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Abstract: The response of a compliant surface in a turbulent boundary layer forced by a dynamic
roughness is studied using experiments and resolvent analysis. Water tunnel experiments are carried
out at a friction Reynolds number of Reτ ≈ 410, with flow and surface measurements taken with
2D particle image velocimetry (PIV) and stereo digital image correlation (DIC). The narrow band
dynamic roughness forcing enables analysis of the flow and surface responses coherent with the
forcing frequency, and the corresponding Fourier modes are extracted and compared with resolvent
modes. The resolvent modes capture the structures of the experimental Fourier modes and the
resolvent with eddy viscosity improves the matching. The comparison of smooth and compliant
wall resolvent modes predicts a virtual wall feature in the wall normal velocity of the compliant
wall case. The virtual wall is revealed in experimental data using a conditional average informed
by the resolvent prediction. Finally, the change to the resolvent modes due to the influence of wall
compliance is studied by modeling the compliant wall boundary condition as a deterministic forcing
to the smooth wall resolvent framework.

Keywords: turbulent boundary layer; compliant wall; dynamic roughness; resolvent analysis

1. Introduction

One of the long-standing engineering goals for research in wall-bounded turbulent
flows is to develop design capabilities for flow control mechanisms. Designing such control
schemes within the broad field of possible applications and strategies [1] is difficult not
only due to the essential complexity of actuator–flow interaction, but also the often vast
operational parameter space associated with actuation design. Compliant surfaces embody
both of these challenges, presenting a coupled fluid-structural problem and nearly limitless
regime of surface material properties. However, the potential benefits of these passive
controllers has spurred a field of research that remains active today [2].

A number of experimental studies have found promising results. Lee et al. [3] con-
ducted a water tunnel experiment of a turbulent boundary layer with a single-layer vis-
coelastic surface and observed a modification to the low-speed streaks associated with the
near-wall cycle accompanied by a reduction in the streamwise turbulence intensity and
Reynolds shear stress. In a similar experiment, Choi et al. [4] reported drag reduction on a
slender body of revolution as high as 7%. Wang et al. [5] studied the wall deformation and
flow response over a compliant wall for a range of material properties and identified the
associated changes to the mean velocity and turbulence profiles. Tempering some of the op-
timistic experimental findings are more recent Direct Numerical Simulation (DNS) studies.
Xu et al. [6] simulated a turbulent channel flow with a compliant wall modelled as a spring-
supported plate and found little change to the turbulent skin friction. Fukagata et al. [7]
considered an anisotropic compliant wall and observed an 8% maximum drag reduction,
but this effect diminished as the computational domain was increased. In simulations of
turbulent channel flow over a viscous hyper-elastic wall, Rosti and Brandt [8] described
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changes to the near-wall flow structure associated with non-zero vertical velocities at the
moving wall.

As experimental and computational studies of compliant surfaces are costly and time-
consuming, there is a need for accurate reduced-order models to provide insight and reduce
the otherwise intractable parameter space. The recent work of Benschop et al. [9] employed
a one-way model to predict the wall-normal surface deformation of a compliant coating in
a turbulent flow. The model was restricted to spanwise-constant, streamwise-travelling
deformations and required as input the turbulent stress spectra, convection velocity, and
frequency-dependent surface properties. The authors performed an extensive paramet-
ric study, investigating the effects of the density, stiffness, thickness, viscoelasticity, and
compressibility of the surface on the wall-normal deformation. In a separate modelling
effort, Luhar et al. [10] extended the resolvent formulation of McKeon and Sharma [11]
to consider the influence of a compliant-wall on a turbulent flow, as described in detail
in subsequent Section 2.2. See [12,13] for recent reviews of the efficacy of resolvent-based
approaches for modeling wall turbulence. The resolvent-based model is derived by re-
casting the Fourier-transformed Navier–Stokes equations (NSEs) into an input-output
form, where the nonlinear term is explicitly retained as an endogenous forcing to the linear
dynamics. The most amplified response modes of the resolvent operator are then identified
through a singular-value decomposition (SVD). Luhar et al. [10] modified the rigid-wall
boundary condition to account for wall compliance. The model only required the mean
velocity profile, a wall compliance parameter, and a wavenumber vector as input, and
was used to search for optimal wall (material) properties to reduce the amplification of
physically relevant flow structures. The results were found to compare favorably with
trends elucidated in DNS studies.

This work seeks to compare and extend the predictions of the compliant wall resolvent
analysis [10] to experiments of a turbulent boundary layer with an elastic compliant wall,
and simultaneously to use the resolvent predictions as a lens to inform the analysis of the
experimental data. Further, we model the effect of the boundary condition as an extra
forcing in the resolvent framework, with a view to simplifying future numerical studies.
The experiments utilize a two-dimensional (spanwise constant) dynamic roughness forcing,
which forces a spectrally narrow synthetic flow mode, which in turn interacts with the
surface. This allows for a direct mode comparison between the model prediction and the
experimental data. This manuscript serves as the culmination of a series of manuscripts
pertaining to the different stages of this experimental and modeling study: Huynh and
McKeon [14] documented the influence of the dynamic roughness studied here on the
flow over a rigid wall, while Huynh and McKeon [15] documented the experimental
configuration to identify the compliant wall response to that synthetic forcing input. The
present work constitutes the first experimental demonstration of the efficacy of resolvent
analysis in modeling the response of a compliant wall beneath a turbulent boundary
layer. In what follows, we outline the compliant wall resolvent framework, describe and
summarize results from the experiment, discuss the comparison between the resolvent and
experimental modes and develop the boundary condition as forcing approach.

2. Materials and Methods
2.1. Experimental Setup

A full description of the experimental setup can be found in Huynh and McKeon [14]
and Huynh and McKeon [15], which describe the response of the rigid wall turbulent
boundary layer and compliant wall to dynamic roughness forcing, respectively. A brief
summary is provided here. The experiments were performed in the NOAH water tunnel
at Caltech. Figure 1 shows an illustration of the experiment. The flow was tripped at the
leading edge of the acrylic plate to promote a turbulent boundary layer. A thin, spanwise-
constant aluminum rib served as the two-dimensional dynamic roughness element, located
63 cm downstream of the leading edge (taken to be x = 0), actuated perpendicularly
to the plate by a Bose ElectroForce 200 N motor. The control configuration used a rigid
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wall downstream of the dynamic roughness. Then a compliant surface (gelatin) was
embedded into the acrylic plate 25.4 mm downstream of the roughness element (Figure 2).
Measurements were made of the flow velocity using 2D particle image velocimetry (PIV)
in the x − y plane, and the surface deformations using stereo digital image correlation
(DIC) in the x − z plane coincident with the surface. The streamwise and wall-normal
velocities are denoted u and v, and the streamwise, wall-normal, and spanwise surface
displacements are dx, dy, and dz, respectively. Both PIV and DIC were acquired using
LaVision’s DaVis software. The properties of the canonical flow are summarized in Table 1,
acquired from PIV at the roughness location. The friction velocity, uτ=

√
τw/ρ, where τw is

the wall shear stress, was estimated using the Clauser chart method, and the viscous length
scale, δν=ν/uτ , and friction Reynolds number, Reτ=uτδ/ν, were calculated accordingly.

Figure 1. Illustration of the experimental setup. The rectangles representing the PIV fields are not true
to scale or aspect ratio, but represent the FOVs of the two cameras and the streamwise shift (green
locations to blue locations) between setups required to obtain the long spatial field of view reported
here. The phase-averaged vector fields were stitched together in post-processing. Mean statistics are
reported from x/δ = 4.70, and streamwise locations of the LE and TE of the compliant panel are also
shown. The illustration is vertically reflected relative to the physical setup, i.e., measurements are
made on the bottom surface of the flat plate.

Figure 2. Schematic of dynamic roughness slot (at x = 0) and the compliant wall insert (left) and a
finished gelatin sample (right). Note the sample pictured was dyed white for a DIC test. The gelatin
used in the experiments was translucent.

Table 1. Mean properties of the canonical flow, acquired at 63 cm downstream of the leading edge:
freestream velocity, friction velocity, (99%) boundary layer thickness, viscous unit δν = ν/uτ , eddy
turnover time TE = δ/U∞, Reynolds numbers based on momentum thickness, Reθ , and friction
Reynolds number, Reτ .

U∞ [cm/s] uτ [cm/s] δ [mm] δν [um] TE [s] Reθ Reτ

33 1.6 25.5 62.5 0.077 870 410

The dynamic roughness was actuated sinusoidally, going from flush to the wall to
full extension. This type of forcing has been shown to generate a synthetic, travelling-
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wave type flow structure that is well-modeled by the form exp[±i(kxfx− ωft)] for a 2D
(spanwise constant) roughness, where ωf is the angular forcing frequency and kxf is the
dominant streamwise wavenumber of the perturbation [14,16–18]. The actuation frequency
and amplitude conditions considered are given in Table 2. The amplitudes were selected to
be similar to those of Duvvuri and McKeon [17], while the frequencies were chosen to be
significantly higher (in a dimensionless sense) to generate shorter synthetic flow structures,
enabling a more spatially-resolved investigation. Most of the results discussed in this paper
pertain to actuation condition iii. Both the PIV and DIC measurements were phase-locked
to the roughness motion to enable a phase-averaged analysis. The camera frame rates were
set to 20 times the actuation frequency for sufficient phase resolution. The discrete phase
index, j ∈ [0, 19], will be used for reference, where j = 0 corresponds to the roughness
element flush to the wall.

Table 2. Dynamic roughness actuation conditions (i–iv) explored in these experiments: dimensional,
and non-dimensional quantities parameterized by motion rms height and frequency given.

i ii iii iv

ff 3 Hz 5 Hz 5 Hz 10 Hz

hrms 1.1 mm 1.1 mm 1.8 mm 1.1 mm
ωfδ/U∞ 1.4 2.4 2.4 4.8

hrms/δ 0.042 0.042 0.069 0.042

Gelatin was selected as the material for this study due to its low cost, high deformabil-
ity, and nearly linearly elastic behavior [19]. Because this study sought to compare results
with modelled predictions, it was more important to have a measurable surface response
to the roughness-forced synthetic mode rather than to achieve a particular performance
metric. The gelatin was fabricated using a 1:25 gelatin–water ratio and molded directly
into a section of the flat plate. Through simple compression tests, the Young’s modulus
of the gelatin was measured to be E ≈ 4.5 kPa, and by assuming a Poisson’s ratio of 0.5
as is often used for gelatin [20], the shear modulus and shear wave speed were estimated
to be G ≈ 1.4 kPa and Us ≈ 1.20 m/s, respectively. This corresponds to an extremely soft
material, though the low freestream velocity (U∞ = 0.33 m/s) relative to the shear wave
speed meant that hydroelastic instabilities were not expected. As discussed in Huynh and
McKeon (2020), the Rayleigh, generalized Rayleigh, and Love wave speeds were also all
calculated to be significantly larger than the freestream velocity, namely 1.15, 1.18, and
1.32 m/s, respectively.

For convenience, the rigid-wall and compliant wall studies will be referred to as
‘RW’ and ‘CW’, and the dynamic-roughness-forced and unforced studies as ‘DRF’ and
‘unforced’, respectively.

2.2. Resolvent Analysis for Compliant Walls

McKeon and Sharma [11] applied the resolvent framework as an approach to study
problems in turbulent flow in a low-rank manner by investigating the preferentially am-
plified modes of the resolvent operator. Here, the formulation by Luhar et al. [10] will
be considered, for a fully developed channel flow, with x, y, and z corresponding to
the streamwise, wall-normal, and spanwise directions, walls at y = 0 and y = 2, the
channel half-height denoted h. All terms in the following methodology have been non-
dimensionalized using h and uτ . A Fourier decomposition is employed in the homogeneous
directions, x, z, and t:

g(x, y, z, t) =
∫∫∫ ∞

−∞
gk(y)ei(kx x+kzz−ωt) dkxdkzdω, (1)

where k = (kx, kz, ω) is the Fourier wavenumber vector and gk is the corresponding
Fourier coefficient.
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The Navier–Stokes equations (NSEs) are written in primitive-variable form, with
pressure explicitly retained to later solve for the boundary condition. The NSEs are then
Fourier-transformed and written in an input-output form:[

uk

pk

]
=

(
−iω

[
I

0

]
−
[
Lk −∇k
∇T

k 0

])−1[ I
0

]
fk

= L−1M fk

= Hk fk, (2)

where uk and pk are the Fourier-transformed velocity and pressure fields and fk is the
Fourier-transformed nonlinear term:

fk = (−u · ∇u)k. (3)

∇k = [ikx, ∂/∂y, ikx]T and ∇T
k represent the Fourier-transformed gradient and divergence

operators, respectively. In this framework, the nonlinear term acts as an endogenous
forcing to the velocity and pressure through the resolvent operator,Hk, which depends on
the linear component of the NSEs:

Lk =


−ikxU + Re−1

τ ∇2
k −∂U/∂y 0

0 −ikxU + Re−1
τ ∇2

k 0

0 0 −ikxU + Re−1
τ ∇2

k

, (4)

where ∇2
k is the Fourier-transformed Laplacian. Note that Hk contains terms with the

mean velocity, U(y), which is assumed to be known a priori.
The problem is discretized in y using N Chebyshev collocation points, then the

discrete resolvent operatorHk is constructed, and a singular value decomposition (SVD)
is performed:

Hk(y) =
N

∑
q=1

ψkq(y)σkqφ∗kq(y), (5)

where ψkq are the singular response modes (henceforth referred to as resolvent modes), σkq
are the (ordered) singular values, and φkq are the singular forcing modes. Superscript ∗
denotes a complex conjugate. Velocity and pressure can then be expressed as:[

uk(y)
pk(y)

]
=

N

∑
q=1

ψkq(y)σkq
(
φkq, fk

)
=

N

∑
q=1

ψkq(y)σkqχkq, (6)

where (·, ·) indicates an inner product and χkq are the weights formed by projecting the
nonlinear forcing onto the singular forcing modes.

A rank-1 reduction may be invoked to give a first approximation to the resolvent
operator using the first resolvent mode, singular value, and singular forcing mode:

Hk(y) ≈ ψk1(y)σk1φ∗k1(y). (7)

This then allows the velocity and pressure to be approximated by:[
uk(y)
pk(y)

]
≈ σk1ψk1(y) (8)
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with the additional assumption of broadband forcing, discussed in McKeon and Sharma [11].
It will be seen that the essential features of the flow response are contained in the rank-1
model. In what follows, the subscript ‘k1’ will be suppressed and ψi will indicate the
response component, i.e., ψx, ψy, and ψp for the streamwise, wall-normal, and pressure
resolvent modes.

More accurate approximations can be obtained by retaining a higher rank represen-
tation of the resolvent, or by including an eddy viscosity in the linearized equations as a
partial model of the influence of the nonlinear interaction of all scales, e.g., ref. [21,22]. We
investigate the latter approach here.

Following Reynolds and Hussain [23], an analytic approximation for the turbulent
eddy viscosity is used

νT(y) =
1
2

{
1 +

[κ

3

(
2y− y2

)(
1 + 2(y− 1)3

)
(1− exp(|y|Reτ/A))

]2
}1/2

+
1
2

, (9)

where νT(y) is the total effective viscosity normalized by ν. The viscous terms Re−1
τ ∇2

k in
Equation (4) are then replaced by

Re−1
τ νT∇2

k + Re−1
τ

∂νT
∂y

∂

∂y
. (10)

The parameters κ = 0.426 and A = 25.4 are chosen based on a least-squares fit to
experimentally obtained mean velocity profiles at Reτ = 2000 [21]. Note that with the
inclusion of the eddy viscosity, the interpretation of the nonlinear forcing fk given in
Equation (3) is also different.

The framework by Luhar et al. [10] models the effect of a compliant wall by modifying
the otherwise rigid wall boundary condition. Compliance is considered by introducing a
wall displacement term at the boundaries, η(x, z, t), constrained to be in the wall-normal
direction. Along the boundary, the no-slip and no-through flow conditions are applied.
A Taylor’s expansion is performed about the undeformed wall location; these boundary
conditions can be made for an arbitrarily large wall deformation by retaining higher-order
terms in the expansion, at the cost of a more complex, nonlinear set of equations. In-
stead, following Luhar et al. [10], the deformations are assumed small and the boundary
conditions are linearized to enable a more computationally tractable analysis. Given the
small deformations observed in the DIC data, O(10−4δ), this assumption is at least some-
what justified and will be considered when interpreting the results. Thus, the linearized,
Fourier-transformed velocity boundary conditions can be written as:

uk(0) = −ηk
dU
dy

∣∣∣∣
0

(11)

vk(0) = −iωηk (12)

wk(0) = 0. (13)

Note that uk(0) is required to balance a mean shear term introduced by the wall
deformation, and that vk(0) is related to the deformation by the no-through flow boundary
condition. Furthermore, Equations (11) and (12) together require that uk(0) has a π/2
phase lead with respect to vk(0) at the wall.

The pressure boundary condition is determined by the dynamic coupling between
pressure and the wall motion. Here, this coupling is modelled as a spring-mass-damper
system [6], for which the wall pressure and wall deformation are connected by:[

Cm(−ω2) + Cd(−iω) + Ck

]
ηk = −pk(0), (14)
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where Cm, Cd, and Ck are the dimensionless mass, damping, and spring coefficients. These
coefficients are defined as:

Cm =
ρwbw

ρh
(15)

Cd =
dw

ρuτ
(16)

Ck =
k′swh
ρu2

τ
, (17)

where the following are all plate properties with subscript ‘w’ for ‘wall’: ρw is the density,
bw the thickness, dw the damping coefficient, and k′sw the area-spring stiffness. Though
not considered in this analysis, additional tension and stiffness coefficients, Ct and Cs,
respectively, can be included to account for the effects of tension and flexural rigidity
(stiffness) of the plate. This can be achieved by substituting a wavenumber-dependent
effective spring coefficient, Cke, for Ck in Equation (14), defined as:

Cke = Cs

(
k4

x + 2k2
xk2

z + k4
z

)
+ Ct

(
k2

x + k2
z

)
+ Ck, (18)

assuming equal tension in x and z. Definitions of Ct and Cs can be found in Xu et al. (2003) [6].
See also Luhar et al. (2016) [24].

A complex wall admittance term, Y, is defined that connects the pressure and the
wall-normal velocity at the wall, and using Equations (12) and (14) is written as:

Y =
vk(0)
pk(0)

=
iω

−ω2Cm − iωCd + Ck
. (19)

This complex admittance is used to account for the material properties of the wall.
Thus, Equations (11)–(13) and (19) are used as the boundary conditions for the velocities
and pressure at y = 0 and y = 2, with the sign of Y flipped between the two walls due to
centerline symmetry.

The MATLAB code for channel flow resolvent analysis with a compliant wall boundary
condition [10] was used to generate the results discussed here. A study was also performed
with a boundary layer configuration [16,25], with identical results near the wall and only
slight differences in the outer part of the flow, as to be expected from considerations of
near-wall universality and the influence of the semi-infinite boundary layer domain. A
quasi-streamwise parallel assumption, or slow streamwise growth of the boundary layer of
the field of view, is required to use a one-dimensional mean profile varying only in y. Given
an approximate growth in boundary layer thickness over the entire compliant panel of
∼8% and the experimental uncertainties described below, this was deemed an acceptable
simplification in light of the cost reduction associated with performing the SVD. While
an experimental mean profile could have been used to account for the modification from
the dynamic roughness, this would have required a choice of interpolation scheme and
would have become difficult near the wall due to the inherent limitations of PIV. Therefore,
the mean velocity profile is generated using the eddy viscosity model of Equation (9) for
an uncontrolled mean flow, i.e., the same mean profile is used for both the rigid-wall and
compliant wall resolvent modes, which is an additional simplification. Note that the mean
velocity profile is an input to the resolvent model, which therefore cannot identify any net
drag reduction or increase due to the presence of the compliant wall. However, changes in
the response modes determined from the resolvent at individual scales due to the change in
boundary condition can be interrogated. Further description is provided in Luhar et al. [10].
The grid resolution used was N = 200, and the friction Reynolds number of Reτ = 410 was
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used to match to experimental flow conditions. The code was executed on a single-core
laptop and took about 0.5 s to compute one set of singular values and resolvent modes.

2.3. Compliant Wall as a Boundary Forcing

We now extend the analysis of [10] to provide an alternate model of the linearized
boundary conditions for compliant wall resolvent analysis as an additional forcing term.

In general, any boundary condition of the form

aT
[

uk
pk

]
= 0, (20)

where a is any vector of constant coefficients, can be applied to the linear operator given in
Equation (2) by substituting the rows corresponding to the boundary values of L with aT

and the same rows of M with zeros. This form of boundary condition includes the no-slip
boundary conditions and the linearized compliant wall boundary conditions described
previously. With the properly applied boundary conditions, the resolvent operator Hk
can then be formed according to Equation (2), and its SVD can be computed. Using the
orthonormal property of the singular vectors, Equation (5) can be rewritten as:

σkqψkq(y) = Hk(y) φkq(y). (21)

σkqψkq(y) on the left hand side of the equation is the output of the system subjected to
the input φkq(y). For the case of a broadband forcing, the velocity and pressure Fourier
modes can be approximated by σk1ψk1(y) as described in Equation (8), with σk1 describing
the amplitude and ψk1(y) describing the shape of the output. We now define a new,
non-normalized response mode

ψ̃kq(y) = σkqψkq(y) (22)

which captures the output mode shape and energy together. Using the definition of
Hk = L−1M, we arrive at

L ψ̃kq(y) = M φkq(y). (23)

In what follows, only the rank-1 approximation will be considered, and the subscript
‘k1’ will again be suppressed.

The change of boundary conditions can be viewed as a perturbation of the rigid
wall linear operator L. We denote the linear operator with the compliant wall boundary
condition as L′, its forcing mode as φ′, its non-normalized response mode as ψ̃′, and
the change in quantity denoted by ∆. Additionally, we denote the rigid wall resolvent
as H = L−1M, and the compliant wall resolvent as H′ = L′−1M, with the difference
∆H = H′ −H. The perturbed linear operator and its forcing and reponse modes satisfy
the perturbed form of Equation (23)

L′ ψ̃′ = M φ′ (24)

(L + ∆L)(ψ̃ + ∆ψ̃) = M(φ + ∆φ). (25)

This equation can be rearranged into

L∆ψ̃ = M∆φ︸ ︷︷ ︸
g1

−∆L[ψ̃ + ∆ψ̃]︸ ︷︷ ︸
g2

. (26)

The right-hand side terms describe the extra forcing needed to capture the change of
response due to the compliant wall boundary conditions. The first term on the right, g1,
involves the mass matrix M and therefore has zero boundary values and non-zero values
away from the boundary. The second term, g2, involves the perturbation matrix ∆L, and
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therefore is only non-zero at the boundaries; in other words, g2 consists of delta functions
at the wall.

∆ψ̃, the total change in the response mode, can be split into two pieces, ∆ψ̃1 and ∆ψ̃2,
which correspond to the effect of g1 and g2, and can be rewritten as

∆ψ̃1 = L−1g1 = H ∆φ, (27)

∆ψ̃2 = L−1g2 = ∆H φ′. (28)

It should be noted that the form of the boundary conditions is not unique. For example,
a no slip boundary condition can be written as u(0) = 0, v(0) = 0, or equivalently written
as iωu(0) = Reτv(0), v(0) = 0 (for Y = 0). As a result, the perturbation matrix ∆L and
therefore g2 are both non-unique. However, the change in response due to g2, denoted as
∆ψ̃2 in Equation (28) is the same regardless of the non-uniqueness of g2.

Equation (27) indicates that ∆ψ̃1 is the result of the change in forcing mode. From an
optimization point of view, the first forcing mode φ is a unit energy mode that maximizes
the energy of ψ̃. Therefore, as the flow configuration changes, the forcing mode also
changes to achieve this maximum. On the other hand, Equation (28) indicates that ∆ψ̃2

describes the change in response directly attributed to the change in boundary condition.
For the compliant wall case studied here, g2 induces non-zero boundary values in the
streamwise and wall-normal directions as a result of the pressure at the wall that deforms
the compliant surface.

In what follows, the structure of both contributions in Equation (26) to the change in
response relative to the smooth wall case will be explored for the parameters corresponding
to the experimental compliant wall in order to understand the origin of the change in the
resolvent and experimental mode shapes.

3. Results
3.1. Flow Response and Flow-Wall Coupling

An important consideration in studying flows with compliant surfaces is whether the
coupling is one-way or two-way. In a one-way coupling, the stresses in the flow deform
the surface, but the deformations are small enough such that the mean flow properties are
unaffected; this is typically taken to be for surface deformations less than 1 viscous unit [9].
For larger deformations, the influence of the surface on the flow must be considered. To
investigate the level of coupling, the flow statistics are plotted in Figure 3 for the RW-
DRF and CW-DRF data (from actuation condition iii), as well as the canonical data, taken
from x/δ = 4.7. In all of the profiles, the RW- and CW-DRF data agree well. For the
mean velocity in Figure 3a, both profiles exhibit a deficit relative to the canonical case for
0.07 < y/δ < 0.6. The turbulence intensities and Reynolds shear stress in Figure 3b are
also similar between the RW and CW cases, having elevated energetics over the canonical
profiles. Some deviation can be seen very near the wall, particularly in the urms. In addition,
while vrms very close to the rigid wall appears to exceed that for the compliant wall in
apparent contrast to the findings of [5], this could be attributed to the differences in the
parameters. More specifically, the study of Wang et al. [5], which identified a significant
increase in vrms near the wall, had similar levels of wall deformation in viscous scale while
having significantly higher Reτ than our study. The study of Rosti and Brandt [8], at lower
Reτ , showed no significant changes in the Reynolds stress tensor for the studied case with
smallest wall deformation, which is still an order of magnitude larger in viscous scales
compared with the measured wall deformation presented here. Overall, the effect of the
elastic surface on the flow statistics appears to be minimal, suggesting that the system is
in the one-way coupling regime. Though the compliant sample was made very soft, the
one-way coupling may be explained by the low Reynolds number and thus low inertia of
the flow.
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Figure 3. Comparison of the RW-DRF, CW-DRF (both from actuation condition iii), and canonical
mean flow statistics (x/δ = 4.7): (a) mean streamwise velocity (blue), (b) streamwise (red) and
wall-normal (yellow) turbulence intensities, and Reynolds shear stress (purple). Line styles are
as follows: (solid) canonical, (dashed) RW-DRF, (dotted) CW-DRF. The vertical dash-dotted lines
indicate 0.07 < y/δ < 0.6.

The mean properties of the flow contain the contributions of all length and timescales,
and so for an effect of the surface to be observed in that context, it would have to be
spectrally broadband, high in amplitude, or both. The use of the dynamic roughness
as a deterministic input allows for a more focused analysis of more subtle interactions.
Figure 4 shows temporal power spectra of the wall-normal deformation, dy, calculated
using MATLAB’s pwelch function and averaged over the DIC field of view which was near
the leading edge of the compliant sample. Given are the spectra for the CW-unforced and
CW-DRF (actuation condition iii) studies. The two spectra are very similar in much of their
spectral content, discussed in greater detail by Huynh and McKeon [15]. A slight difference
is seen in the lowest resolvable frequency, but by far the most apparent distinction is the
peak at 5 Hz for the DRF case, corresponding to the actuation frequency. Clearly the energy
from the dynamic roughness is being transmitted to the gelatin, and without significantly
modifying the spectral content from the unforced case.

Figure 4. Comparison of the power spectra of the wall-normal deformation, dy, between the unforced
(solid) and forced (dashed) studies. Data correspond to the leading-edge FOV and have been
spatially-averaged over x and z.

3.2. Response to Forcing

Further leveraging the synthetic input, the component coherent with the forcing
frequency, ωf, can be isolated from the velocity and deformation fields. This was done by a
straightforward phase-averaging and discrete Fourier transform procedure in time [15]. (̂·)
is used to denote a quantity Fourier transformed in time and subscript ωf indicates that
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only the (ω = ωf) component has been retained. In Figure 5, the j = 0 phase snapshots
(corresponding to the roughness element lying flush with the wall) of the ωf coherent
RW-DRF and CW-DRF velocities and CW-DRF wall-normal deformation are presented,
all from actuation condition iii. Looking at the velocity modes (a–d), the RW- and CW-
DRF data once again compare well with one another. A streamwise periodic structure
is immediately apparent in both uωf and vωf , and is seen to convect downstream while
gradually decaying and drifting away from the wall. For both the RW and CW modes,
uωf undergoes a π phase jump in y, while vωf is tall and straight in y. This behavior is
consistent with a two-dimensional perturbation. Under close inspection of the velocities
near the downstream end of the measurement domain, the CW modes can be seen to
lag slightly behind the RW modes. This apparent lag is due to the CW synthetic mode
having a shorter streamwise lengthscale. Despite the two-dimensional nature of the mean
characteristics of the boundary layer, we define an effective streamwise wavelength, λxf,
and effective streamwise wavenumber, kxf, to compare the modes. This can be quantified
by approximating the velocity mode as a streamwise-travelling wave and calculating
the streamwise derivative of the mode phase to estimate kxf [14]. Figure 6 shows the kxf
values calculated for actuation conditions i, ii, and iv, as well as the value for Duvvuri
and McKeon [17]. The RW and CW data follow a linear trend over the frequency range
explored, highlighted by the lines of best fit plotted alongside them. For all actuation
conditions, the CW synthetic mode was found to have a higher kxf value than the RW
mode. This may be due to the compliant sample modifying the recirculation region just
downstream of the roughness [26] and possibly reducing the convection velocity of the
perturbation. Still, the general structure of the synthetic mode does not appear to be greatly
affected by the compliant surface.

Figure 5. Phase snapshots (j = 0) of the RW-DRF and CW-DRF ωf coherent (a–d) velocity and (e)
wall-normal deformation fields, all from actuation condition iii. For the velocities, the (a,c) RW
rigid- and (b,d) SW smooth-wall data are given for comparison, and the contour shading limits
are ±0.02 U∞ (red/blue indicate high/low speed). For the wall-normal deformation, the contour
shading limits are ±6 um.
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Figure 6. Streamwise wavenumber of the synthetic mode, kxf, plotted against angular forcing
frequency, ωf, for actuation amplitude hrms/δ = 0.042: © RW-DRF data; — RW-DRF linear fit,
kxfδ = 1.10 ωfδ/U∞ + 0.18; � CW-DRF data; – – CW-DRF linear fit, kxfδ = 1.20 ωfδ/U∞ + 0.17;4
Duvvuri and McKeon [17].

The ωf coherent wall-normal deformation in Figure 5e contains a structure that is
also streamwise periodic, although not as spanwise constant as the flow mode. There
is a travelling wave component as well as a large-scale, high amplitude component that
resembles a plate vibration mode. As discussed in Huynh and McKeon [15], the travelling
wave content is distinct from other deformation features observed in the surface and is best
attributed to a direct interaction with the synthetic flow mode. The bow to the otherwise
spanwise constant structure corresponds closely to the slight spanwise variation of the
flow mode [15]. The vibration-type mode was suggested to be the response of the gelatin to
pressure fluctuations emanating from the roughness element, despite no physical contact
between the roughness apparatus and the flat plate.

Using the kxf value estimated from the velocity fields, the ωf-kxf travelling wave
component was extracted from the dy|ωf

signal using a discrete Fourier transform in x, with

a zero-padding to spectrally interpolate to kx = kxf.
̂̂
(·) is used to denote a quantity Fourier

transformed in time and x, and subscript ωfkxf indicates that only the (ω = ωf, kx = kxf)
component has been retained. The wall-normal deformation can then be related to the
wall-normal velocity at the wall by the no-through boundary condition:

̂̂v ωfkxf
(y=0) = −iωf

̂̂d y|ωfkxf
. (29)

For actuation condition iii, the ωf-kxf deformation and wall velocity modes were
estimated to be described by:

̂̂d y|ωfkxf
= 0.03 δν exp[i(kxfx−ωft + 1.69π)] (30)̂̂v ωfkxf

(y=0) = 8 · 10−6 uτ exp[i(kxfx−ωft + 1.19π)] (31)

̂̂v ωfkxf
(y=0) provides near-wall data that can be combined with PIV data to construct a

complete picture of the synthetic flow mode as modified by the compliant surface.

3.3. Comparison of Experimental and Model Results

In the analysis thus far, the effect of the compliant wall on the flow has been minimal.
Indeed, the root-mean-square (broadband) deformation is below 1 viscous unit and so
a one-way coupling could be expected. Note that despite the small amplitude of the
wall deformation, significant flow modification can occur due to the dynamic motion of
a compliant wall, e.g., ref. [8,9,27], who identified associated changes to both the mean
flow and turbulence structure, initiated at wall deformations smaller than one viscous unit.
By taking advantage of the anticipated ωf-kxf travelling-wave content, we can investigate
the interaction within the narrow context of the synthetic mode. Streamwise and wall-
normal resolvent modes, ψx and ψy, were calculated using the rigid-wall (Y = 0) and
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compliant-wall (Y = 0.003i) resolvent code. All resolvent modes were computed at
Reτ = 410, kz = 0, matching the experimental results. The experimentally determined
streamwise wavenumber kx = 2.67 was used for the rigid wall cases and kx = 2.78 for the
compliant wall cases. However, the experimentally determined temporal frequency was
not used in the resolvent for the following reasons. First of all, the temporal frequency is
normalized using the friction velocity uτ , which was difficult to accurately determine from
the experimental results. Secondly, the resolvent modes are centered at the critical layer,
where the phase speed c+ (= ω/kx under the quasi-streamwise parallel assumption being
employed here) is equal to the local mean velocity. Although the difference between the
mean profile used for the resolvent computation and the experimental mean profile did
not change the resolvent mode shapes significantly, it had a non-negligible effect on the
critical layer location. As a result, the phase speed c+ of the resolvent modes were adjusted
so that the location of the peak in the streamwise direction matched between the resolvent
modes and the experimental results. The ωf-kxf Fourier modes from the experimental data
were calculated as previous discussed.

The resolvent response modes with and without eddy viscosity and the experimental
Fourier mode shapes are compared in Figure 7 for the rigid wall case and in Figure 8 for
the compliant wall case. The mode amplitudes have been normalized by the peak in the
corresponding streamwise mode amplitude, to preserve the relative amplitude information
between ψx ( ̂̂u ωfkxf

) and ψy (̂̂v ωfkxf
). The phase of the resolvent modes have been shifted

such that ∠ψx = ∠ ̂̂u ωfkxf
at the streamwise peak location. The phase speeds in the rigid

wall cases are c+ = 14.51 for resolvent without eddy viscosity and c+ = 15.46 for resolvent
with eddy viscosity, these correspond to ω = 38.74 and ω = 41.28, slightly lower than the
ω = 50 reported from the experiments [15].

Figure 7. Comparison of the (a,b) amplitude and (c,d) phase between the experimental results (red
solid lines with circle markers), the resolvent modes (blue dash lines), and the resolvent modes
with eddy viscosity (blue solid lines) for the rigid wall case. Figures (a,c) are the streamwise
modes, and (b,d) are the wall-normal modes. Markers for the experimental results indicate locations
where measurements were taken. Mode amplitudes are normalized by their peak streamwise
amplitude, and phases are matched at the peak location. Insets are the near wall close-up views for
y/h, y/δ ≤ 0.06. Parameters for resolvent analysis are Reτ = 410, (kx, kz, c+) = (2.67, 0, 14.51), and
Reτ = 410, (kx, kz, c+) = (2.67, 0, 15.46), without and with eddy viscosity, respectively.
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Figure 8. Comparison of the (a,b) amplitude and (c,d) phase between the experimental results (red
solid lines with circle markers), the resolvent modes (blue dash lines), and the resolvent modes
with eddy viscosity (blue solid lines) for the compliant wall. Figures (a,c) are the streamwise
modes, and (b,d) are the wall-normal modes. Markers for the experimental results indicate locations
where measurements were taken. Mode amplitudes are normalized by their peak streamwise
amplitude, and phases are matched at the peak location. Insets are the near wall close-up views for
y/h, y/δ ≤ 0.06. Parameters for the resolvent analysis are Reτ = 410, (kx, kz, c+) = (2.78, 0, 14.08),
and Reτ = 410, (kx, kz, c+) = (2.78, 0, 15.15), without and with eddy viscosity, respectively.

Although the ωf-kxf Fourier modes in Figures 7 and 8 share many features with the
resolvent modes without eddy viscosity, including the peak structure of the amplitudes,
and the shapes of the mode phases, the resolvent analysis over-predicts the amplitude of
the streamwise velocity perturbation compared with the wall-normal perturbation and
under-predicts the wall normal height of the streamwise velocity peak. The resolvent
with eddy viscosity improves the prediction of both the streamwise and wall-normal
perturbations for the RW and CW cases, consistent with the results presented in previous
work [28,29]. As for the phase information, Figure 8d shows a sharp deviation of the
phase of ̂̂v ωfkxf

and both the resolvent modes for the CW profile relative to the RW case.
However, the variation is in the opposite sense, with ̂̂v ωfkxf

consistent with a downstream
tilted structure, while the resolvent modes with and without the eddy viscosity depict an
upstream inclination. Still, the variation of the phase of ̂̂v ωfkxf

suggests that a full π jump
might be observed if more near-wall data were available. Note that the expected phase of
1.19π for ̂̂v ωfkxf

at the wall based on the deformation data in Equation (31) does not match
particularly well with the CW profile, which attains a value of 1.45π at the lowest resolved
point. This is not entirely surprising, as only the ωf-kxf coherent wall-normal deformation
has been considered here. The other spatio-temporal scales may influence the observed
phase of ̂̂v ωfkxf

at the wall by inducing further wall deformation not accounted for here.
Additionally, given the high water content of the gelatin, it is possible that the interface
between the solid and fluid became semi-permeable, weakening the assumption of a no
through-flow boundary condition.

Since the experimental results for RW and CW lead to the identification of different kx
values, which strongly affects the peaks locations of the experimental Fourier modes, the
RW and CW results are not compared directly with each other to determine the effect of
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the compliant wall. Instead, the resolvent modes with the same wavenumbers are used to
isolate and identify the effect of the compliant wall in Figure 9.

Figure 9. Comparison of the resolvent modes in the (a,c) the streamwise direction ψx, (b,d) wall-
normal direction ψy between the rigid wall (blue solid lines) and compliant wall Y = 0.003i (red dash
lines). Figures (a,b) are mode amplitudes, and (c,d) are mode phases. The resolvent parameters are
Reτ = 410, (kx, kz, c+) = (2.78, 0, 14.08) for both cases. Mode amplitudes are normalized by their
peak values, and phases are set to zero at the critical layer. Insets are the near wall close-up views for
y/h ≤ 0.06.

The compliant wall with wall-admittance Y = 0.003i is very close to a rigid wall; in
the resolvent prediction in Figure 9, the RW and CW mode shapes match very well except
in the near wall region. Very close to the wall, the amplitude of the streamwise resolvent
mode for the CW deviates from the RW case and has a non-zero value at the wall as a result
of the CW boundary condition given by Equation (11). For the wall-normal modes,∠ψy has
a π jump very near the wall for the CW, while the RW mode has much less variation. This
can be understood via the wall-admittance term in Equation (19). For a purely imaginary
Y (with a positive imaginary part), the phase difference between ψy and ψp is required to
be π/2 at the wall. Outside the near-wall region, ψy and ψp have been observed to have a
nearly constant phase difference of −π/2 [30]. Furthermore, Luhar et al. [30] showed that
the pressure modes are essentially constant throughout the entire domain. Then in order
to satisfy the phase boundary condition with an imaginary Y, ψy is required to undergo
a π phase jump near the wall, as seen in the inset of Figure 9d. A signature can also be
seen in the amplitude of ψy, as shown in the inset of Figure 9b. Looking near y = 0, a local
minimum is seen in |ψy|, concurrent with the π phase jump. These features were observed
in previous resolvent-based opposition control studies [31]. From the perspective of the
resolvent framework, the purely elastic wall mimics the action of the wall transpiration in
an opposition control scheme, where wall jets oppose the vertical velocity at a detection
plane near the wall, enforcing a π phase jump and establishing a ‘virtual wall’.

Unlike the resolvent prediction, the near-wall amplitude of ̂̂v ωfkxf
for the CW in the

inset of Figure 8b does not exhibit a virtual wall signature. This may be due to the fact that
a Fourier analysis in x assumes homogeneity in x. This is not strictly true, as the boundary
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layer flow is developing in the streamwise direction and, potentially more relevant, the
gelatin sample was not perfectly smooth nor were the surface deformations limited to
ωf-kxf waves.

To circumvent the streamwise inhomogeneity of the flow and surface, a conditional
average along x was devised based on the anticipated cusp feature of |ψy|. The wall-normal
gradient of |v̂ωf | was calculated at each streamwise location, the data were conditioned on
whether the first three points from the wall had a negative gradient, i.e., ∂|v̂ωf |/∂y < 0.
This condition was applied to both the RW and CW data for x/δ ∈ [2, 7] and for actuation
condition iii to check for any systematic bias. The x locations where this condition was
satisfied are plotted in Figure 10 for both the RW and CW data. 10% of the RW data met
the criterion, while 64% of the CW data satisfied the condition. This statistically significant
increase suggests a change to a physical structure close to the wall between the RW and
CW cases.

Figure 10. A visualization of the streamwise locations where the near-wall
∂|v̂ωf |

∂y < 0 condition is
met for the compliant wall experiment (red squares on the top line), and the rigid wall experiment
(blue circles on the bottom line).

Before averaging across observations in which the cusp criterion was satisfied, the
cusp location was estimated by the near-wall zero-crossing of ∂|v̂ωf |/∂y for each x. The
profiles |ûωf | and |v̂ωf | were shifted in y such that the cusp point occurred at the same
wall-normal location, y0. Finally, the shifted profiles were averaged together, yielding
|ûωf |cond and |v̂ωf |cond. Note that phase information is lost in this process, while variation
in the wall-normal locations of the cusplike features that would be masked in a simple
averaging is retained. Efforts were made to develop an analogous procedure for the mode
phases, but were hindered by noise in the data.

The conditionally averaged mode amplitudes for the CW case, |ûωf |cond and |v̂ωf |cond,
are plotted in Figure 11 in comparison with the resolvent modes with eddy viscosity. They
are nearly identical to the ωf-kxf Fourier mode amplitudes except in the near-wall region.
The near-wall region of |v̂ωf |cond is shown in the insets of Figure 11b, where a clear cusp
feature is now observed. The averaging procedure was conditioned on this feature, so its
presence is not unexpected. However, the similarity to the ψy mode is quite striking and
is given more weight by 64% of the profiles containing this characteristic. The y-location
and amplitude at the cusp of |v̂ωf |cond do not agree well with the resolvent predictions as
shown in the inset of Figure 11b. This is at least partly due to the conditional averaging
process that shifts the profiles at each x station in the wall-normal direction to line up the
cusp locations, and also likely due to the spatial development of the boundary layer in
the streamwise direction. Nonetheless, when combined with the observed phase variation
of ̂̂v ωfkxf

in Figure 8d, the experimental results confirm the conclusion from the resolvent
analysis that the effect of the compliant wall on the synthetic flow mode is analogous to
the sustenance of a virtual wall.
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Figure 11. Comparison of the amplitude between the conditional averaged experimental results (red
solid lines with square markers), and the resolvent mode with eddy viscosity (blue solid lines) for
the compliant wall. Figure (a) is the streamwise modes, and figure (b) is the wall-normal modes.
Markers for the experimental results indicate locations where measurements were taken. Mode
amplitudes are normalized by their peak streamwise amplitude. Insets are the near wall close-up
views for y/h, y/δ ≤ 0.06. Parameters for resolvent with eddy viscosity are Reτ = 410, (kx, kz, c+) =
(2.78, 0, 15.15).

3.4. Compliant Wall as a Boundary Forcing

Turning back now to the treatment of the compliant wall boundary condition as a
forcing to the rigid wall resolvent system, the amplitude and phase of the g1 component of
the boundary forcing for the relevant parameters of the experiment are plotted in Figure 12.
As previously explained, the form of g2 is not unique, and is therefore not plotted here.
Because the wall with admittance of Y = 0.003i is close to being rigid, the changes due to
the compliant wall boundary conditions are small, as observed previously in Figure 9. As a
result, the magnitude of the |g1| component of the boundary forcing is very small.

In order to examine the effect of g1 and g2, we will examine the change in response
they induce, ∆ψ̃1 and ∆ψ̃2, by plotting and comparing the magnitudes of three quantities
in Figure 13. The first quantity is the non-normalized response for the RW case denoted as
ψ̃ plotted in solid blue lines as reference. Additionally, the streamwise, spanwise velocities
and the pressure of ψ̃ + ∆ψ̃1 and ψ̃ + ∆ψ̃2, which capture the changes due to the g1 and g2
components of the boundary forcing are plotted. ∆ψ̃1 has very little effect on the response
mode in the streamwise and spanwise directions, however, the wall pressure amplitude is
increased by a small amount relative to the RW case. ∆ψ̃2, on the other hand, accounts for
most of the change in mode shape, including the non-zero boundary values and the local
minimum in ∂|ψ̃y|/∂y. As shown in Equation (28), ∆ψ̃2 arises because of the difference in
the operator between the smooth and rough wall cases, ∆H, i.e., the difference in imposed
boundary conditions.

Figure 12. The (a) amplitude and (b) phase of the g1 component of the boundary induced forcing.
Blue solid line is the streamwise direction forcing g1x and red dash line is the wall-normal direction
forcing g1y. The parameters are Reτ = 410, and (kx, kz, c+) = (2.78, 0, 14.08) for the compliant wall
with Y = 0.003i.
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Figure 13. The amplitude of ψ̃ (blue solid lines), ψ̃ + ∆ψ̃1 (red dash lines), and ψ̃ + ∆ψ̃2 (yellow dash
dot lines) in the near wall region of y/h ≤ 0.06. Subplots from left to right are (a) the streamwise
response mode |ψ̃x|, (b) the spanwise response mode |ψ̃y| and (c) the pressure response mode |ψ̃p|.
Parameters are Y = 0.003i, Reτ = 410, (kx, kz, c+) = (2.78, 0, 14.08).

As previously explained, the role of g1 is to change the forcing mode shape to max-
imize the amplitude of the output, which is given by the singular value σ. For a case
where the effect of the boundary condition is to reduce σ, g1 acts to reduce the impact of
that boundary condition. For example, in the case of a compliant wall that reduces σ, g1
decreases the impact of the boundary condition by reducing the wall pressure to reduce
wall deformation. On the contrary, in a case where the effect of the boundary condition
is to increase σ, g1 acts to increase the impact of that boundary condition. A reduction
in the singular value can be used as a indication of drag reduction and vice versa, for
example in the compliant wall studies of Luhar et al. [10] and Luhar et al. [24], and in the
riblet studies of Chavarin and Luhar [32]. In these studies, the Fukagata–Iwamoto–Kasagi
(FIK) identity [33] that is commonly used in drag reduction studies is used to describe
the relationship between changes in the response mode shapes and the singular values to
model drag reduction under idealized conditions. Therefore, g1 can be interpreted as a
term that acts to oppose drag reduction and assist drag increase. For the compliant wall
with admittance of Y = 0.003i studied here, the boundary conditions increase the singular
values, and Figure 13c shows that the amplitude of the pressure at the wall for ψ̃ + ∆ψ̃1 is
indeed higher than the RW case. Future work will explore more of the parameter space
and attempt to draw more universal conclusions.

4. Discussion and Conclusions

This work utilized experiments and resolvent analysis to study the response of a
compliant surface to the dynamic roughness forced synthetic mode in a turbulent boundary
layer. Flow measurements were taken with 2D-PIV and surface deformation measured
with stereo-DIC. The experimental Fourier modes were compared to resolvent modes with
and without eddy viscosity and similar key features were observed. The resolvent modes
highlighted the ‘virtual wall’ feature as a result of the compliant surface, identifying the
change in near-wall structure of the resolvent modes arising from the change in boundary
condition, and provided a method to model the effect of the boundary condition as an
additional forcing.

The experimental measurements showed minimal difference in mean profile and flow
statistics between the RW-DRF and CW-DRF cases and suggested a one-way coupling
between the fluid and surface in the classical sense, or at least only mild changes relative
to the rigid wall turbulence structure [5]. This may be the result of the low Reynolds
number, therefore low inertia flow not causing enough surface deformation to create
significant changes in the flow statistics. Indeed DIC measurements showed an rms
surface deformation much smaller than the viscous length scale of the flow. On the other
hand, the synthetic mode generated by the dynamic roughness introduced a strong peak
in the power spectrum of the surface deformation at the forcing frequency ωf, without
significantly modifying the spectral content of other frequencies. This enabled a more
focused analysis of the mode coherent with the forcing frequency. The measurements
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were Fourier transformed in time, and streamwise periodic structures were apparent in
the ωf components. Despite the two-dimensional nature of the mean characteristics of
the boundary layer, the modes were approximated as streamwise-traveling waves. The
dominant streamwise wavenumber kxf was computed and the ωf − kxf traveling wave
component was extracted and compare with resolvent predictions.

The experimental Fourier modes for both the RW and CW cases were compared to
the resolvent modes, which were computed under a number of relatively strong assump-
tions. The 1D resolvent analysis assumed a quasi-parallel flow, while the experimental
measurements of the ωf mode indicated a slowly developing boundary layer with decay-
ing mode amplitude. However, as discussed in Jacobi and McKeon [16], the resolvent
analysis can still capture significant features of the mode, with some discrepancies due
to the non-parallel flow effects. Additionally, the mean profile used for the resolvent
computations was a 1D channel mean profile generated using the eddy viscosity model.
The difference between the mean profile used for the resolvent analysis and that observed
in the experiments did not significantly change the mode shapes except in the outer region
of the flow where the influence of the semi-infinite boundary layer domain is important.
However, later results indicated that the effect of the compliant wall with small admittance
parameter Y resulted in changes only in regions very close to the wall, which was the
focus of most of the analysis. The same mean profile was used for both the RW and CW
resolvent mode computations, which can be justified by the one-way fluid-surface coupling
confirmed by the small surface deformation measurements and the small differences in
the measured mean profiles for both cases. Together, these simplifications significantly
reduced the costs for the resolvent computation while still capturing the most significant
aspects of the structure of the modes. The comparison between the experimental and
model responses of the flow to the synthetic excitation by dynamic roughness for the RW
and CW cases demonstrate that resolvent analysis is capable of identifying the type of
near-wall changes that may underlie the observations of changes to turbulence structure
for even sub-viscous-scale wall deformations [5,8,9], a topic for future work.

Although the resolvent analysis captured the trends of the experimental Fourier
modes, the addition of an eddy viscosity improved the agreement with the experiment.
The resolvent modes with eddy viscosity improved the mode shape of the streamwise
velocity, and increased the energy in the wall-normal direction, consistent with previous
results in Symon et al. [29] and Illingworth et al. [28]. As for the compliant wall modes,
both resolvent with and without eddy viscosity predicted a virtual wall signature in the
wall-normal velocity, stemming from the purely imaginary wall admittance (corresponding
to a purely elastic surface). This was used to construct a conditional average that revealed
the virtual wall feature in the experimental data, a subtle detail that would have been
difficult to identify without the lens of an accurate model. The data and model prediction
suggest that the elastic compliant surface acts to oppose the wall-normal velocity of the
synthetic flow mode near the wall, in a manner similar to opposition control. The fact that
this modification did not readily appear in the flow statistics indicates that the contributions
of other prevailing flow scales must be accounted for, leaving the door open for continued
development of the resolvent-based framework.

Additionally, the resolvent analysis led to a method of modeling the effect of the
boundary conditions as an extra forcing. The terms contributing to the boundary forcing
were split into a g1 term that is the result of the change in forcing mode, and a g2 term that
is the direct result of the change in boundary conditions. Detailed analysis showed that g1
opposes (assists) the effect of the change in boundary conditions when the singular values
are being decreased (increased). The method presented here can potentially be used for
simplifying future numerical studies, especially eddy resolved simulations. For example,
previous work by Varghese and Durbin [34] represented the effect of the surface roughness
with a drag force in eddy resolving simulations. The drag force, which was quadratic in
velocity and confined to a zone next to the wall, was able to capture the dominant effects
of roughness geometries. However, the drag constant in the model was selected to match
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the skin friction of a simulation with roughness geometry. Motivated by this result, the
formulation of the boundary forcing presented here can potentially provide information
about the forcing required to capture the effects of certain boundary conditions a priori,
although several questions remain for future studies, including methods to generalize the
linear boundary conditions to more general surface features, the selection of the resolvent
mode weights, and interactions between modes with different wavenumbers.

In conclusion, the disparity in the respective costs of performing a challenging experi-
mental campaign on a turbulent boundary layer over a compliant wall with deterministic
forcing over a period of many months, and the 1D resolvent analysis, which runs in seconds
on a standard laptop, underscores the utility of this tool for design of passive (and active)
control strategies for turbulent flows.
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