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Abstract: A comprehensive summary and update is given of Brouwers’ statistical model that was
developed during the previous decade. The presented recapitulated model is valid for general
inhomogeneous anisotropic velocity statistics that are typical of turbulence. It succeeds and improves
the semiempirical and heuristic models developed during the previous century. The model is
based on a Langevin and diffusion equation of which the derivation involves (i) the application of
general principles of physics and stochastic theory; (ii) the application of the theory of turbulence
at large Reynolds numbers, including the Lagrangian versions of the Kolmogorov limits; and
(iii) the systematic expansion in powers of the inverse of the universal Lagrangian Kolmogorov
constant C0, C0 about 6. The model is unique in the collected Langevin and diffusion models of
physics and chemistry. Presented results include generally applicable expressions for turbulent
diffusion coefficients that can be directly implemented in numerical codes of computational fluid
mechanics used in environmental and industrial engineering praxis. This facilitates the more accurate
and reliable prediction of the distribution of the mean concentration of passive or almost passive
admixture such as smoke, aerosols, bacteria, and viruses in turbulent flow, which are all issues of
great societal interest.

Keywords: statistical turbulence; dispersion; Kolmogorov; Langevin; diffusion equation

1. Introduction

Early models of turbulent flow were of a rather elementary form. Focus was on the
contribution of fluctuations on mean flow quantities. This was achieved by the introduction of
turbulent versions of transport coefficients: turbulent viscosity, turbulent diffusion coefficient,
and turbulent heat conductivity. The coefficients were dimensioned by combinations of flow
parameters and calibrated with empirically assessed constants, e.g., Taylor [1], Prandtl [2],
and von Karman [3].

More advanced models concerned statistical descriptions of the fluctuations them-
selves. They were restricted to isotropic homogeneous turbulence and were used to predict
dispersion, e.g., Taylor [4] and Batchelor [5]. Analysis of inhomogeneous anisotropic tur-
bulence is more recent, e.g., Durbin [6], van Dop et al. [7], Thomson [8], Pope [9], and
Wilson and Sawford [10]. Because dissipation turbulence is naturally inhomogeneous and
anisotropic, its treatment is a demanding task, and requires significant extension and alter-
ation of well-established homogeneous isotropic models, developed during the previous
century for molecular chaos and initially applied in turbulence.

A statistical model based on a complete formulation of the Langevin and diffusion
equation that considers inhomogeneity and anisotropy was developed during the last
decade by Brouwers [11–14]. The present paper gives a comprehensive summary and up-
date of this work. It positions the model in the broader context of statistical modelling and
the physics of random molecular motion. Focus is on the main results, their fundamental
basis, and the general nature for describing dispersion by large scales of turbulence. Their
potential for application in and improvement of codes of computational fluid dynamics
used in environmental and industrial engineering is demonstrated.
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2. General Aspects of Statistical Modelling

Modelling the statistics of chaotic motion can be quite a challenge; see, e.g., the
textbooks of Landau and Lifshitz [15], van Kampen [16], Stratonovitch [17], and Reichl [18].
An example is the evolution of the statistical description of molecular motion in gases
at low density during the previous century. The first hindrance is the presumption of
chaotic motion and its subsequent description by probability distributions. The motion
of each molecule can be safely assumed to be governed by the basic laws of mechanics.
However, the result of chaotic motion of a very large number of colliding molecules and
its description in terms of probability distributions by solving the basic laws in analytical
form has not been possible. The justification and acceptance of the models is primarily
due to their capacity to predict macroscopic phenomena. A new option for analysis and
prediction is the numerical solution of basic equations for large numbers of molecules using
fast computers: Wikipedia [19]. This possibility is also emerging for turbulence analysis by
the direct numerical simulation of Navier–Stokes equations, e.g., Hoyas and Jimenez [20],
and Kuerten and Brouwers [21]. The required computing capacity, however, is huge and
limits cases.

The proposition of outcome uncertainty and its probabilistic description is sometimes
a question of obvious intuition. An illustrative example is dice throwing. That each
outcome of the six numbers has an equal chance to appear seems obvious. However,
predicting this by simulating the throw using the laws of mechanics is a formidable task.
There are two possible reasons for the unpredictability of outcome. First, the outcome
is extremely sensitive to the initial condition of the throw position, its velocity, and the
orientation of the die. A second reason could be so-called bifurcation during the roll of the
die. When the die comes at one of its sharp edges, it can fall in one or another direction.
This would mean that, even under perfect identical conditions for every throw, i.e., the
same initial conditions and perfect form of the die, the outcome could still be different.
This second possibility of inherent chaotic outcome was emphasized in the third edition of
van Kampen’s textbook [16] (Ch. III, par. 2f).

Whatever the underlying reason of unpredictability, the proposition of probabilistic
behavior and its description in terms of probability distributions were successfully devel-
oped and applied in many areas of science. Once the concept of randomness is accepted,
the question arises of how to formulate a model. It is preferably general in nature or has at
least specified accuracy in specified areas of application. The treatment of molecular chaos
is a shining example in this respect. It serves as a boundary condition for the treatment of
turbulence presented in this paper. We first consider the rudimentary models for turbulent
flow applied in engineering. Then, we turn to the diffusion approach. Lastly, we formulate
a Langevin model that takes into account fluctuation inhomogeneity and anisotropy. This
last part and the results derived from it constitute the main part of this paper.

3. Turbulence Models in Engineering

Turbulence in fluid flow is a well-known phenomenon. It occurs when the Reynolds
number is sufficiently large, in which case, the initially laminar flow transforms into a
fluctuating one. A well-known example is the flow of a fluid in a pipe. The Reynolds
number can then be defined by

Re =
ud
v

, (1)

where

u = mean fluid flow in the pipe (m/s);
d = diameter (m); and
v = kinematic viscosity (m2/s)

The Reynolds experiments of 1883, e.g., Monin and A.M.Yaglom [22], found that,
for Re of about 2000 and larger, flow becomes turbulent. On top of the mean flow, fluid
velocities irregularly fluctuate with time. Many measurements of fluid velocities at fixed
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points in fluid space have been performed since that time. They tend to show stationary
Gaussian behavior, supporting the idea of attempting to model turbulent fluctuations by
statistical models.

A widely used approach to describe turbulent fluid flow is by time averaging the con-
servation equations of continuum fluid mechanics and invoking the gradient hypothesis.
For the conservation of mass, and assuming fluid incompressibility (or almost incompress-
ible, henceforth assumed throughout this paper) we have

(
u0

i + u′i
) ∂C

∂xi
= DM ∂2C

∂xi∂xi
, (2)

where

xi = space coordinate (m/s);
u0

i = u0
i (x) = mean fluid velocity in direction xi;

u′i = u′i(x, t) = fluctuating component of fluid velocity in direction xi;
C = C(x, t) = concentration of passive admixture particles in the fluid; and
DM = diffusion coefficient of molecular motion.

Decomposing concentration C in a mean component C̄ = C̄(x) and a fluctuating
component C′ = C′(x, t), and time averaging the equation at fixed point x, we obtain

u0
i

∂C̄
∂xi

+ u′i
∂C′

∂xi
= DM ∂2C̄

∂xi∂xi
, (3)

where the overbar denotes time averaging at a fixed position in space, and t is time. The
“overbar term” shows a connection between mean properties and fluctuations, which is
known as the closure problem, as it prevents solving Equation (3) for mean properties. A
similar situation occurs in the averaged versions of the momentum and energy equations.
This is the result of the presence of nonlinear convective terms in the Eulerian represen-
tations of the conservation laws of continuum fluid mechanics. A way out of the closure
problem is to postulate the gradient hypothesis inspired by presumed similarity with
molecular transport. For the “overbar term” in Equation (3), one can write, e.g., Hinze [23],
Schlichting and Kersten [24]

u′i
∂C′

∂xi
= − ∂

∂xi

(
DT

ij
∂C̄
∂xj

)
, (4)

where DT
ij = DT

ij(x) is the turbulent diffusion constant. The arguments leading to the above
formulation are more intuitive than exact. The theory is often termed as “phenomenological”
or “semiempirical”, with the turbulent diffusion constant being empirically determined.
In the absence of better alternatives, numerical codes of computational fluid mechanics
employing the gradient hypothesis and extensions or improvements that rest on basically
the same concept are widely used in engineering praxis, e.g., Hanjalić and Launder [25].

4. Diffusion Approximation

A more advanced way of modelling the dispersion of admixture or (almost) passive
particles in turbulence is through the application of the stochastic theory of diffusion:
Stratonovich (par. 4.8 and 4.9) [17], Brouwers [26], and van Kampen (sec. XVI.5) [16]. The
theory starts with a Lagrangian description of the displacement of a marked fluid particle:

dxi(t)
dt

= u0
i (x(t), t) + u′i(x(t), t), (5)

where xi = xi(t) is the position of a marked fluid particle that follows fluid flow and
starts at

x(t) = xo at t = 0 (6)
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The mean flow component can be eliminated by transforming the problem into
coordinates that move with the mean velocity for each realization of xi(t). Subsequently,
one can convert the fluctuation equation for transformed variable x′i(t) into a Fokker–
Planck equation for the probability density of x′i . Nonlinearity in this transformation is
handled by the successive iteration of the correlation functions. The resulting diffusion
equation for the ensemble-averaged concentration C̄ = C̄(x, t) of passive admixture or
probability density of particle position p(x, t) = C̄(x, t) reads as

∂C̄
∂t

+ u0
i

∂C̄
∂xi

=
∂

∂xi

(
DT

ij(x)
∂C̄
∂xj

)
(7)

where DT
ij(x) is defined by the integral of the time correlation of fluctuating velocities in a

frame moving with the mean flow

DT
ij(x) =

∫ ∞

0
u′i(x, t)u′j(x

−τ , t− τ)dτ, (8)

where the moving coordinates are defined by

dxt
i

dt
= u0

i (x
t, t), x0

i = xi(t = 0). (9)

In Equation (7), we disregarded diffusion by molecular motion. Its contribution in
turbulent flow is generally small compared to that of turbulent diffusion. In Equation (8),
x−τ is the position of a marked fluid particle at time t− τ while being at x at time t when
moving according to mean Eulerian fluid velocity.

In the case of inhomogeneous turbulence, as is the case in real turbulence, the turbulent
diffusion coefficient as defined above varies with space coordinate x. The result is that the
solution of Equation (7) is a non-Gaussian function. Thus, while distributions of velocities
in turbulence can be treated as Gaussian or almost Gaussian, the statistics of dispersion
cannot. Only in the case of the theoretical abstraction of homogeneous turbulence does the
turbulent diffusion coefficient become a constant and the resulting distribution Gaussian.
This coincides with the descriptions of Taylor [4] and Batchelor [5].

The above results suffer from severe limitations. First, space–time correlations are
difficult to measure or calculate, particularly in the inhomogeneous case where the function
is different at each position in space. Second, the formulation of Equations (7)–(9) stems
from an expansion procedure in which it is assumed that the correlation time of velocities is
small compared to that of particle positions. There is no small dimensionless combination
of flow parameters at hand that can serve as a small parameter to support the expansion.
To overcome this problem, attention is focused on the method of a Langevin equation or
fluctuation equation for velocity rather than for displacement.

5. Langevin Model in Molecular Physics

To model molecular motion, a healthy starting point is the formulation of a Langevin
equation for particle velocity, e.g., van Kampen [16]. As this approach serves as a guidance
to the formulation of a Langevin model for turbulent dispersion, we summarize the steps
in the solution of the molecular problem. (1) The white-noise form of the forcing term in
the Langevin equation is adopted on the basis that the acceleration of molecules occurs
in a very short time of collision compared to the free-flight time of the molecules in the
mostly empty space among gas molecules. (2) Another feature of random motion is its
independence on direction, i.e., isotropy: the three components of the equation are the same.
(3) For a large number of molecules being homogeneously distributed over considerably
sized space, the coefficients can be assumed to not vary with space. (4) Gaussian behavior
can be invoked on the basis of the central limit theorem. It implies a linear dependency
of velocity of the damping term in the equation. (5) Specification of the coefficient of the
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white-noise term follows from connection with the molecular properties of the gas. (6) The
specific form of the damping term follows from the relation for resistance that molecules
experience when moving through a gas. (7) Considering the long-term behavior of the
Langevin equation, one arrives at the description of self-diffusion or marked molecules
in a gas. (8) A formal relation for the diffusion constant thus results as a function of
molecular properties. (9) Similarly, one can derive formal expressions for viscosity and
thermal conductivity relating these quantities to molecular properties: Reichle [18]; and
Bird, Stewart, and Lightfoot [27]. (10) This provides a solid basis for the phenomenological
descriptions of fluid mechanics proposed in the 19th century.

In the subsequent section, we apply a similar systematic to formulate a Langevin
equation for turbulent dispersion. The difference is the inclusion of inhomogeneity and
anisotropy, and the description of the parameters in the equation by Eulerian flow statistics.
The resulting Langevin and diffusion equation derived from it take a unique position in
the collected Langevin and diffusion models of physics and chemistry. They reveal to what
extent the phenomenological descriptions of turbulent diffusion of previous century have
a fundamental basis.

6. Langevin Equation for Turbulent Flow Including Kolmogorov Similarity

Turbulent flow occurs for large values of the Reynolds number Re, a situation that is
frequently encountered in practice. Here, Re can be specified by Equation (1), taking for u
and d typical values for average velocity and the size of flow configuration. For Re >> 1,
the time over which fluid particle accelerations decorrelate compares to the decorrelation
times of particle velocity as Re−

1
2 to 1, e.g., Monin and Yaglom (sec. 21.3) [28]. This forms

the basis for assuming that the velocity process can be represented by a Markov process.
The corresponding Langevin equation reads as

dv′i
dt

= ai(v′, x) + bij(v′, x)wj(t), (10)

where the position of the fluid particle is described by

dxi
dt

= u0
i (x(t)) + v′i, (11)

and i,j =1, 2, 3. In the above equations,

t = time
v′i = v′i(t) = fluctuating component fluid particle velocity at time t;
xi = xi(t) = particle position at time t;
ai(v′, x) = damping function;
bij(v′, x) = amplitude of white noise;
wj(t) = white noise of unit intensity; and
u0

i (x(t)) = velocity based on mean Eulerian velocity evaluated at particle position x(t)

Fluid velocities in a fixed frame of reference, the so-called Eulerian description, are
indicated by u, while velocities of fluid particles that move with the flow, the Lagrangian
description, are indicated by v. The turbulent flow field is considered to be stationary in a
fixed frame of reference. Statistical averages of Eulerian flow variables can be calculated by
time averaging, which is indicated by an overbar or superscript 0.

The white-noise amplitude can be specified by implementing the Lagrangian version
of Kolmogorov’s similarity theory of 1941, also referred to as K-41 theory: Kolmogorov [29];
and Monin and Yaglom (sec. 21.3) [28]. This yields

bij(v′, x)wj(t) = {Coε(x)}
1
2 wi(t), (12)
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where C0 is a universal Lagrangian-based Kolmogorov constant, and ε = ε(x) energy
dissipation rate averaged at fixed position x

ε =
1
2

ν

(
∂u′i
∂xj

+
∂u′j
∂xi

)2

(13)

The observation that second-order correlations of fluid particle accelerations tend to
those of a delta-correlated process when Re >> 1 is in itself not sufficient to justify the
Langevin model. The description of the forcing term by Gaussian white noise leads to
applying ordinary nonintermittent Kolmogorov (K-41) theory. The effects of intermittency,
apparent in corrections in higher-order structural functions, are not accounted for in the
Langevin model. For that purpose, one can adopt a fractal model based on Kolmogorov’s
refined similarity theory: Monin and Yaglom (sec. 25.2) [28]. However, statistical averages
of particle displacement that determine turbulent dispersion change little under such
approach: Monin and Yaglom [28], and Borgas [30]. The effect of intermittency is apparent
in small viscous scales, which govern the acceleration process, rather than in large energetic
scales, which govern the velocity process of turbulence. In many applications, a Langevin
model resting on K-41 theory can be considered to be a sound approach for describing
mean dispersion on distances of the large scales of turbulence. Models dealing with fractals
impact descriptions of local particle displacement or displacements of particular particles
on larger distances. Such descriptions are beyond the scope of this work.

7. Specification of Damping Function by C−1
0 Expansion

The specification of the damping term in a form that is generally applicable has long
been an issue. A way out was proposed in which Kolmogorov constant C0 is used as the
basis for an expansion (Brouwers [11–13]). Solutions are described by an expansion in
consecutive powers of C−1

0 . The expansion is not related to a dimensionless combination of
parameters, which can attain a vanishingly small or large value. Such a combination does
not exist. Instead, C0 is used as a scaling parameter, facilitated by its autonomous position
in statistical turbulence at a large Reynolds number. The scaling parameter enters by the
white-noise term and results in specific scales with respect to C0 of each of the terms on
the basis of required balances between them. The accuracy of the expansion depends on
the truncation of subsequent terms. According to measurements and data from numerical
simulations, C0 has a value of about 6 (Pope, p. 504 [9], Kuerten and Brouwers [21], Sawford
and Yeung [31]). The accuracy of the resulting expressions is discussed in Section 10.

For the terms in Langevin Equations (10)–(12) to be of equal power in C0, the damping
function must be proportional to C0; the time of correlation and hence statistically relevant
time must be proportional to C−1

0 , and the white-noise term must be proportional to C0.
The relative displacement during correlation is proportional to C−1

0 . This initial scaling
allows for a number of approximations. To the leading order in C−1

0 , the displacement of
a particle is small, and values of fixed-point statistical quantities used in the parameters
of the Langevin equation can be represented by their values at marking point x = x0. We
can thus talk about a homogeneous statistical process in the initial stages after marking.
During that short time, the dissipation of energy by viscous action is small. The change in
the Hamiltonian by viscous dissipation (d/dt)H ≈ ε(x0) is small and proportional to C−1

0 .
The statistical process is initially one that can be described by Einstein’s fluctuation theory,
e.g., Reichl [18]. In the leading order formulation with respect to C−1

0 , the damping term
is linear in velocity, satisfies Onsager symmetry, and its magnitude is determined by the
fluctuation-dissipation theorem. As a result,

a′i(v
′, x) = −1

2
C0λijεv′j, (14)
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where λij is the inverse of the covariance tensor of Eulerian velocity field

λij = σ−1
ij =

(
u′iu
′
j

)−1
. (15)

8. Nonuniqueness

The next-to-leading terms in the formulation of the damping term can no longer
be assumed to obey Einstein’s fluctuation theory. An expression for these terms can be
obtained by applying the well-mixed criterion of Thomson [8]: the damping term must
comply with the Eulerian velocity description as given by the fixed-point representation of
the Fokker–Planck equation associated with Equations (10)–(12). The damping term can
then be written as

a′i = −
1
2

C0λijεv′j +
1
2

λjmu0
k

∂σmi
∂xk

v′j +
1
2

λjn
∂σij

∂xm
(v′mv′n + σmn) + a′Hi (16)

The implementation of the well-mixed condition, however, does not lead to complete
specification. This is reflected by the presence of term a′Hi in Equation (16). To satisfy well-
mixing, a′Hi should satisfy a first-order differential equation in v′ for which a multitude of
solutions exist: postulating a′Hi = 0 leads to a Langevin model considered by Thomson [8].

dv′t
dt

= −1
2

C0λijεv′j +
1
2

λjmu0
k

∂σmi
∂xk

v′j +
1
2

λjn
∂σij

∂xm
(v′mv′n + σmn) + (Coε)

1
2 wi(t) (17)

According to the outcome of the C−1
0 -expansion, whatever the form of a′H , its con-

tribution to the damping term is limited to one of relative magnitude O(C−1
0 ) compared

to the leading linear term. Its contribution reduces even to one of relative magnitude
O(C−2

0 ) in the description of the statistics of particle velocity and position on the time
scale of the diffusion limit. However, this is only if a′Hi satisfies the well-mixed condition
(Brouwers [12,13]). The well-mixed criterion then defers nonuniqueness to terms O(C−2

0 )
in the diffusion approximation (see next section). Equations (10)–(12) and (17) can thus be
used to simulate particle tracks with a truncation error of O(C−2

0 ).

9. Diffusion Equation

Our prime objective is the statistical description of fluid-particle displacement or
admixture dispersion. For that purpose, one can perform time simulations using the
Langevin equation. A more direct way to describe these statistics is provided by the
diffusion approximation. It can formally be derived from the Fokker–Planck equation by
stretching time by C0, and expanding terms in powers of C−1

0 (Brouwers [12,13]). The result
is the diffusion equation describing ensemble-averaged passive admixture concentration
C̄ = C̄(x, t) at fixed position x and time t; equivalently, the probability density distribution
of marked fluid particles p(x, t) = C̄. Probability density is related to the joint density
of v′ and x by p(x, t) =

∫ ∞
−∞ p(v′, x, t)dv′, where the joint density is determined by the

Fokker–Planck equation associated with the Langevin equation presented in the previous
section. The diffusion equation thus obtained is

∂C̄
∂t

+ u0
i

∂C̄
∂xi

=
∂

∂xi

(
Dij

∂C̄
∂xj

)
, (18)

where Dij is turbulent diffusion coefficient

Dij = 2C−1
0 ε−1σinσnj + 2C−2

0 ε−2σliσjku0
n

∂σlk
∂xn
− 4C−2

0 ε−1σkju0
n

∂

∂xn

(
ε−1σimσmk

)
, (19)

which was subjected to the truncation of terms of relative magnitude O(C−2
0 ).
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The next-to-leading-order terms in the expression for the diffusion coefficient are
the result of the transformation of the Langevin equation in terms of relative velocity ν′i
according to Equation (10) into a diffusion equation expressed in the fixed inertial frame.
All of the next-to-leading-order terms in the damping term of the Langevin equation (cf.
Equation (16)) do not contribute to the same order in the diffusion model. Their contribu-
tions all reduce to terms of order C−2

0 , relative to the leading terms. This is a consequence of
the Gaussian structure of the leading-order process and due to the requirement of satisfying
the well-mixed condition, which implies matching to the statistics of the Eulerian flow
field. A detailed derivation can be found in the appendix of Brouwers [14].

For isotropic turbulence, the expression for the diffusion coefficient reduces to

Dij =
8

9C0

k2

ε

[
1 +

2k2

3ε3C0
u0

n
d

dxn

(
ε2

k3

)]
δij, (20)

where k is kinetic energy of isotropic state σij =
2
3 kδij. The higher-order term in the square

brackets describes the effect of changing Eulerian statistics in the direction of mean flow.

10. Validation

The presented descriptions are the result of systematic expansion in powers of Kol-
mogorov constant C0. The idea to use C0 as an independent perturbation parameter
stems from the observation of the structure of turbulence at a large Reynolds number. For
Re >> 1, the large scales of turbulence that govern the velocity field become statistically
decoupled from the small viscous scales that govern the acceleration process (Monin and
Yaglom, ch. 21 [28]). Coefficients in the equation are all governed by the large scales.
This includes energy-dissipation term ε. This can be related to the statistical values of the
fluctuating velocities that are governed by the large scales by using the relationships for the
turbulent energy balance (Monin and Yaglom, par. 6.2 [22]). The Kolmogorov coefficient
originates from the inertial subrange limit of the small viscous scales, which are statistically
decoupled from those of the velocity field. This forms the basis for treating the coefficient
as a separate parameter. It enters into the statistical model by the white-noise term in the
Langevin equation, while the coefficients in the equation are no function of this parameter.
This opens the possibility to create a perturbation expansion in powers of C−1

0 , equate
terms with equal powers of C−1

0 , and interpret their physical meaning. A limiting factor,
however, is the fixed value of C−1

0 of about 1/6. It cannot be made as small as to improve
the accuracy of the truncated expansion. Special attention is, therefore, given to the error
due to truncation for finite value of C−1

0 .
In the case of the diffusion equation, truncation is apparent in the diffusion coefficient.

It involves terms of O(C−2
0 ). For C0 = 6, C−2

0 = 0.03. The ultimate error, however, is also
determined by the terms preceded by coefficients C−2

0 . To assess the error, we consider
two cases that in several respects characterize the palette of turbulent flows, and for
which detailed information on relevant statistical values exists. The first is decaying grid
turbulence, a form of turbulence where turbulence intensity decays in the direction of the
mean flow due to viscous dissipation. This is also known as wind-tunnel turbulence, and
it is one of the few cases for which results in closed-form exist (George [32]). One of these
results is the von Kármán–Howarth equation that relates the covariance of the fluctuations
to the viscous dissipation according to u0

1(d/dx1)k = −ε. By expanding the exact result in
powers of C−1

0 , the first and second terms are entirely identical to the corresponding terms
of the present result obtained from the right-hand side of Equation (20) (Brouwers [12]).
Furthermore, the third term, which is not specified by Equation (20), is equal to 4/9 C−2

0 in
the exact result compared to the leading term. For C0 = 6, this implies a truncation error of
only 1.2% of the present result.

The second considered case is shear-induced inhomogeneous anisotropic turbulence
along walls. This is relevant for flows in channels, along surfaces such as air foils, and for
the atmospheric surface layer. Analytical expressions exist for flow in the log layer along
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the wall. Here, the wall-normal diffusion coefficient equals κu∗x2, where κ is von Kármán’s
universal constant κ = 0.4, u∗ is the shear velocity that is related to the shear stress executed
by the flow on the wall τ, and fluid density ρ as u∗ = (τ/ρ)−1/2 and x2 is distance from the
wall. To evaluate the wall-normal diffusion coefficient obtained from the leading term in
Equation (19), according to inertial subrange theory in the log layer, turbulence dissipation
equals turbulence production, i.e., ε = u∗3/(κx2), and σ12 = u∗2 and σ22 = 1.32u∗2. Here,
values of the covariances are in line with results of measurements at a high Reynolds
number (Morisson, McKeon, Jiang and Smits [33]; Zhao, Smits [34]). The leading term
of the wall-normal diffusion coefficient is then found from Equation (19), the expression
5.5C−1

0 κu∗x2. For C0 = 6, factor 5.5C−1
0 becomes 0.92, which should be compared with 1.

This indicates a truncation error in Expression (19) of about 8%. Furthermore, results of
direct numerical simulations of the Navier–Stokes equations of channel flow indicate error
in the diffusion coefficient over the entire width of the channel that is similar to that in the
log-layer region and is no more than 8% (Kuerten and Brouwers [21]). Moreover, Onsager
symmetry was confirmed within the accuracy of the perturbation scheme.

Another feature of the present results is Gaussian statistics of the velocities, at least
to O(C−1

0 ). This is a consequence of the linear version of the Langevin equation in its
leading-order representation. Many measurements were reported in a range of cases of
turbulent flow. They all showed Gaussian behavior, at least to a degree that corresponded
with the leading-order formulation. For further details on comparisons with measurements,
empirically established values, and direct numerical simulations, see Brouwers [11–13].

11. Application in Numerical Codes of Computational Fluid Dynamics

A widely used code in engineering is the k− ε model that is based on an isotropic
representation of the turbulence field. The used expression for turbulent diffusion constant
in this model is Cµk2/ε, where Cµ is a constant of calibration having usually a value of
about 0.1. The expression can be directly compared with Result (20) when neglecting the
higher-order term in (20) that represents the effect of changing statistics in the direction
of mean flow. The value of Cµ should then be compared with 8/(9C0), which has a value
of 0.15 when C0 = 6. As mentioned in the previous section, the present model predicts a
diffusion constant that is almost identical to the exact result. The difference must thus be
attributed to limitations of the engineering model under perfect isotropic conditions.

In most cases of practical interest turbulence is anisotropic. The log layer along the
walls is an illustrative example. Representative values for covariances in the log layer are
σ11 = 5.67u∗2, σ22 = 1.32u∗2 and σ33 = 2.8u∗2, leading to k = 4.9u∗2. As ε = u∗3/(κx2) and
taking Cµ = 0.1, we have for the k− ε model the diffusion constant Cµk2/ε = 2.4κu∗x2.
This is 2.4 times larger than the correct result. The present model, on the other hand,
predicts a diffusion constant that has an error of only 8% (see previous section). It shows
that applying the k − ε model to anisotropic cases of turbulence can lead to significant
errors in turbulence-dispersion prediction.

A much better result can be expected when applying Result (19) to a model that
predicts the values of the covariance tensor. The Reynolds stress model yields such values.
The implementation of Result (19) then enables the quantification of turbulent dispersion
under general conditions.

12. Conclusions

The presented Langevin and diffusion equation are grounded on the application of
fundamental principles of turbulent flow and physics. Errors are caused by the truncation of
the expansion in powers of C−1

0 . A comparison with a number of relevant cases of turbulent
flow seems to indicate that this error is limited. Given such an error, the expressions for
diffusion can be applied to the analysis of the dispersion of passive or almost passive
admixture in general inhomogeneous anisotropic turbulent flow. The simplified form
of the turbulent diffusion coefficient given by Equation (20) reveals to which extent the
phenomenological descriptions of previous centuries have a fundamental basis. The results
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for the turbulent diffusion coefficient specified by Equation (19), or in simplified form
by Equation (20), represent improvement to these descriptions. They can be directly
implemented in conventional codes of computational fluid mechanics used in industrial
and environmental engineering (Hanjalić and Launder [25]). Allowing for the previously
indicated inaccuracies, Result (20) can be used in the k − ε model. Result (19) can be
applied to more advanced models, such as the Reynolds stress model, which generates
values for covariance tensor σij. This facilitates the more accurate and reliable prediction of
the distribution of the mean concentration of passive or almost passive admixture, such
as smoke, aerosols, bacteria, and viruses in turbulent flow, which are all issues of great
societal interest.
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