

and Nucavg(t) =
∫ 1

0
Nu(X, t)dX (17)

Before presenting the different results obtained, it is necessary to test the validity of
our digital code. Thus, we compared the results of our simulations with those of the various
studies carried out on the analysis of Rayleigh–Bénard convection in square cavities filled
with air. Different discretization methods have been adopted by these reference studies.
Table 1 quantitatively summarizes the values of the average Nusselt number obtained as a
function of thermal gradient intensity imposed and characterized by the Rayleigh number.
We note that our results show good agreement with those of the literature. The code is also
successfully validated for the case of time-periodic temperature condition. Figure 2 shows
a good agreement between the present hot and cold Nusselt numbers as function of time
and those of Wang et al. [39].

Table 1. Nusselt numbers’ validation.

References
Ra

103 104 105 106

Present Work 1.0035 2.1502 3.912 6.321
Ourtatani et al. [13] 1.0004 2.158 3.910 6.309

Turan [14] 1.0000 2.154 3.907 6.309
Bouabdallah et al. [40] 1.0000 2.2000 3.900 6.400
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In what follows, we present the influence of the various control parameters gov-
erning the natural convection problem. The different results are represented in terms of
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streamlines, isotherms and heat transfer rate over a time period. Finally, we analyze the
periodicity of the convective regime, by means of phase portraits obtained by the heat
exchange coefficients.

3. Results

The range of the Rayleigh number values is taken 103 ≤ Ra ≤ 106. The amplitude
of heating is taken between 0.0 and 0.8, and the working fluid is assumed to be air with
Pr = 0.71.

In order to better study the behavior of the flow, we varied the amplitude for the three
cases, 0.2, 0.5 and 0.8. Figure 3 represents the stream functions for the amplitude 0.2 as a
function of the Rayleigh number for the four quarter-period f = 1/2πτp = 1/3× 10−4.
Note that the stream function is obtained from the velocity integral and represents the fluid
flow rate. When the Rayleigh number is equal to Ra = 104, an invariant cell is observed for
the four quarter-period.
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Figure 3. Evolution of streamlines over a period as a function of the Rayleigh number (Amp = 0.2 and |f| = 0.33 × 10−4).

This means that the modulation of cooling has little influence on the dynamic fields.
The only difference is that the flow increases characterized by ψmax is increasingly larger
than the general temperature gradient is maximum (in the heating period). Same case
for the Rayleigh Ra = 105 with the presence of small vortices on the upper left and lower
right side. As the thermal draft increases, for a Rayleigh number 106, the flow loses its
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symmetry and subsequently becomes multicellular. For this Rayleigh value and a period
of τp/2, the upper secondary cell grew further and took up most of the space of the cavity,
in turn becoming counter-rotating bicellular. This spatial multi-cellular (mainly bicellular)
competition is persistent throughout the period.

Figures 4 and 5 represent the isocurrents for amplitudes 0.5 and 0.8 respectively, as a
function of Rayleigh for the four quarter-period (with f = 1/3 × 10−4). The flow structure
for the Rayleigh 104 is essentially single-cell, with vortices on the upper right and lower
left sides being very small. These findings are similar to the same Rayleigh with a smaller
temperature modulation (Amp = 0.2). On the other hand, for Rayleigh equal to 105, it is
always the same type of flow (i.e., mainly single-cell) but the vortices of the corners are
strongly present and influence the size of the main cell. The upper secondary cell still
grows (Ra = 106) and the flow becomes predominantly counter-rotating bicellular and then
becomes mainly monocellular again at the end of the period due to the decrease of the
upper cell.
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Finally, for the temporal step τp, this main cell will be oriented on the right side
with one other cell on the lower left side. When the amplitude increases (i.e., Amp = 0.8,
Figure 5), an essentially bicellular spatial competition is observed even for Ra = 105 and
this competition persists even for the maximum Rayleigh of 106.

The isotherms corresponding to the different Rayleigh number and the quarter-periods
for Amp = 0.2 (Figure 6) show that the heat distribution is consistent with the circulation
of the fluid revealed by the stream functions. We also note that the isothermal lines
are transported by the movement of fluid. For the Rayleigh 103 (not presented in this
figure), the isotherms are stratified for all quarter-periods. The isotherms’ distortion begins
around Ra = 104, evolving the form of a vortex. We notice that for Ra = 105, isotherms
are concentrated on the two horizontal walls for the four beats of the period. When
the Rayleigh number reaches to 106, we clearly see the conformity of the temperature
distribution with respect to the fluid circulation, and distortion is always present for the
four-quarter period.

Figure 7 provides evolution of isotherms as function of Rayleigh number and the
quarter-period for Amp = 0.8. Visibly, this figure shows that the heat distribution is
consistent with the circulation of the fluid revealed by the stream functions. Additionally,
we note that the isothermal lines are transported by the fluid flow. For Ra = 103(not shown
in the figure), isotherms are stratified for all quarter periods, and distortion begins around
the Rayleigh value 104 in appearance of a vortex. We notice that for Raleigh equal to 105,
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the temperature lines are found concentrated on the two horizontal walls for the four times
of the period.
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When the Rayleigh reaches to 106, we can clearly see the conformity of the temperature
distribution with respect to the circulation of the fluid, and the distortion is always present
for the four quarters of a period. It can be seen, for the last quarter of a period τp/2, that
the temperature lines are concentrated much more on the cold wall compared to that of the
opposite side; this is due to a cooling which is more intense.

Figure 8 gives the temporal evolution of the Nusselt number at the cold wall for the
last considered periods. The periodic oscillatory regime is established for most Rayleigh
numbers. For high Rayleigh numbers, the cold Nusselt curves exhibit quasi-periodic
shapes when the cooling modulation amplitude is small (Amp ≤ 0.5) and aperiodic shapes
for high amplitudes (Amp > 0.5). We note that the more the amplitude increases, the
more the heat transfer module intensifies. In the case of Rayleigh 106, the curve loses its
periodicity due to the appearance of unsteady phenomena. Note that when the amplitude
increases, instabilities appear even for the intermediate Rayleigh numbers and lower than
Ra < 106. Additionally, it is apparent that for low modulation amplitudes, the curves have
a quasi-symmetrical shape, whereas when the modulation increases, the physical behavior
of the cavity is different between heating and cooling. It should also be noted that it is no
longer the increase in the Rayleigh number that governs the growth of transfer rate.
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Figure 8. Evolution of the Nusselt number “Nuc” (at the top wall) as a function of time for different Ra over the last
two periods.
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Figure 9. Evolution of the Nusselt number “Nuc” (at the top wall) as a function of time for different Amp over the last
two periods.
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Figure 10 illustrates the phase portraits of the normalized Nuc and Nuh (cold and hot
Nusselt respectively) for different Ra, and for Amp = 0.4 and 0.8, respectively. It is well
known that when boundary conditions are not modulated, hot and cold Nusselt numbers
must be the same to ensure energy balance. In the case where the boundary conditions are
modulated, the heat transfers on the hot and cold sides follow different evolutions [41–44].
The main observation is that for a Rayleigh of 103, 104 and 105, the limit cycle indicates that
the regime is periodic; on the other hand for the Rayleigh 106, the limit cycle is replaced by
a cross cycle indicating the birth of natural instabilities and their addition to the pulsation
imposed by the boundary condition. For Amp = 0.8, the limit and cross cycles are stretched
diagonally showing that reaching the maximum value of Nuc induces the fall of Nuh to its
minimum value and vice versa.
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4. Conclusions

In this study, the Lattice Boltzmann method has been used in order to investigate
Rayleigh–Bénard convection in square cavity submitted to a time-periodic cooling. The
Rayleigh number value considered is between 103 and 106, while the amplitude varies 0.2
to 0.8 and Prandtl value kept constant at 0.71. The flow state as well as the thermal fields
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depends on the values of control parameters (Ra and Amp). For the dynamic field, the
obtained results show that the flow structure changes from predominantly monocellular to
predominantly counter-rotating bicellular flow for Rayleigh number values Ra= 106 and
low values of the heating amplitude. This phenomenon was obtained for lower Rayleigh
values (Ra = 104) by increasing the value of the heating amplitude.

The analysis of the heat transfer show that for small values of amplitude heating, the
averaged Nusselt curves follow a periodic evolution around an average corresponding
to the formulation according to a constant cold temperature. An unsteady evolution is
observed when the thermal draft increases; this unsteadiness has appeared for low Rayleigh
numbers by increasing the value of the heating amplitude.
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Abbreviations

C Lattice speed
cs Sound speed (cs = 1/

√
3)

ci Micro-discrete velocities
f Frequence
f Distribution function of momentum equation
f eq Distribution function for equilibrium momentum equations
G Gravitational acceleration (m/s2)
g Thermal distribution function
H Convective exchange coefficient
H Correction term
J Components of momentum
L Cavity length (m)
m Moments
meq Equilibrium moments
M Transformation matrix
N Thermal transformation matrix
Nu Average Nusselt number
Nux Local Nusselt number
Pr Prandtl number Pr = υ/α

rj Position node

Ra Rayleigh number Ra =
(

g β ∆Tre f L3
)

/(υ α)

S Matrix with Sj diagonal relaxation rates elements
t Lattice time
tk Time at a step k
T Dimensional temperature
U Dimensionless horizontal velocity component
V Dimensionless vertical velocity component
x Dimensional longitudinal coordinate
y Dimensional vertical coordinate
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X Dimensionless longitudinal coordinate
Y Dimensionless vertical coordinate
Subscript
c Cold
h Hot
t Time derivative
Greek symbols
α Thermal diffusivity coefficient (m2/s)
β Coefficient of thermal expansion (K-1)
ε The second order energy
µ Dynamic viscosity (kg/m/s)
υ Kinematic viscosity (m2/s)
δt Time step
Ψ Dimensionless stream function
τ Relaxation time
ρ Density (Kg/m3)
θ Dimensionless temperature
Θ Diagonal relaxation matrix of σi
Ψ Thermal source term vector
ϕ Energy flux
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