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Abstract: The study addresses the oscillating magnetohydrodynamic (MHD) Stokes flow between
two parallel plates with periodic reabsorption both spatially and temporally. Two cases are distin-
guished by applying either (1) transverse or (2) parallel external magnetic field. Analytical solutions
of velocity and pressure are derived for both cases and the effect of Womersley and Hartmann
number, and the absorption coefficient is examined. The study generalizes existing literature on
analytic MHD Stokes flow solutions accounting for periodic boundary conditions both in time and
space. The non-oscillating non-MHD Stokes flow in a porous channel (available in the literature) is
proven to be a limit of the analytic solution introduced here. The MHD effects are noticeable in flows
oscillating with low or moderate frequency but are barely detectable in high-frequency flows even in
the presence of strong magnetic fields.

Keywords: oscillatory Stokes flow; magnetohydrodynamics; porous plates; periodic reabsorption

1. Introduction

Magnetohydrodynamics (MHD) is the study of electrically conducting fluids moving
through magnetic fields. A historical reference in the MHD field is the seminal paper
by Hartman [1], who followed the evidence from an electromagnetic pump (previously
devised by himself) that led him to this novel field of investigation. The theory of MHD, as
disclosed by Hartman [1] and further enriched by Hartman and Lazarus [2], consisted of the
classic hydrodynamical equations combined with the general equations of electrodynamics.
Later, Swedish physicist Hannes Alfvén received the Nobel Prize for officially initiating
the field of MHD by introducing the full set of Navier–Stokes equations combined with the
Maxwell’s equations [3].

The attention in the present study is concentrated on low-Reynolds pulsatile flows,
which come with interesting features. The theory predicts that high-frequency oscillatory
channel flows acquire a boundary-layer character with peak velocity migrating closer to the
wall with the increase of Womersley number [4]. Early in the previous century, even before
the theoretical foundation of oscillatory flows, Richardson and Tyler conducted experi-
ments on alternating air flows observing the relocation of maximum velocity toward the
boundary [5]. Other experimental studies on oscillatory flows in pipes or other geometries
cover a range of frequencies spanning (1) the quasi-steady, (2) intermediate, and (3) inertia-
dominated regimes [6–8]. The pulsatile flows are not only interesting from a scientific
perspective but have a direct implication in modern telecommunication industry, which is
in need of efficient liquid-cooling microchannels [9]. While the standard Poiseuille flow is
self-similar and bound to the Nusselt number, the low-Reynolds pulsatile flow presents
with an enhanced thermal performance, which has been confirmed experimentally [10]. An
interesting possibility appears if an electrically conducting fluid is chosen as the medium,
as an external magnetic field permits the adjustment of the flow profiles. Our knowledge
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though about MHD oscillatory flows derives mainly from analytical or numerical studies,
which usually focalize on biological applications, while the experimental validation is still
pending. An overview of bio-MHD theory and its applications in pulsatile biological flows
(mainly blood) is available in the literature [11].

A wide range of numerical methods have been employed for the solution of the full
MHD problem [12]. On the other hand, the search for analytic solutions is traditionally
an important topic because analytic solutions represent the ground truth, thus enabling
an accurate view of the underlying physics with minimum computational cost. Moreover,
they are useful in the evaluation of numerical schemes and solvers. Analytic solutions
can be hard to obtain, which is why they are scarce in the literature. In the field of
oscillatory MHD flows, the analytic studies in the literature mainly refer to low-Reynolds
flow regimes governed by Stokes equations. Ganesh et al. [13] presented an analytical
solution of oscillating MHD Stokes flow under an external transverse magnetic field
considering porous plates with steady suction. Malathy et al. [14] studied the pulsatile
MHD flow in permeable beds by distinguishing the steady and oscillatory components of
the solution. Kahshan et al. [15] accounted for the slip boundary condition and seepage
velocity through the walls to investigate steady-state MHD flow in permeable channels
with application to hemodialyzers. The case of dusty fluid with an angular velocity was
studied by Delhi Babu et al. [16] to examine potential MHD effects considering periodic
absorption through the walls.

The present study provides an analytic solution of velocity and pressure fields for
the oscillatory MHD creeping flow considering periodic absorption both temporally and
spatially, generalizing existing analytic solutions in the literature. The derivation is based
on the mathematical approach also followed by Ganesh et al. [13] and Haroon et al. [17].
The analytic solution provided by the latter on steady (non-MHD) Stokes flow with periodic
reabsorption proves to be a limit of the analytic solution introduced here. The flow behavior
is visualized and analyzed under the effect of various parameters such as Womersley and
Hartmann number, and the absorption coefficient.

2. Mathematical Analysis
2.1. Physical Problem and Governing Equations

The physical problem is sketched in Figure 1, graphically depicting the periodically
reabsorbing symmetrically placed and parallel porous plates, and the application of a
uniform external magnetic field in the y- or x-direction (transverse or parallel case, respec-
tively). The fluid is electrically conducting, incompressible, and Newtonian. The induced
magnetic field is considered negligible for MHD flows with a low magnetic Reynolds
number.
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The oscillating MHD creeping flow is governed by the Stokes equations including
Lorentz Force either in (i) x-momentum equation, representing the transverse magnetic
field case, or (ii) in the y-momentum, representing the parallel case (which is presented in
Appendix A). Thus, for the transverse magnetic field case, the governing equations in two
dimensions utilizing the Cartesian coordinate system (x, y) are:

ρ
∂u
∂t

= −∂p
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
− σeB2

o u (1)

ρ
∂v
∂t

= −∂p
∂y

+ µ

(
∂2v
∂x2 +

∂2v
∂y2

)
(2)

∂u
∂x

+
∂v
∂y

= 0 (3)

where (u, v) are the velocity components at the x- and y-direction respectively, p is the
pressure, µ is the dynamic viscosity, σe is the electrical conductivity of the fluid, and Bo is
the magnitude of magnetic induction. The porous plates with spatially and temporally
sinusoidal reabsorption are modeled via the velocity boundary conditions,

u (x,±b, t) = 0, v(x,±b, t) = ±vosin(ax)sin(ωt) (4)

where vo is the characteristic reabsorption velocity. By the introduction of stream function
via u = ∂Ψ

∂y and v = − ∂Ψ
∂x , the system is reduced to a single partial differential equa-

tion (PDE),

ρ
∂

∂t

(
∂2Ψ
∂x2 +

∂2Ψ
∂y2

)
= µ

(
∂4Ψ
∂x4 + 2

∂4Ψ
∂x2∂y2 +

∂4Ψ
∂y4

)
− σeB2

o
∂2Ψ
∂y2 . (5)

2.2. Velocity Calculation

It is meaningful to make the following Ansatz,

Ψ(x, y, t) = F(y)cos(ax)eiωt (6)

and write the boundary conditions in complex form,

u(x,±b, t) = 0 (7a)

v(x,±b, t) = ±vosin(ax)eiωt, (7b)

noticing that the final solution will eventually be a complex function. The velocity boundary
conditions are derived in terms of the function F utilizing Equation (6),

u = dF(y)
dy cos(ax)eiωt (7a)⇒


dF(b)

dy = 0
dF(−b)

dy = 0

v = aF(y)sin(ax)eiωt (7b)⇒
{

F(b) = vo
a

F(−b) = − vo
a

. (8)

The following dimensionless variables are introduced,

x =
x
b

, y =
y
b

, τ = tω, Ψ =
Ψ

bvo
, u =

u
vo

=
∂Ψ
∂y

, v =
v
vo

= −∂Ψ
∂x

, ε = ab, γ = b
√

ρω

µ
, M =

σeB2
o b2

µ
(9)

where M is the magnetic parameter, which is associated to the Hartmann number H
through the formula, M = H2. The governing equation is redefined as follows,

γ2 ∂

∂τ

(
∂2Ψ
∂x2 +

∂2Ψ
∂y2

)
=

∂4Ψ
∂x4 + 2

∂4Ψ
∂x2∂y2 +

∂4Ψ
∂y4 −M

∂2Ψ
∂y2 . (10)
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Utilizing the non-dimensional variables (9), the Ansatz is alternatively expressed as,

Ψ(x, y, τ) = f (y)cos(εx)eiτ . (11)

Substituting Equation (11) in Equation (10), the governing equation reduces to an
ordinary differential equation (ODE),

d4 f
dy4 −

(
2ε2 + iγ2 + M

)d2 f
dy2 +

(
ε4 + iγ2ε2

)
f = 0 (12)

with the corresponding boundary conditions,

u = ∂Ψ
∂y = d f (y)

dy cos(εx)eiτ → u(x,±1, τ) = 0 ⇒


d f (1)

dy = 0
d f (−1)

dy = 0

v = − ∂Ψ
∂x = ε f (y)sin(εx)eiτ → v(x,±1, τ) = ±sin(εx)eiτ ⇒

{
f (1) = 1

ε
f (−1) = − 1

ε

. (13)

The 4th-order homogenous ODE with constant coefficients has the characteristic equation,

λ4 −
(

2ε2 + iγ2 + M
)

λ2 +
(

ε4 + iγ2ε2
)
= 0 (14)

with the following roots,

λ = ±

√√√√2ε2 + iγ2 + M±
√
(M + iγ2)

2 + 4ε2M
2

. (15)

More specifically,

λ1 =

√√√√2ε2 + iγ2 + M +
√
(M + iγ2)

2 + 4ε2M
2

= −λ2 (16)

λ3 =

√√√√2ε2 + iγ2 + M−
√
(M + iγ2)

2 + 4ε2M
2

= −λ4. (17)

Based on the methods of characteristics, the solution is of the form,

f (y) = c1eλ1y + c2e−λ1y + c3eλ3y + c4e−λ3y. (18)

The constants c1, c2, c3, c4 are determined by introducing the boundary conditions,
Equations (16) and (17), in Equation (18),

c1 =
1
2ε

λ3cosh(λ3)

λ3sinh(λ1)cosh(λ3)− λ1cosh(λ1)sinh(λ3)
= −c2 (19)

c3 = − 1
2ε

λ1cosh(λ1)

λ3sinh(λ1)cosh(λ3)− λ1cosh(λ1)sinh(λ3)
= −c4. (20)

Substituting the constants, Equations (19) and (20), in Equation (18), the analytic
solutions of the stream function and the velocity components are derived,

Ψ(x, y, τ) =
1
ε

λ3cosh(λ3)sinh(λ1y)− λ1cosh(λ1)sinh(λ3y)
λ3cosh(λ3)sinh(λ1)− λ1cosh(λ1)sinh(λ3)

cos(εx)eiτ (21)
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u(x, y, τ) =
λ1λ3

ε

cosh(λ3)cosh(λ1y)− cosh(λ1)cosh(λ3y)
λ3cosh(λ3)sinh(λ1)− λ1cosh(λ1)sinh(λ3)

cos(εx)eiτ (22)

v(x, y, τ) =
λ3cosh(λ3)sinh(λ1y)− λ1cosh(λ1)sinh(λ3y)

λ3cosh(λ3)sinh(λ1)− λ1cosh(λ1)sinh(λ3)
sin(εx)eiτ . (23)

The mean velocity and flow rate formulas are

um(x, τ) =
1
ε

cos(εx)eiτ (24)

Q(x, τ) =
1
ε

cos(εx)eiτ . (25)

2.3. Pressure Calculation

Restructuring the governing equations, Equations (1) and (2), we get the following
system in terms of the stream function,

∂p
∂x

= −ρ
∂2Ψ
∂y∂t

+ µ
∂

∂y

(
∂2Ψ
∂x2 +

∂2Ψ
∂y2

)
− σeB2

o
∂Ψ
∂y

(26)

∂p
∂y

= ρ
∂2Ψ
∂x∂t

− µ
∂

∂x

(
∂2Ψ
∂x2 +

∂2Ψ
∂y2

)
(27)

closed with the following boundary condition for pressure,

p(x, 0, t) = 0. (28)

In addition to the non-dimensional variables in Equation (9), the following pressure-
related non-dimensional variables are introduced,

p =
p
P

, P =
µvo

b
(29)

and the system (26)–(28) is rewritten,

∂p
∂x

= −γ2 ∂2Ψ
∂y∂τ

+
∂

∂y

(
∂2Ψ
∂x2 +

∂2Ψ
∂y2

)
−M

∂Ψ
∂y

(30)

∂p
∂y

= γ2 ∂2Ψ
∂x∂τ

− ∂

∂x

(
∂2Ψ
∂x2 +

∂2Ψ
∂y2

)
(31)

p(x, 0, τ) = 0. (32)

Introducing the Ansatz, Equation (11), in the above system, we get,

∂p
∂x

=

[
−
(

γ2i + ε2 + M
)d f

dy
+

d3 f
dy3

]
cos(εx)eiτ (33)

∂p
∂y

= ε

[
−
(

γ2i + ε2
)

f +
d2 f
dy2

]
sin(εx)eiτ . (34)

Integrating Equation (33) with respect to x, followed by differentiation with respect
to y,

p =
1
ε

[
−
(

γ2i + ε2 + M
)d f

dy
+

d3 f
dy3

]
sin(εx)eiτ + c(y, τ) (35)

⇒ ∂p
∂y

=
1
ε

[
−
(

γ2i + ε2
)d2 f

dy2 +
d4 f
dy4

]
sin(εx)eiτ +

∂c(y, τ)

∂y
. (36)
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Using Equations (34) and (36) we get ∂c(y,τ)
∂y = 0. So, we arrive to the expression of p

appended by a constant c, which remains to be found,

⇒ p =
1
ε

[
−
(

γ2i + ε2 + M
)d f

dy
+

d3 f
dy3

]
sin(εx)eiτ + c. (37)

The following expression is retrieved after substituting the known function f in
Equation (37),

p =
λ1λ3

ε2
cosh(λ3)cosh(λ1y)

[
λ2

1 −
(
ε2 + iγ2 + M

)]
− cosh(λ1)cosh(λ3y)

[
λ2

3 −
(
ε2 + iγ2 + M

)]
λ3sinh(λ1)cosh(λ3)− λ1cosh(λ1)sinh(λ3)

sin(εx)eiτ + c. (38)

An equivalent expression emerges if we choose to repeat the process (integration–
differentiation) starting with Equation (34) instead of Equation (33). Introducing the
boundary condition, Equation (32), the analytic solution of pressure is derived,

p =
1

λ1λ3

λ2
3cosh(λ3)[cosh(λ1y)− 1]

[
λ2

1 −
(
ε2 + iγ2)]− λ2

1cosh(λ1)[cosh(λ3y)− 1]
[
λ2

3 −
(
ε2 + iγ2)]

λ3sinh(λ1)cosh(λ3)− λ1cosh(λ1)sinh(λ3)
sin(εx)eiτ . (39)

The steady Stokes flow results by Haroon et al. [17] can be retrieved by taking the
limit γ→ 0 of the analytic solutions, Equations (23), (24), and (39), and setting M = 0.

3. Results and Discussion

The flow conditions are studied under the effect of parameters: ε, γ, and M. The
absorption coefficient ε relates to the spatial reabsorption through the porous walls, Wom-
ersley number γ controls the pulsatile flow frequency, and the magnetic parameter M tunes
the intensity of the magnetic field.

Figures 2 and 3 display the streamlines on top of velocity magnitude contours for
the transverse and the parallel case, in the presence of a magnetic field with increasing
intensity, M = {0, 10, 100}. The oscillatory flow is a result of the spatiotemporally periodic
reabsorption and its interaction with the magnetic field. For the representation of the flow
in Figures 2 and 3, we used the imaginary part of the complex solution, Equations (2)
and (3), as mandated by the boundary conditions in the real plane, Equation (4). In the
transverse case (Figure 2), the flow is decelerated with the increase of the magnetic field
intensity. The deceleration is caused by the Lorentz Force, which removes momentum in
the x-direction of the flow when the magnetic field acts normal to it. Conversely, when
the magnetic field acts in parallel (Figure 3), the maximum velocity of the fluid does not
alter; rather, a restructuring of the flow is mostly observed, especially for M = 100. In
both cases, the central jet seems to be flattening, even splitting in multiple jets with the
increase of magnetic field intensity. Last but not least, we note that the stability of the
solution for different values of the parameters is not addressed in this study. However, we
direct the interested reader to the studies by Von Kerczek et al. [18] (on oscillating flow in
a non-porous channel), and by Potter and Kutchey [19] (on Hartmann–Poiseuille flow),
which prove that flow stabilizes with the increase of Womersley or Hartmann numbers.

To get a deeper insight of the flow behavior, the amplitude
(
Uamp, Vamp, Pamp

)
and

phase angle
(

ϕx, ϕy, ϕp
)

indexes are plotted for various combinations of the parameters in
the following ranges: ε = {1, 2}, γ = {1, 5, 10}, M = {0, 10, 100}, both for the transverse,
Figures 4–9, and the parallel case, Figures 10–15. The indexes are calculated as follows:
Starting from the solution of the u velocity component, as shown in Equation (22), we
utilize the part of the expression that is a function of y and write it in the form of a typical
complex number,

U(y) =
λ1λ3

ε

cosh(λ3)cosh(λ1y)− cosh(λ1)cosh(λ3y)
λ3cosh(λ3)sinh(λ1)− λ1cosh(λ1)sinh(λ3)

= UR + iU I . (40)
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Figures 4–9, and the parallel case, Figures 10–15. The indexes are calculated as follows: 
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utilize the part of the expression that is a function of 𝑦̄ and write it in the form of a typical 
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Figure 3. Velocity stream density plots for the parallel case in various time instances, τ =
{

0, π
4 , π

2 , 3π
4 , π

}
, and Magnetic

numbers, M = {0, 10, 100}, assuming ε = 1 and γ = 1.
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Substituting the complex number, Equation (40), back in the solution, Equation (22),
the resulting expression is,

u =
(
UR + iU I

)
cos(εx)eiτ =

(
UR + iU I

)
cos(εx)[cos(τ) + isin(τ)] =

=
[
URcos(τ)−UIsin(τ)

]
cos(εx) + i

[
URsin(τ) + U Icos(τ)

]
cos(εx)

. (41)

Utilizing the imaginary part of Equation (41), u is written in terms of Uamp and ϕx,

u = Uampsin(τ + ϕx)cos(εx) where Uamp =

√
U2

R + U2
I , tan(ϕx) =

U I

UR
(42)

while the mean values of velocity amplitude and phase angle are given by

Um =
1
ε

, ϕx,m = 0. (43)

The next three paragraphs discuss the effect of the parameters ε and γ, without
accounting for the magnetic field, thus considering M = 0. For low values of Wom-
ersley number γ, a quasi-steady Uamp emerges with its maximum value converging

to Uamp → 2εsinh(ε)
sinh(2ε)−2 , and the phase angle converging to ϕx = 0, f or γ→ 0 . The re-

sults are in agreement with the steady case without magnetic field published by Haroon
et al. [17]. For low values both of parameter γ and ε, the maximum value converges
to Uamp → 1.5/ε ( γ→ 0, ε→ 0). The amplitudes and phase angles of the v and p are
derived in a similar way.

For high values of Womersley number ( γ→ ∞ ), Uamp is endowed by all the charac-
teristics of oscillatory flow in a straight tube without porous walls [20]. Specifically, Uamp
presents with a flattened inviscid-flow-like profile at the center of the channel converging to
the value, Uamp → 1

sinh(ε) f or γ→ ∞ and to the value, Uamp → Um = 1
ε for ε→ 0 . The

maximum Uamp value is attained near the walls where a boundary layer forms, as presented
by [20], while ϕx approaches the value π

4 at the wall for γ→ ∞ (Figures 5 and 11).
The Vamp increases monotonically from the center toward the wall of the channel

(Figures 6 and 12), and the same applies to Pamp (Figures 8 and 14). The ϕy takes negative
values both for low and high γ values but increases as an absolute value with the increase
of ε (Figures 7 and 13). The Pamp increases with the increase of γ (Figures 8 and 14), while
ϕp is small for low γ values. For high γ values, ϕp approaches the value π

2 (Figures 9 and 15).
The direction and magnitude of magnetic field has a traceable effect on the amplitude

and the phase angle of the flow variables. Concerning the transverse case, the Uamp profile
is further flattening around the center of the channel with the increase of magnetic field
intensity, irrespective of ε and γ (Figure 4). However, near the wall, the intensification of
magnetic field leads to an increase of Uamp for low γ values but to a slight decrease for
high γ values. On the other hand, for high ε values, the spread between Uamp profiles for
increasing M values is reduced, suggesting that the effect of the magnetic field is alleviated
with the increase of absorption coefficient ε. On the other hand, the Vamp profiles do not
alter drastically under the presence of stronger magnetic fields (Figure 6). A noticeable
difference between Uamp and Vamp profiles with increasing M values is that Vamp slightly
decreases for low γ values but slightly increases for high γ values.

The parallel magnetic field case distinguishes from the transverse at several points,
but still some effects are shared between them. Here, the increase of magnetic field intensity
reduces Uamp near the center and reinforces it near the wall, which is noticeable especially
for low γ values (Figure 10). For high γ values, the magnetic field does not have a significant
effect on Uamp, even at high intensity, which is a similarity between the parallel (Figure 10)
and the transverse case (Figure 4). The biggest impact of the parallel magnetic field is
concentrated on Vamp that reduces with the increase of magnetic field intensity (Figure 12).
For high ε values, the decrease of Vamp is even more striking when increasing the intensity
of the magnetic field. In contrast to the transverse case, the Pamp also reduces under
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stronger parallel magnetic fields, but the decrease is small, even at the highest magnetic
intensity (Figure 14). In general, the amplitude of the flow variables for high γ values is not
overly sensitive to the magnetic field, even at high intensities, independent of its direction.
Seemingly, the high frequency oscillation neutralizes the effects of the magnetic field on
the flow.

4. Conclusions and Perspectives

The literature presents only a few analytical solutions on the oscillating MHD Stokes
flow. In this study, we introduce an analytical solution that generalizes the existing litera-
ture, considering the creeping flow of an electrically conducting fluid in a porous channel in
the presence of a magnetic field. The velocity and pressure profiles are drawn for different
values of the Womersley and Hartmann numbers as well as the absorption coefficient. The
results highlight that the magnetic field casts its biggest impact on the oscillatory flow
when the pulsation frequency is low. In high-frequency flows, the MHD effects are not
discernible even in the presence of strong magnetic fields. The low-Reynolds pulsatile flows
have desirable features and are considered in industrial applications. Additional features
are revealed if the typical fluid is replaced by an electrically conducting one that can be
controlled by an external magnetic field. More studies, on a theoretical or experimental
basis, are required to better understand and take advantage of oscillating MHD flows.

Author Contributions: Conceptualization, S.T.; methodology, S.T.; software, A.R.; validation, A.R.,
C.M. and M.X.; formal analysis, C.M., M.X. and S.T.; writing—original draft preparation, A.R., C.M.,
M.X. and S.T.; writing—review and editing, A.R., C.M., M.X. and S.T.; visualization, A.R.; supervision,
C.M. and S.T.; project administration, M.X.; All authors have read and agreed to the published version
of the manuscript.
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(MIS-5033021), implemented by the State Scholarships Foundation (IKΥ).
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Appendix A 
A.1. Velocity Solution 

The governing equations in the parallel magnetic field case are: 𝜌 𝜕𝑢𝜕𝑡 = − 𝜕𝑝𝜕𝑥 + 𝜇 ቆ𝜕ଶ𝑢𝜕𝑥ଶ + 𝜕ଶ𝑢𝜕𝑦ଶቇ (A1)

𝜌 𝜕𝑣𝜕𝑡 = − 𝜕𝑝𝜕𝑦 + 𝜇 ቆ𝜕ଶ𝑣𝜕𝑥ଶ + 𝜕ଶ𝑣𝜕𝑦ଶቇ − 𝜎௘𝐵௢ଶ𝑣 (A2)𝜕𝑢𝜕𝑥 + 𝜕𝑣𝜕𝑦 = 0 (A3)

with the same boundary conditions as in the transverse case, as shown in Equation (4). 
With the introduction of the stream function, the system reduces to the PDE: 
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Appendix A

Appendix A.1. Velocity Solution

The governing equations in the parallel magnetic field case are:

ρ
∂u
∂t

= −∂p
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
(A1)

ρ
∂v
∂t

= −∂p
∂y

+ µ

(
∂2v
∂x2 +

∂2v
∂y2

)
− σeB2

o v (A2)

∂u
∂x

+
∂v
∂y

= 0 (A3)

with the same boundary conditions as in the transverse case, as shown in Equation (4).
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With the introduction of the stream function, the system reduces to the PDE:

ρ
∂

∂t

(
∂2Ψ
∂x2 +

∂2Ψ
∂y2

)
= µ

(
∂4Ψ
∂x4 + 2

∂4Ψ
∂x2∂y2 +

∂4Ψ
∂y4

)
− σeB2

o
∂2Ψ
∂x2 . (A4)

Introducing the non-dimensional variables, Equations (9), and the Ansatz, Equation (27),
in Equation (A4), the PDE reduces to an ODE in terms of the still unknown function f :

d4 f
dy4 −

(
2ε2 + iγ2

)d2 f
dy2 +

(
ε4 + iγ2ε2 + Mε2

)
f = 0. (A5)

The ODE is solved by the method of characteristics. The roots of the characteristic
equations are

λ = ±

√
2ε2 + iγ2 ± i

√
γ4 + 4ε2M

2
. (A6)

Hereafter, the expressions of the constants, c1, c2, c3, c4 and the final analytic solutions
of the stream function and the velocity components are exactly the same with the transverse
magnetic field case. The two cases differentiate only in the expressions of the constants,
λ1, λ2, λ3, λ4.

Appendix A.2. Pressure Solution

The pressure is calculated based on the following reformulated set of equations,

ρ
∂u
∂t

= −∂p
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
(A7)

ρ
∂v
∂t

= −∂p
∂y

+ µ

(
∂2v
∂x2 +

∂2v
∂y2

)
− σeB2

o v (A8)

along with the boundary condition, as in the transverse magnetic field case, as shown in
Equation (30). Introducing the non-dimensional variables, Equations (9) and (12), and the
Ansatz, Equation (11), the above system is reformulated as follows,

∂p
∂x

=

[
−
(

γ2i + ε2
)d f

dy
+

d3 f
dy3

]
cos(εx)eiτ (A9)

∂p
∂y

= ε

[
−
(

γ2i + ε2 + M
)

f +
d2 f
dy2

]
sin(εx)eiτ . (A10)

The final solution of pressure for the parallel magnetic field case is the same as for
the transverse case, as shown in Equation (39), differentiating only in the definition of
λ1, λ2, λ3, λ4 constants, Equation (A6) in the former and Equation (15) in the latter case.
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