
fluids

Article

Micropolar Blood Flow in a Magnetic Field

George C. Bourantas

����������
�������

Citation: Bourantas, G.C. Micropolar

Blood Flow in a Magnetic Field.

Fluids 2021, 6, 133. https://doi.org/

10.3390/fluids6030133

Academic Editor: Ioannis Sarris

Received: 12 February 2021

Accepted: 19 March 2021

Published: 23 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Engineering, Mechanical Engineering, The University of Western Australia, 35 Stirling Highway,
Perth 6009, WA, Australia; george.bourantas@uwa.edu.au

Abstract: In this paper we numerically solve a flow model for the micropolar biomagnetic flow
(blood flow) in a magnetic field. In the proposed model we account for both electrical and magnetic
properties of the biofluid and we investigate the role of microrotation on the flow regime. The flow
domain is in a channel with an unsymmetrical single stenosis, and in a channel with irregular multi-
stenoses. The mathematical flow model consists of the Navier–Stokes (N–S) equations expressed in
their velocity–vorticity (u–ω) variables including the energy and microrotation transport equation.
The governing equations are solved by using the strong form meshless point collocation method. We
compute the spatial derivatives of the unknown field functions using the discretization correction
particle strength exchange (DC PSE) method. We demonstrate the accuracy of the proposed scheme
by comparing the numerical results obtained with those computed using the finite element method.
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1. Introduction

Numerical simulation of biological fluids in the presence of magnetic fields (biomag-
netic fluid dynamics (BFD)) has attracted considerable attention over the last decades.
Numerous research studies have been published, mainly related to bioengineering (e.g.,
development of magnetic devices for cell separation, development of magnetic tracers)
and medical applications (e.g., targeted transport of drugs using magnetic particles as
drug carriers) [1,2]. The majority of biological fluids are considered as biomagnetic, mainly
because they contain ions which interact with the applied magnetic field. Blood in particu-
lar, has erythrocytes that have the tendency to orient with their disk plane parallel to the
magnetic field direction [3], and behaves as a diamagnetic material when oxygenated and
as a paramagnetic material when deoxygenated [4].

The first mathematical model that described BFD flow under the action of an applied
magnetic field was developed by Haik et al. [1]. In Haik’s model, biofluids were mod-
elled as isothermal, electrically non-conducting magnetic fluids (ferrofluids). Blood was
modelled as a magnetic fluid, with its erythrocytes (due to erythrocytes blood exhibits
polarization) being magnetic dipoles and the plasma the liquid carrier. Additionally, the
ions in the blood plasma interact with an applied magnetic field. Therefore, blood can
be modelled as an electrically conducting fluid which exhibits magnetization, such that
magnetohydrodynamics (MHD) [5] could also be incorporated into the mathematical
model.

In theoretical hydrodynamics the study of a fluid with inner microstructure is con-
sidered as an interesting and challenging topic. The concept of microfluids introduced
by Eringen [6] to characterize concentrated suspensions of neutrally buoyant deformable
particles in a viscous fluid. In micropolar fluids (a subclass of microfluids), rigid particles
which are contained in a small representative volume element can rotate about the center
of the volume, and their motion is by the microrotation vector [7,8]. The local rotation of
the particles is independent of the mean fluid flow and the local vorticity flow field [8].
Micropolar flow theory describes the non-Newtonian behavior of a category of fluids, such
as liquid crystals, ferro-liquids, colloidal fluids, liquids with polymer additives, animal
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blood carrying deformable particles (platelets), clouds with smoke, suspensions, liquid
crystals [8,9]. Additionally, micropolar fluids exhibit micro-rotational and micro-inertial
effects. Therefore, the main advantage of using a micropolar fluid model to study the blood
flow over non-Newtonian fluid models is that micropolar models incorporates the rotation
of the fluid particles by means of an independent kinematic vector called the microrotation
vector.

Fluid flow is different in micro scale compared to macro scale. In fact, there are flows
where the Navier–Stokes equations, as derived through classical continuum theory, become
incapable of explaining the micro scale fluid transport phenomena [10]. Micropolar theo-
ries, which account for the microstructure of the fluid, appear as an alternative approach to
numerically solve micro scale fluid dynamics, which are more computationally efficient
than molecular dynamics (MD) simulations. Apart from the theoretical studies on mi-
cropolar fluid flow, there are studies that use micropolar theories to explain experimental
observations in microchannels [11–14]. These experiments demonstrated the difference in
flow regime of microflows and highlighted that in microscale fluid flows several effects,
which are typically excluded from the macroscale (e.g., micro-rotational effects due to
rotation of molecules), become important.

There are many physiological fluids that behave like suspensions of deformable or
rigid particles in a Newtonian fluid. For example, blood is a suspension of red cells,
white cells and platelets in plasma. Blood is a fluid that can be modelled as a micropolar
fluids [6,9]. The experimental study of Bugliarello and Sevilla [15] showed that blood
plasma can be modelled like a Newtonian fluid and the erythrocytes like a Non-Newtonian
core fluid region. Several theoretical studies [16–18] on blood flow have assumed that
blood behaves either as a Newtonian or as a non-Newtonian fluid. However, these studies
fail to provide an estimate of the motion of red cells, white cells and platelets in plasma. It
is therefore crucial to study the rheological properties of red and white cells and platelets
to determine blood flow resistance in arteries and in vessels. Blood is a typical biomagnetic
fluid due to the interaction of intercellular protein, cell membrane and hemoglobin.

In this study, we consider the biomagnetic fluid flow (blood flow), under the action of
a magnetic field, for a two-dimensional duct with constriction. The micropolar/biofluid is
considered to be viscous, incompressible and Newtonian, with the flow being laminar. The
flow is subjected to an external magnetic field, which is generated with a magnet placed at
a point in the proximity of the lower plate. The fluid is assumed to be poor conductor so
that the induced magnetic field inside the fluid can be neglected. Under this assumption
the flow is affected only by the magnetization of the fluid. The momentum equation takes
into account the magnetization of the fluid, since the biomagnetic fluid flow is affected by
the magnetization of the fluid due to the presence of the magnetic field. Although the fluid
exhibits electrical conductivity, it may be taken as a poor conductor in which Lorentz force
arising in magneto-hydrodynamics is much smaller in comparison to the magnetization
force. Finally, it is also assumed that the magnetization of the biomagnetic fluid is varying
linearly with the temperature of the fluid and the strength of the magnetic field.

We numerically solve the governing equations using the well-established meshless
point collocation (MPC) method. The MPC method has been successfully applied to
numerous problem in science and engineering involving fluid and solid mechanics appli-
cations, such as elasticity [19], crack propagation [20], heat transfer [21], flow in porous
media [22], transport phenomena, to name a few. In particular, the proposed meshless
scheme has been applied to a number of biomedical applications, such as tumor abla-
tion [23], neurosurgery [24], soft tissue deformation [25] and electrophysiology [26]. This
paper is organized as follows: in Section 2 we present the governing equations, while in
Section 3 we briefly describe the discretization correction particle strength exchange (DC
PSE) differentiation method and we discuss the solution procedure. issues related to the
accuracy and the computational cost of the proposed scheme. In Section 4 we verify the
accuracy of our algorithm by comparing our results to finite element solutions. In Section 5
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we demonstrate the accuracy, efficiency and the ease of use of the proposed scheme using
numerical examples. Finally, Section 6 contains discussion and conclusions.

2. Governing Equations

We consider the laminar incompressible flow of a homogeneous, micropolar, New-
tonian and electrically conducting fluid (blood). The micropolar fluid flows under the
influence of a magnetic field. Two major forces act on the fluid, magnetization and Lorenz
force. The first, applies due to the orientation of the erythrocytes along the magnetic field,
while the second arises due to the electric current generating from the moving ions in the
plasma. The biofluid under investigation (blood) is subjected to equilibrium magnetization,
and its apparent viscosity due to magnetic field is negligible. Additionally, the contribution
of the Lorentz force is incorporated in the mathematical model adopting flow principles of
magnetohydrodynamics (MHD).

The following assumptions are made regarding of the blood flow: blood is an electri-
cally conducting biomagnetic Newtonian fluid [27–29]; the flow is laminar and the viscosity
due to the magnetic field is considered to be negligible; the rotational forces acting on
the erythrocytes when they enter and exit the magnetic field are discarded (equilibrium
magnetization); the walls of the channel are electrically nonconducting and the electric
field is considered negligible. Under these assumptions the governing flow equations are
extended as:

ρ∗f

(
∂u∗

∂t
+ (u∗·∇)u∗

)
= −∇p∗ +

(
µ f + κν

)
∇2u∗ + κν∇×N∗ + µ∗0 M∗∇H∗ + J× (1)

∇·u∗ = 0 (2)

ρ∗f j
(

∂N∗

∂t
+ (u∗·∇)N∗

)
= γν∇2N∗ + κν∇× u∗ − 2κνN∗ (3)

ρ∗f Cp

(
∂T
∂t

+ u∗·∇T
)
+ µ∗0 T

∂M∗

∂T
DH∗

Dt
− J·J

σ∗f
= α f∇2T + µ f Φ (4)

where u∗ is the velocity vector, p∗ is the pressure, T* is the fluid temperature and N* is the
microrotation vector, J = σ∗f (u

∗ × B) is the density of the electric current, B is the magnetic
induction, σ∗f is the electrical conductivity of the fluid, D/Dt = ∂/∂t + u∗·∇ is the Stokes
tensor, M∗ is the magnetization, H∗ is the magnetic field intensity. Additionally, we assume
that fluid mass density ρ∗f , dynamic viscosity µ f , specific isobaric heat per unit mass Cp,
heat conduction α f and all micropolar fluid properties such as vortex viscosity coefficient
κν and microinertia j, are constant parameters. Φ is the dissipation function which for the
three-dimensional case has the form (dropping the terms for the z- component of velocity,
and spatial derivatives with respect of z we obtain the expression in two dimensions):

Φ = 2

[(
∂u
∂x

)2
+

(
∂v
∂y

)2
+

(
∂w
∂z

)2
]
+

(
∂v
∂x

+
∂u
∂y

)2
+

(
∂w
∂y

+
∂v
∂z

)2
+

(
∂u
∂z

+
∂w
∂x

)2
− 2

3

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)2
(5)

We consider flow in two dimensions and we write the governing equations in their
velocity–vorticity formulation. We solve the steady-state N–S equations and therefore we
drop the transient terms form the governing equations. For the case of two-dimensional
plane flow the governing equations, in the velocity–vorticity formulation, are written as:

∇2u∗ = −∂ω∗

∂y∗
(6)

∇2v∗ =
∂ω∗

∂x∗
(7)
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ρ∗f

(
u∗

∂ω∗

∂x∗
+ v∗

∂ω∗

∂y∗

)
=
(

µ f + κν

)
∇2ω∗ − κν∇2N∗ + µ∗0

(
∂M∗

∂x∗
∂H∗

∂y∗
− ∂M∗

∂y∗
∂H∗

∂x∗

)
− σ∗f B2 ∂u∗

∂y∗
(8)

ρ∗f j
(

u∗
∂N∗

∂x∗
+ v∗

∂N∗

∂y∗

)
= γ f∇2N∗ − 2κνN∗ + κνω∗ (9)

ρ∗f Cp

(
u∗ ∂T∗

∂x∗ + v∗ ∂T∗
∂y∗

)
+ µ0T ∂M∗

∂T

(
u∗ ∂H∗

∂x∗ + v∗ ∂H∗
∂y∗

)
− σ∗f B2 u∗2

= α f∇2T + µ f

[
2
(

∂u∗
∂x∗

)2
+ 2
(

∂v∗
∂y∗

)2
+
(

∂v∗
∂x∗ +

∂u∗
∂y∗

)2
] (10)

The term µ0T ∂M∗
∂T

(
u∗ ∂H∗

∂x∗ + v∗ ∂H∗
∂y∗

)
represents the thermal power per unit volume

due to the magnetocaloric effect. The term σ∗f B2 u∗2 in Equation (8) represents the Lorentz
force per unit volume and arises due to the electrical conductivity of the fluid, where
the same term in Equation (10) represents the Joule heating. The magnetization M∗ is
a function of the magnetic field intensity H∗ and temperature T, following the formula
M∗ = KM H∗(Tc − T) derived experimentally in [11], with KM is a constant and Tc is the
Curie temperature. The components H∗x and H∗y of the magnetic field intensity H∗ are
given as

H∗x =
γ

2π

y∗ − b∗

(x∗ − a∗)2 + (y∗ − b∗)2 (11)

H∗y = − γ

2π

x∗ − a∗

(x∗ − a∗)2 + (y∗ − b∗)2 (12)

where (a∗, b∗) is the location (point) where the magnetic wire (current-carrying conductor)
is placed, and γ is the magnetic field strength at this point (x = a∗, y = b∗). The magnitude
H∗ of the magnetic field intensity is given by:

H∗ =
(

H∗2x + H∗2y

) 1
2
=

γ

2π

1√
(x∗ − a∗)2 + (y∗ − b∗)2

(13)

We use the following non-dimensional parameters:

x =
x∗

D
, y =

y∗

D
, u =

u∗

um
, v =

v∗

um
, H =

H∗

H0
,

ω =
ω∗

Dum
, N =

N∗

Dum
, T =

T∗ − T∗w
T∗f − T∗w

(14)

with um being the maximum velocity at the inlet of the channel, T∗f and T∗w the temperature
at the upper and lower wall, respectively, and H0 = H∗(a∗, 0). The non-dimensional form
of the governing equations as:

∇2u = −∂ω

∂y
(15)

∇2v =
∂ω

∂x
(16)

u
∂ω

∂x
+ v

∂ω

∂y
= (1 + K)∇2ω−∇2N −MnFReH

(
∂T
∂y

∂H
∂x
− ∂T

∂x
∂H
∂y

)
+ MnM

∂

∂y

(
uH2

)
(17)

u
∂N
∂x

+ v
∂N
∂y

=

(
1 +

K
2

)
∇2N − 2KN + Kω (18)
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PrRe
(

u
∂T
∂x

+ v
∂T
∂y

)
−MnFReEc(ε− T)H

(
u

∂H
∂x

+ v
∂H
∂y

)
= ∇2T + PrEc

(
4
(

∂u
∂x

)2
+ ω2

)
(19)

with the non-dimensional parameters defined as Re =
Dρ∗f um

µ f
(Reynolds num-

ber), Ec = u2
m

Cp

(
T∗f −T∗w

) (Eckert number), ε = T∗w(
T∗f −T∗w

) (Temperature number), Pr =
Cpµ f

α f

(Prandtl number), MnF =
µ∗0 H2

0 KM

(
T∗f −T∗w

)
ρ∗f u2

m
(Magnetic number from ferro-hydrodynamics),

MnM =
µ∗20 H2

0 Dσ∗f
µ f

(Magnetic number from magneto-hydrodynamics). The magnitude H

of the magnetic field intensity is given by the relation H(x, y) = |b|√
(x−a)2+(y−b)2 . The

boundary conditions defined as

upper wall : u = v = T = N = 0
lower wall : u = v = T = N = 0
inlet : u = 4y−4y2, v = 0, T = 4y(1−y), ∂N

∂x = 0
outlet: ∂u

∂x = 0, v = 0, ∂T
∂x = ∂N

∂x = 0

(20)

For the velocity–vorticity flow equations, we compute the updated vorticity values [30]
using the velocity field values and the strong form meshless discretization-corrected particle
strength exchange (DC PSE) operators of the first order spatial derivative (see Equation (29))
as ω = ∂v

∂x −
∂u
∂y .

3. Numerical Method
3.1. Discretization-Corrected Particle Strength Exchange

The DC PSE method computes spatial derivatives using a set of nodes distributed
(uniformly or randomly) over the spatial domain. It was introduced as a Lagrangian
particle-based numerical method [31], using the particle strength exchange (PSE) oper-
ators [32,33]. To apply to the numerical solution of partial differential equations (PDEs)
using the DC PSE meshless method, Bourantas et al. [34] reimplemented the Lagrangian
oriented DC PSE method to work in the Eulerian framework.

The DC PSE operators reduce the discretization error εh(x) in the PSE operator ap-
proximation [32,33]. In DC PSE approximation a kernel function minimizes the difference
between the DC PSE discrete operator and the actual derivative. To achieve this, we use
the following expression [31,34] for the derivative approximation:

Qβ
h f (x) =

(−1)|β|

β!
Zβ

h Dβ f (x) +
∞

∑
|a| = 1
a 6= β

(−1)|a|

a!
ε|a|−|β|Za

h Da f (x) + r0 (21)

with

r0 =

{
0 |β| even

2e−|β|Z0
hf(x) |β| odd

(22)

and the discrete moments defined as:

Za
h =

1
εd ∑

p∈N(x)

(
x− xp

ε

)a
ηβ

(
x− xp

ε

)
(23)



Fluids 2021, 6, 133 6 of 17

The set of moment conditions becomes:

Za
h =


(−1)|β|β! a = β

0 a 6= β

< ∞ otherwise

amin ≤ |a| ≤ |β|+ r− 1 (24)

with β being a non-negative integer defined as β = (β1, β2, . . . , βn), where βi, i = 1, 2, . . . , n.
The partial differential operator Dβ is expressed as Dβ = ∂|β|

∂x
β1
1 ∂xβ2

2 ...∂xβn
n

. The kernel ηβ is

chosen as:

ηβ(x, z) =

 |β|+r−1

∑
|γ| = amin

aγ(x)zγ

e−|z|
2
= P(x, z)W(z), z =

x− xp

ε
(25)

with weights

wγ
a (x) =

1
ε|α+γ|+d ∑

p∈N(x)

(
x− xp

)α+γe−(
|x−xp |

ε )
2

(26)

For the approximated derivative Qβ
h f (x) at node xp, the coefficients are computed by

solving the linear system of equations Equation (25) for x = xp. Given our choice of kernel
function, the DC PSE derivative approximation becomes:

Qβ
h f
(
xp
)
=

1
εβ
(
xp
) ∑

p∈N(x)

(
f
(
xq
)
∓ f

(
xp
))

p

(
x− xp

ε
(
xp
) )aT(xp

)
e
−( |xp−xq |

ε(xp)
)

2

(27)

where p(x) = [p1(x), p2(x), . . . , pm(x)], with m being the number of monomials (m = 6 and
m = 10 for second order monomials in two and three dimensions, respectively), and a(x)
are the vectors of terms in the monomial basis and their coefficients, respectively. By using
the DC PSE method, the spatial derivatives Qβ up to second order are given as:

Q1,0 ≡ ∂

∂x
, Q0,1 ≡ ∂

∂y
(28)

and

Q1,1 ≡ ∂2

∂x∂y
=

∂2

∂y∂x
, Q2,0 ≡ ∂2

∂x2 , Q0,2 ≡ ∂2

∂y2 (29)

3.2. Solution Procedure

The numerical solution of the governing equations deals with the solution of five
governing equations (in 2D) plus one equations needed for the velocity-correction method
applied to ensure the mass conservation.

The velocity-correction method is an iterative scheme used to numerically solve
fluid flow equations [35–37]. First, the Poisson equations for the velocity components
(Equations (15) and (16)) are solved to obtain the intermediate velocity ũ. The intermediate
velocity does not, in general, satisfy the continuity equation, that is ∇·ũ 6= 0. To satisfy the
continuity equation, we update the velocity field using a velocity correction δu, such that
the updated velocity uk+1 is written as uk+1 = ũ + δu. We assume that the velocity
correction is irrotational (but not the flow itself), i.e., then a Helmholtz potential (or
correction potential) ϕk+1 is defined as ∇ϕk+1 = δu. The updated velocity satisfies the
continuity equation, i.e., ∇·uk+1 = 0, and therefore the correction potential satisfies the
Poisson-type equation ∇2 ϕk+1 = −∇·ũ. Once this Helmholtz-Poisson problem is solved,
the updated velocity field satisfies the continuity equation.

The steps of the iterative method used are:
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1. Set an initial value for the velocity field uk =
(

uk, vk
)

, vorticity ωk, temperature Tk

and microrotation Nk.
2. Use the velocity components uk =

(
uk, vk

)
in x- and y- direction to calculate the

initial vorticity value ωk = ∂vk

∂x −
∂uk

∂y and its spatial derivatives ∂ωk

∂x and ∂ωk

∂y .

3. Solve the Poisson equation (Equation (15)) to compute the x- velocity component ũ,
and Poisson equation (Equation (16)) to compute the y- velocity component ṽ.

4. Apply the velocity-correction method. Using the velocity components (ũ, ṽ) com-

puted in the previous step, update the velocity components uk+1 =
(

uk+1, uk+1
)

,

which now fulfill the incompressibility constraint
(
∇·uk+1 = 0

)
.

5. Using the updated velocity value uk+1, solve Equation (17) to obtain the updated vor-
ticity values ωk+1. We solve the linear system Lωωk+1 = bω with Lω = (1 + K)∇2 −
uk+1 ∂

∂x − vk+1 ∂
∂y and bω = MnFReH

(
∂T
∂y

∂H
∂x −

∂T
∂x

∂H
∂y

)
+ MnM

∂
∂y
(
uH2) with bω ob-

taining values from the previous iteration. The updated vorticity values ωk+1 are
computed using the updated velocity values uk+1 =

(
uk+1, vk+1

)
computed in the

previous step, and by using the formula for vorticity ωk+1 = ∂vk

∂x −
∂uk

∂y to apply
vorticity boundary conditions.

6. Using the updated velocity value uk+1, solve Equation (18) to obtain the updated
microrotation values Nk+1. We solve the linear system LN Nk+1 = bN with LN =(

1 + K
2

)
∇2 − uk+1 ∂

∂x − vk+1 ∂
∂y − 2K and bN = Kωk with bN obtaining values from

the previous iteration.
7. Using the updated velocity value uk+1, solve Equation (13) to obtain the updated tem-

perature values Tk+1. We solve the linear system LTTk+1 = bT with
LT = ∇2 − PrReuk+1 ∂

∂x − PrRevk+1 ∂
∂y − −MnFReEcH

(
uk+! ∂H

∂x + vk+1 ∂H
∂y

)
and

bT = −MnFReEcεH
(

u ∂H
∂x + v ∂H

∂y

)
− PrEc

(
4
(

∂u
∂x

)2
+ ω2

)
with bN obtaining values

from the previous iteration.

8. Compute the normalized root mean square error LNRMSE =

√
∑N

i=1(qt+dt
i −qt

i)
2

N2

qt
max−qt

min
for each

of the unknown field value q.
9. Update the solution using a relaxation factor q = ar f qk +

(
1− ar f

)
qk+1, with

q = (ω, T, N). By setting qk = q and repeat steps 2–8 until the convergence cri-
teria are met.

4. Algorithm Verification

We verify the accuracy of the proposed scheme by comparing our numerical findings
with those reported in [27,29]. We consider the biomagnetic fluid flow under the influence
of an externally applied magnetic field in a channel with an unsymmetrical single stenosis
and in a channel with irregular multi-stenoses (Figure 1).

We assign values to the dimensionless parameters described in the governing equa-
tions based on the values reported in [27,29]. We set Pr = 25, ε = 77.5 and Ec = 1.49× 10−8.
The length L and the width D of the unconstricted channel are taken as L = 10 and D = 1,
respectively. We use the iterative solution procedure, described in Section 3.2, to obtain
a steady-state solution for all the flow cases considered herein. To reach a steady-state
solution, we set the convergence tolerance to 10−4 for the vorticity, microrotation and the
temperature at each node of the flow domain.
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Figure 1. Biomagnetic fluid flow in a channel with length L = 10 and width D = 1 having (a)
unsymmetrical single stenosis and (b) irregular multi-stenoses.

4.1. Unsymmetrical Stenosis

As a first verification example we consider flow in a flow domain with an unsymmet-
rical stenosis downstream [29] (Figure 1a). The lower and upper walls of the channel are
defined as:

ylower = A1sech(B1(x− x1)), 0 ≤ x ≤ 10 (30)

yupper = 1− A2sech(B2(x− x2)), 0 ≤ x ≤ 10 (31)

The positive constants A1, A2 control the degree of constriction of the channel, while
B1, B2 are the constants controlling the length of the stenosed area. The stenosed parts at the
lower and the upper plates are positioned at sites with coordinates x1 and x2, respectively.
Herein, we considered A1 = 0.5, A2 = 0.4, B1 = 6 and B2 = 4, while the stenosed sites were
positioned at x1 = 3 and x2 = 4.

We consider a fixed location of the magnetic source (a, b) = (3.0,−0.05) and we
use different values for the magnetic numbers MnF and MnM. To represent the flow
domain, we use a uniform Cartesian nodal distribution embedded into the flow domain (see
Figure 2). The nodal distribution applies by generating a grid that covers the symmetrical
stenosis and identifying only those nodes that lie inside the geometry (nodes are also used
on the boundaries). We use successively denser computational grids (point clouds) to
ascertain a grid independent solution. The coarsest grid (Cloud 1) consists of 56,118 nodes
(corresponding to h = 0.0134 node spacing), and the densest (Cloud 4) of 298,176 nodes
(corresponding to h =0.0057 node spacing). Table 1 lists the grid configurations used in the
simulations.

Table 1. Number of nodes and grid spacing of the successively denser nodal distributions (clouds of
points) for the symmetrical stenosis flow example.

Cloud 1 Cloud 2 Cloud 3 Cloud 4 Cloud 5

number of nodes 56,118 97,901 151,703 217,515 295,349
spacing of points h 0.0134 0.01 0.008 0.0067 0.0057

To ensure a grid independent numerical solution we project the velocity, vorticity,
temperature and stream function values computed using Cloud 1, 2 and 3 into Cloud 4. The
results obtained with the finest grid are taken as reference. We apply the projection using
the modified moving least s(MMLS) method [38]. The accuracy of the proposed meshless
scheme increases with increasing number of nodes and Cloud 3 offers a converged solution
(see Table 2).
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Figure 2. Representation of the flow domain for (a) unsymmetrical single stenosis and (b) irregular
multi-stenoses. The uniform Cartesian grid nodes (blue dots) are embedded into the channel
geometry (red line). Nodes are also used to represent the boundaries of the channel.

Table 2. Convergence analysis for the vorticity (ω), temperature (T) and microrotation (K) for the
symmetrical stenosis flow case.

Cloud 1 to Cloud 5 Cloud 2 to Cloud 5 Cloud 3 to Cloud 5 Cloud 4 to Cloud 5

ω 8.618× 10−4 4.616× 10−4 1.610× 10−4 1.610× 10−4

T 1.071× 10−3 5.523× 10−4 1.697× 10−4 1.696× 10−4

K 7.553× 10−4 6.673× 10−4 1.424× 10−4 1.423× 10−4

Table 3 lists the computational time (in seconds) for computing the spatial derivatives
for the grid resolutions listed in Table 2, and for the numerical solution of governing
equations (for each time iteration) in the case of MnF = 1312 and MnM = 6.4. It takes
roughly 350 iterations to reach a normalized root mean square error of order 10−3. The
efficiency of the proposed scheme appears to be superior to finite element solvers used to
numerically solve the steady-state Navier–Stokes equations [39].

Table 3. Computational time (in seconds) for computing (1) spatial derivatives and (2) numerical
solution for various grid resolutions.

Number of Nodes (1) Derivatives (2) Solution (in sec)/Iteration

56,118 0.7 2.6
97,901 1.2 5.4

151,703 1.8 9.8
217,515 2.7 19.2
295,349 3.1 39.2

Figure 3 shows the stream function, vorticity and temperature contour plots for
MnF = 656 and MnM = 1.2 and MnF = 1312 and MnM = 6.4, respectively. The numerical
results obtained using the proposed meshless scheme are in a very good agreement with
the numerical results reported in [27].



Fluids 2021, 6, 133 10 of 17

Figure 3. Streamlines, vorticity contours and isotherms for the unsymmetrical single stenosis flow case using (a) MnF = 656
and MnM = 1.2 and (b) MnF = 1312 and MnM = 6.4.

4.2. Irregular Multi-Stenoses

In the second verification example, the flow domain is a channel with irregular multi-
stenotic regions (see Figure 1b). The flow domain narrows downstream with a symmetric
stenosis close to the inlet and recovers its initial width. Then, a severe constriction follows
which is unsymmetrically spread in the middle of the channel. After the recovery of the
second stenosis, the channel narrows down gradually so that the exit diameter is less than
the entrance diameter. The lower and upper walls of the channel are defined as:

ylower = C1[1− cos(2π(x− D(x))/E(x))], 0 ≤ x ≤ 10 (32)

yupper = 1− C2(x)
[

1− cos
(

2π(x− D(x))
E(x)

)]
, 0 ≤ x ≤ 10 (33)

with C1 being a positive constant (C1 = 0.075), and the piecewise constant-valued functions
C2(x), D(x) and E(x) defined as:

C2(x) =


0.075 5.8 < x ≤ 10
0.225 3.2 < x ≤ 5.8
0.075 0 ≤ x ≤ 3.2

,

D(x) =


5.8 5.8 < x ≤ 10
3.2 3.2 < x ≤ 5.8
0 0 ≤ x ≤ 3.2

E(x) =


7.2 5.8 < x ≤ 10
2.6 3.2 < x ≤ 5.8
3.2 0 ≤ x ≤ 3.2

To represent the flow domain, we use regular (uniform) nodal distribution embedded
into the flow domain. The nodal distribution applies by generating a uniform Cartesian
grid that covers the unsymmetrical stenosis and identifying only those nodes that lie
inside the geometry (nodes are also used to represent the boundaries). We use a grid
that consists of 56,118 nodes (corresponding to h = 0.008 node spacing as in Cloud 3),
which offers a converged solution. We consider a fixed location of the magnetic source
(a, b) = (6.0,−0.05) and we use different values for the magnetic numbers MnF and MnM.

Figure 4 shows the streamlines, vorticity contours and isotherms for MnF = 656,
MnM = 1.2 and MnF = 1312, MnM = 6.4, respectively.
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Figure 4. Streamlines, vorticity contours and isotherms for the irregular multi-stenotic flow case using (a) MnF = 656 and
MnM = 1.2 and (b) MnF = 1312 and MnM = 6.4.

Figure 5 shows the profile plots for the stream function (ψ), vorticity (ω) and tempera-
ture (T) at different location of the flow domain, namely at x = 3, 6 and 9. The numerical
results obtained using the proposed meshless scheme are in a very good agreement with
the results presented in [27].

Figure 5. Profile plot of the stream function (left), vorticity (middle) and temperature (right) values at (a) x = 3 (b) x = 6
and (c) x = 9. The numerical results are in an excellent agreement with those reported in Turk et al. [27].
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5. Numerical Results

In this section we investigate the influence of microrotation number (K) and Reynolds
number (Re) on the flow regime. The fluid properties, the boundary conditions and
external magnetic field, are identical to the previous cases.

We examine the biomagnetic fluid flow under the influence of an externally applied
magnetic field in a channel with a single unsymmetrical stenosis, and with irregular
multi-stenoses. Numerical studies on Newtonian [11] and non-Newtonian [17] blood flow
through stenosed arteries demonstrated that the shape of the stenosis (single or multiple,
symmetrical or unsymmetrical) affects the flow regime, and hence deserve special attention.

For the problems considered in this section, we assign flow (dimensionless) param-
eters directly related to blood flow. The density and dynamics viscosity of the blood are
ρ∗f = 1050 kg m−1 and µ f = 3.2× 10−3 kg m−1 s−1, respectively, while the blood flows

into the vessel with maximum velocity um = 1.524× 10−2 m s−1 and height (in the uncon-
stricted region) of h = 2.0× 10−2 m. Furthermore, we consider a magnetic field strength of
8 T, and we set the temperature at the upper and lower wall of the vessel to T∗u = 41 ◦C
and T∗l = 37 ◦C. In our study, we consider the Prandtl number Pr to be constant, despite
that the dynamic viscosity µ f , the specific heat under constant pressure Cp and the thermal
conductivity α f are temperature dependent. Therefore, for the temperature range consid-
ered in this study, we set the specific heat to Cp = 3.9× 103 J kg−1 K−1 and the thermal
conductivity to α f = 0.5 J s−1 K−1. For the aforementioned values Pr = 25, ε = 77.5 and
Ec = 1.49× 10−8 [29]. The length and the width of the unconstricted channel are taken as
L = 10 and D = 1, respectively.

5.1. Dependence on Microrotation Number

In this section, we investigate the influence of the microrotation number (K) on the
flow regime (flow dynamics). We consider fluid flow in a channel with a unsymmetrical
single stenosis and with irregular multi-stenoses (see Figure 1).

For the unsymmetrical stenosis, we used A1 = 0.5, A2 = 0.4, B1 = 6 and B2 = 4, while
the stenosed sites were positioned at x1 = 3 and x2 = 4. We consider a fixed location of
the magnetic source (a, b) = (3.0,−0.05). For the multiple stenosis flow case, we used
A1 = 0.5, A2 = 0.4, B1 = 6 and B2 = 4, while the lower and the upper plates are positioned
at x1 = 3 and x2 = 4, respectively. We consider a fixed location of the magnetic source
(a, b) = (6.0,−0.05)

We use a uniform Cartesian grid, embedded into the irregular geometry, to represent
the flow domain. In the unsymmetrical stenosis flow case, a grid of 151,703 nodes (corre-
sponding to h = 0.008 node spacing) is used, while in the channel with multiple stenosis
we use a grid of 127,427 nodes (corresponding to h = 0.008 node spacing). Both grid ensure
grid independent numerical solutions. In our simulations, we set MnF = 656, MnM = 1.2,
Re = 100 and K = 0.5, 1.0 and 2.0.

Figure 6 shows the streamlines, vorticity and microrotation contours, along with
isotherms for the unsymmetrical stenosis flow case for different Reynolds numbers. It is
well observed that the streamlines, vorticity and microrotation contours and the isotherms
are distorted from being straight lines in the region after the stenosis. A vortex following the
circulation is formed downstream of the stenosis close to the upper wall in both streamlines
and isotherm profiles. As the microrotation number increases, the re-attachment length of
the vortex decreases (the vortex is actually compressed). Additionally, the vortex formed
at the upper wall of the stenosis is also compressed when microrotation number increases.
The same pattern appears to vorticity, microrotation and temperature filed values.

Figure 7 shows the streamlines, vorticity and microrotation contours, along with
isotherms obtained for the unsymmetrical stenosis flow case. In our simulations, we set
MnF = 656, MnM = 1.2, Re = 200 and K = 0.5, 1.0 and 2.0.
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Figure 6. Streamlines, vorticity, microrotation contours and isotherms for the unsymmetrical single stenosis flow case using
MnF = 656, MnM = 1.2, Re = 100 and (a) K = 0.5 (b) K = 1.0 and (c) K = 2.0.

Figure 7. Streamlines, vorticity, microrotation contours and isotherms for the irregular multi stenoses flow case using
MnF = 656, MnM = 1.2, Re = 200 and (a) K = 0.5 (b) K = 1.0 and (c) K = 2.0.
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5.2. Dependence on Reynolds Number

In this section, we investigate the influence of the Reynolds number (Re) on the flow
regime. We consider flow in a channel with a unsymmetrical single stenosis, and with
irregular multi-stenoses (see Figure 1). For the unsymmetrical stenosis, we used A1 = 0.5,
A2 = 0.4, B1 = 6 and B2 = 4, while the stenosed sites were positioned at x1 = 3 and x2 = 4.
We consider a fixed location of the magnetic source (a, b) = (3.0,−0.05). For the multiple
stenosis flow case, we used A1 = 0.5, A2 = 0.4, B1 = 6 and B2 = 4, while the lower and the
upper plates are positioned at x1 = 3 and x2 = 4, respectively. We consider a fixed location
of the magnetic source (a, b) = (6.0,−0.05).

We use a uniform Cartesian grid, embedded into the irregular geometry; to represent
the flow domain, we use regular (uniform) nodal distribution embedded into the flow
domain. In the case of the unsymmetrical stenosis, a grid of 151,703 nodes (corresponding
to h = 0.008 node spacing) is used, while in the channel with multiple stenosis we use a
grid of 127,427 nodes (corresponding to h = 0.008 node spacing). Both grid ensure grid
independent numerical solutions. In our simulations, we set MnF = 656, MnM = 1.2,
K = 2 and Re = 50, 100, 200 and 300.

Figure 8 shows the streamlines, vorticity and microrotation contours, and isotherms
for the unsymmetrical stenosis flow case for different Reynolds numbers. It is well ob-
served that the streamlines, vorticity contours and the isotherms are distorted from being
straight lines in the region after the stenosis. A vortex following the circulation is formed
downstream of the stenosis close to the lower wall in both streamlines and isotherm profiles.
As Reynolds number increases, a second vortex is formed in the upper wall just after the
stenosis. For the microrotation, as the Reynolds number increases the iso-contour lines
that form a vortex in the lower wall are stretched downstream and towards the upper wall.
Additionally, a secondary vortex appears close to the upper wall.

Figure 8. Streamlines, vorticity, microrotation contours and isotherms for the unsymmetrical single stenosis flow case using
MnF = 656, MnM = 1.2, K = 2 and (a) Re = 50 (b) Re = 100 (c) Re = 200 and (d) Re = 300.
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Figure 9 shows the streamlines, vorticity and microrotation contours, and isotherms
for the unsymmetrical stenosis flow case for different Reynolds numbers. It is well observed
that the streamlines, vorticity contours and the isotherms are distorted from being straight
lines in the region after the stenosis downstream. The vortex which is formed downstream
of the stenosis close to the upper wall in both streamlines and isotherm profiles. As the
Reynolds number increases, a second vortex is formed in the upper wall just after the
stenosis. For the microrotation, as the Reynolds number increases the iso-contour lines
that form a vortex in the lower wall are stretched downstream and towards the upper wall.
Additionally, a secondary vortex appears close to the upper wall.

Figure 9. Streamlines, vorticity, microrotation contours and isotherms for the irregular multi stenoses flow case using
MnF = 656, MnM = 1.2, K = 2 and (a) Re = 50 (b) Re = 100 (c) Re = 200 and (d) Re = 300.

6. Conclusions

In this contribution, we extended the magnetohydrodynamics (MHD) model intro-
duced in [28,29] to account for the microrotation of the blood. We utilized a well-established
and verified meshless point collocation algorithm to numerically solve the velocity–vorticity
formulation of biomagnetic micropolar flow in a magnetic field.

We demonstrate that the proposed scheme works efficiently in complex geometries
like the ones shown in Section 4, Algorithm Verification. We highlight the accuracy of the
proposed scheme by comparing our numerical results with those computed using the finite
element method [27]. An important advantage of our method is the ease and speed with
which one can construct computational grids for flow domains with irregular shapes. The
meshless scheme based on DC PSE methods to compute spatial derivatives can be used in
the case of Cartesian-embedded grids.
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We have verified the accuracy of the proposed scheme by comparing our numerical
results with those computed using finite element method [27], and the results are in
excellent agreement. Our proposed scheme offers several advantages over other commonly
used methods:

• Rapid and easy generation of computational grids, as demonstrated by examples of
the flow in a channel with an unsymmetrical stenosis and with multiple stenosis in
Sections 5.1 and 5.2, respectively.

• High accuracy, as demonstrated in verification examples discussed in Section 4.
• Easy and straightforward way to impose vorticity boundary conditions using spatial

derivatives computed using the DC PSE method (Equation (33)).
• Simplicity: we use a MATLAB code of ca. 150 lines to solve flow equations, and a C++

code of ca. 140 lines to compute spatial derivatives.
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