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Abstract: Pleated membrane filters are widely used to remove undesired impurities from a fluid
in many applications. A filter membrane is sandwiched between porous support layers and then
pleated and packed into an annular cylindrical cartridge with a central hollow duct for outflow.
Although this arrangement offers a high surface filtration area to volume ratio, the filter performance
is not as efficient as those of equivalent flat filters. In this paper, we use asymptotic methods to
simplify the flow throughout the cartridge to systematically investigate how the number of pleats
or pleat packing density affects the performance of the pleated membrane filters. The model is
used to determine an optimal number of pleats in order to achieve a particular optimum filtration
performance. Our findings show that only the “just right”—neither too few nor too many—number
of pleats gives optimum performance in a pleated filter cartridge.

Keywords: filtration; porous media; pleated membrane filters; mathematical modeling

1. Introduction

Filtration is the process of separating contaminants from a liquid or gas by using filter
membranes. There are a multitude of different applications of membrane filters, but some
of the most common examples include use in the pharmaceutical industry, biotechnology,
semiconductor fabrication, water treatment, food production, mask production, vacuum
cleaners and air purifiers [1–8]. Filters are generally made of porous membranes, whose
internal morphologies and pore geometry affect the filtration efficiency [9–15]. In addition,
the solvent and contaminants’ properties may alter the filtration performance. In the case
of solid particles, the most practical method of filtration is based on the geometry and
shapes of the particles, dictating the best choice of membranes for the filtration process.
As a fluid flows through membrane filters, separation of particles can occur either from
blockage and/or adsorption, depending on the particle sizes. If a particle enters a pore, in
which its narrowest part is smaller than the particle’s typical size, the pore will be blocked;
otherwise, the particle can stick to the pore wall. Generally speaking, fouling mechanisms
impede filter performance by adsorption (a collection of small particles stick to the pores’
walls and shrink them); complete blocking (pores become fully blocked by large particles);
intermediate blocking (medium-sized particles block a portion of the pores’ volume); and by
caking (particles at the pores’ inlets accumulate and then form a cake layer on the membrane
surface), as described in [10–14,16–18]. These mechanisms of fouling add more resistance
to the flow, which requires a higher pressure gradient (or more energy) for the fluid to
overcome the fouling and pass through the membrane [19–23]. It is important to note, as
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also later discussed in Section 2.2, that only two mechanisms of fouling are incorporated in
this paper: small particle adsorption and blocking or sieving by large particles. It should
also be noted that our model does not consider swelling of the porous medium due to
water absorption, as discussed in [24].

Pleated membrane filters are considered as an efficient type of filter used in a variety
of industrial applications such as drinking water production, vaccine purification, and
sterilization of natural gases in order to remove undesired particles from the feed solu-
tion [11,25–27]. The three crucial design attributes of a pleated filter are the pleat height,
pleat packing density, and the pleat type [28]. The pleat height of a filter is the depth
of a given pleat; the packing density represents the number of pleats filled within the
volume of a cartridge; the pleat type is the pattern in which the fabrics of the filter are
folded to construct the pleats. There are various pleated filter geometries and we focus
on the cylindrical one in this paper [28]. Typically, in a pleated membrane filter cartridge,
the membrane is placed between two supporting layers and the resulting three layers are
folded (pleated) and placed into an annular cylindrical cartridge.

The design and construction of a pleated filter is an important process, since it provides
a fundamental understanding of the geometry and unique structure of the pleated filter,
which in turn affects the filtration performance. Pleated filter cartridges are constructed
by heating the membrane to a specific temperature such that the pleats in the membrane
become permanent. While this process is taking place, the pleat height and the pleat type
are also configured by the manufacturer. To create a cylindrical shape: (i) the ends of the
pleats are sealed togetherand (ii) the lengths are adjusted accordingly in order to fit the
dimensions of the cartridge. The pleats can then be packed into the cylindrical housing
with both inlet and outlet units to complete the pleated membrane cartridge design [28,29].

Pleated membrane filters are more compact in comparison to equal-area nonpleated
(flat) membrane filters. Therefore, they have a greater surface area to volume ratio [11,30,31];
however, this can also introduce various disadvantages. As shown in previous stud-
ies [11,31], the performance of the pleated membrane filters are inferior compared to the
flat (unpleated) filters with equivalent membrane surface areas. This stems from several
factors, such as the additional resistance to the overall system due to the pleat packing
density (PPD), as well as the support layers, the complex fluid dynamics within the pleated
membrane, and possible damage of the membrane occurring during the pleating process.
Multiple studies have demonstrated that membrane permeability is not the only factor
that affects the overall filtration performance. Dense pleating can also cause a significant
decrease in the filtration efficiency of over 50% in comparison to a flat sheet medium with
similar permeability and an equivalent surface area [32–34]. While pleated membrane
filters have a larger surface area than the flat membrane filters, a greater amount of pleats
(or higher PPD) worsens the filter performance by increasing the overall system resistance.
Therefore, this presents the question on how to optimize the filter cartridge geometry and
the pleat packing density in such a way that the filter yields maximum performance.

Recent works [11,31] only attempted to answer part of this question (the effects of
pleat geometry on the filter performance) using highly simplified models that focused
only on a 2D flow through the membrane, meaning that the models did not account for
any variation along the filter cartridge axial direction. However, our new quasi-3D model
(the schematic shown in Figure 1a) addresses the mentioned extension by including two
additional regions to make the model more realistic: (i) the empty area, where the flow
enters the cartridge and then passes across the pleated membrane; (ii) the hollow region,
which is a central hollow duct for outflow. In total, the empty area, the pleated membrane
and the hollow region are all incorporated in our model. In this paper, we focus on the
pleat packing density and the filter cartridge’s geometry as the main characteristics of a
pleated membrane filter to achieve the optimal filtration performance.
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Figure 1. (a) Schematic of the pleated filter cartridge with height L, containing (i) a hollow duct with
radius Rh; (ii) a pleated membrane with the pleat length of Rm − Rh; and (iii) an empty area with
an outer radius Re. (b) A close-up of the pleats with the membrane layer and two support layers
with thicknesses of Hm and Hs, respectively. (c) The inlet specified pressure drop is P0 at z = L and
Rm < r < Re, while the outlet specified drop is 0 at z = L and 0 < r < Rh. The flow velocity is
(ui, wi), where i ∈ {h, m, e} are for the hollow region, membrane and empty area, respectively. A
no-flux condition is applied at the top of the cartridge (z = 0), as well as its center and walls (r = 0
and r = Re). (d) Cross section of the filter cartridge with pleat length of Rm − Rh, where θ represents
the angle that sweeps across the given pleat. The filtrate enters from the empty area and travels
through the pleat, exiting to the hollow region.
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The paper is first laid out in Section 2 by describing the flow through the hollow
region and the empty area with the incompressible axisymmetric Stokes equations for low
Reynolds numbers, while the flow in the membrane area is modeled by Darcy’s law. Each
of these equations is given their respective boundary conditions based on the physical
geometry. Next, we nondimensionalize the model in Section 2.1.1. In Section 2.1.2, we
exploit the small aspect ratios of the filter cartridge and pleats and use asymptotic methods
to simplify the system of equations. Then, we arrive at coupled boundary value problems
for pressure and velocities in each of the three regions, as well as the permeability of the
membrane and support layers, evolving with space and quasi-statically with time. These
equations are solved numerically and presented in Section 3 to ultimately demonstrate
the effects of pleat packing density and cartridge geometry on the filter performance.
Finally, the discussion of the model and results are concluded in Section 4 in the context of
industrial pleated membrane filters and of future modeling directions.

2. Mathematical Description

We consider the filtration flow problem through a pleated membrane filter cartridge
consisting of a central duct surrounded by an annular pleated membrane (see Figure 1a),
resulting in three different regions of the model: hollow duct, pleated membrane, and
empty area. We consider the cartridge to have high pleat packing density, while assuming
each pleat to be identical and part of a periodic array along the arc of the cartridge. To make
the problem amenable to analytical techniques while still capturing key features of the
PPD and the cartridge geometry on the filtration efficiency, we introduce an axisymmetric
coordinate system, (r, z). We denote the radius of the hollow region as Rh, the length of
the pleat (from the inner to outer cartridge boundary) as Rm − Rh, and the total radius of
the pleated filter cartridge given as Re. The height of the pleated filter cartridge is denoted
by L, and we assume that Rh/L � 1 and Rm/L � 1. The porous membrane consists
of a membrane layer sandwiched between two support layers, as shown in Figure 1b.
The membrane thickness Hm and the support layer thickness Hs are both assumed to
be much smaller than the pleat length, Rm − Rh. In addition, the support layer is much
thicker than the membrane, which is typical in pleated membrane filters [28,29], specifically,
Hm � Hs � Rm − Rh (see Figure 1b).

With specified pressure P0, the solvent enters from the cartridge inlet at the bottom
of the empty area, Rm < r < Re, z = L, to flow upward, travels through the membrane
Rh < r < Rm, 0 < z < L, and flows down the hollow region towards the outlet, 0 < r < Rh,
z = L, where the pressure is set to 0 (see Figure 1c). It is important to note that the pressure
in each of the three regions is continuous at each interface. The top of the cartridge at z = 0,
the sides of the empty area r = Re, and the center of the cartridge, r = 0 are all set to have
no-flux boundary conditions. Since the geometry has symmetry along the centerline, we
show only the right half of the pleated membrane filter cartridge in Figure 1c. While we do
not account for angular dependency θ in our model, we introduce this angle, which sweeps
across a pleat in order to derive an equation for the average of the support layers and
membrane permeabilities (details of the derivation are included in Appendix A). Figure 1d
shows an arbitrary cross section of the pleated membrane filter with angle θ and pleat
length Rm − Rh.

2.1. Fluid Transport

We assume the feed is a dilute suspension of particles, which we treat as an incom-
pressible Newtonian fluid. We denote the fluid velocity and pressure by u = (u, w) and
p, with subscripts h, m and e denoting the hollow region, membrane and empty area,
respectively. There are two time scales in our model: the first one is related to the filtration
flow velocity and the second one is originated from the rate of change in pore radius due to
particles deposition. Since the time scale of membrane morphology change due to particle
deposition is much longer compared to that of flow velocity, we employ a quasi-static model
for the flow here. We describe fluid flow in the hollow region (0 < r < Rh, 0 < z < L) by
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the Stokes equations for an incompressible Newtonian fluid with a low Reynolds number.
In axisymmetric cylindrical coordinates, the Stokes equations yield is

∂ph
∂r

= µ

[
1
r

∂

∂r

(
r

∂uh
∂r

)
+

∂2uh
∂z2 −

uh
r2

]
, (1)

∂ph
∂z

= µ

[
1
r

∂

∂r

(
r

∂wh
∂r

)
+

∂2wh
∂z2

]
, (2)

where µ is the viscosity of the fluid. For incompressible axisymmetric flow, it follows that
the continuity equation becomes

1
r

∂

∂r

(
ruh

)
+

∂wh
∂z

= 0. (3)

The pleated membrane occupies Rh < r < Rm, 0 < z < L. We model the fluid transport
using Darcy’s law for the flow in porous media,

um = (um, wm) = −
k
µ
∇pm, ∇ = (∂r, ∂z), (4)

where k(r, z) is the average of the support layers and membrane permeabilities. Incom-
pressibility of the flow requires

1
r

∂

∂r

(
rum

)
+

∂wm

∂z
= 0. (5)

In the empty area (Rm < r < Re, 0 < z < L), the fluid is also modeled using the
incompressible axisymmetric Stokes equations

∂pe

∂r
= µ

[
1
r

∂

∂r

(
r

∂ue

∂r

)
+

∂2ue

∂z2 −
ue

r2

]
, (6)

∂pe

∂z
= µ

[
1
r

∂

∂r

(
r

∂we

∂r

)
+

∂2we

∂z2

]
, (7)

1
r

∂

∂r

(
rue

)
+

∂we

∂z
= 0. (8)

We assume the flow is driven by an imposed pressure difference, P0, at the inlet z = L in
the empty area (Rm < r < Re) and exits the filter through the outlet at z = L in the hollow
region (0 < r < Rh),

pe = P0, ph = 0 at z = L, (9)

with the symmetry conditions in the hollow region

uh = 0,
∂wh
∂r

= 0 at r = 0. (10)

The housing boundaries z = 0 and r = Re are solid boundaries on which we impose no
flux; therefore,

uh = wh = um = wm = ue = we = 0 at z = 0,

ue = we = 0 at r = Re.
(11)

At the interface between the hollow region and membrane, we impose continuity of
pressure and velocity,

ph = pm, uh = φum at r = Rh, (12)
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where φ is the local pleated membrane porosity [35] (assumed constant). Similarly, at
the interface between the membrane and empty area, we impose continuity of pressure
and velocity,

pe = pm, ue = φum at r = Rm. (13)

The last boundary condition represents a nonvanishing tangential slip velocity [35,36]

∂wh
∂r

= − α√
k(r, z)

(wh − wm) at r = Rh,

∂we

∂r
= − α√

k(r, z)
(we − wm) at r = Rm,

(14)

where α is a dimensionless slip constant that depends on the surface properties. The flux q
through the filter boundary at z = L is defined by

q =
∫ Rh

0
2πr||uh||

∣∣∣
z=L

dr =
∫ Rh

0
2πr

√
u2

h + w2
h

∣∣∣
z=L

dr. (15)

2.1.1. Nondimensionalization

Motivated by the small aspect ratio of the pleated filter cartridge, i.e., ε = Rm/L� 1, we
introduce dimensionless variables as follows, using hats to denote dimensionless variables:

(r, z) = L(εr̂, ẑ), (ph, pm, pe) = P0( p̂h, p̂m, p̂e),

(uh, wh) =
LP0ε2

µ
(εûh, ŵh), (um, wm) =

KP0

Rmµ
(ûm, ŵm),

φ =
L2ε4

K
φ̂, (ue, we) =

LP0ε2

µ
(εûe, ŵe),

k(r, z) = Kk̂(r̂, ẑ), q =
2πP0R4

m
Lµ

q̂,

(16)

where K is the average of the support layers and the membrane permeabilities. We define
the parameter l = Rh/Rm, which characterizes the dimensionless ratio of the inner to
the outer radii of the pleated membrane, and we scale the radius of the external housing
Re = Rm(1 + ε∗), where ε∗ � 1. Dropping hats, (1)–(3) give the dimensionless system of
equations in the hollow region (0 < r < l, 0 < z < 1)

∂ph
∂r

= ε2 1
r

∂

∂r

(
r

∂uh
∂r

)
+ ε4 ∂2uh

∂z2 − ε2 uh
r2 , (17)

∂ph
∂z

=
1
r

∂

∂r

(
r

∂wh
∂r

)
+ ε2 ∂2wh

∂z2 , (18)

1
r

∂

∂r

(
ruh

)
+

∂wh
∂z

= 0. (19)

Similarly, the porous membrane Equations (4) and (5) become (l < r < 1, 0 < z < 1)

um = −k(r, z)
∂pm

∂r
, (20)

wm = −εk(r, z)
∂pm

∂z
, (21)

1
r

∂

∂r

(
rum

)
+ ε

∂wm

∂z
= 0. (22)
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In the empty area (1 < r < 1 + ε∗, 0 < z < 1), the dimensionless equations,

∂pe

∂r
= ε2 1

r
∂

∂r

(
r

∂ue

∂r

)
+ ε4 ∂2ue

∂z2 − ε2 ue

r2 , (23)

∂pe

∂z
=

1
r

∂

∂r

(
r

∂we

∂r

)
+ ε2 ∂2we

∂z2 , (24)

1
r

∂

∂r

(
rue

)
+

∂we

∂z
= 0, (25)

are obtained from (6)–(8). The boundary conditions (9)–(14) give the pressure drop bound-
ary conditions that drive the flow

pe = 1, ph = 0 at z = 1; (26)

the boundary conditions on the hollow region centerline

uh = 0,
∂wh
∂r

= 0 at r = 0; (27)

on the housing boundaries

uh = wh = um = wm = ue = we = 0 at z = 0,

ue = we = 0 at r = 1 + ε∗;
(28)

at the interface between the hollow region and membrane

ph = pm, uh = φum at r = l; (29)

at the interface between the membrane and the empty area

pe = pm, ue = φum, wh = 0 at r = 1; (30)

and finally
∂wh
∂r

= − εα0√
k

(
wh −

ε

φ0
wm

)
at r = l,

∂we

∂r
= − εα0√

k

(
we −

ε

φ0
wm

)
at r = 1,

(31)

where α0 = Lα/
√

K and φ0 = (L2ε4)/K. Note that we assume α0 = O(1/ε2) to be able to
simplify the boundary conditions (31). The total dimensionless flux q is given by

q =
∫ l

0
r
√

ε2u2
h + w2

h

∣∣∣
z=1

dr. (32)

2.1.2. Asymptotic Analysis for the Flow

We use asymptotic analysis to derive a reduced system of governing equations at the
leading order. We begin by expanding each dependent variable as an asymptotic series
in power of ε as follows. For example, we let ph = p0

h + εp1
h + ε2 p2

h + · · · and similarly
expand the pressures pm, pe; the velocities uh, wh, um, wm, ue, we; the membrane porosity
φ and the membrane permeability k. At the leading order (omitting the superscript 0 for
brevity), the Equations (17)–(31) for the hollow region, membrane and the empty area are
reduced to

∂ph
∂r

= 0,
∂ph
∂z

=
1
r

∂

∂r

(
r

∂wh
∂r

)
,

1
r

∂

∂r

(
ruh

)
+

∂wh
∂z

= 0, 0 < r < l, 0 < z < 1,
(33)
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um = −k
∂pm

∂r
, wm = 0,

∂

∂r

(
rum

)
= 0, l < r < 1, 0 < z < 1,

(34)

∂pe

∂r
= 0,

∂pe

∂z
=

1
r

∂

∂r

(
r

∂we

∂r

)
,

1
r

∂

∂r

(
rue

)
+

∂we

∂z
= 0,

1 < r < 1 + ε∗, 0 < z < 1,

(35)

pe = 1, ph = 0 at z = 1, (36)

uh = 0,
∂wh
∂r

= 0 at r = 0, (37)

uh = wh = um = wm = ue = we = 0 at z = 0, (38)

ue = we = 0 at r = 1 + ε∗, (39)

ph = pm, uh = φum, wh = 0 at r = l, (40)

pe = pm, ue = φum, we = 0 at r = 1, (41)

where the hollow region pressure ph(z) and empty area pressure pe(z) only vary axially,
obtained from (33) and (35), respectively. Note that we use the assumption α0 = O(1/ε2)
to obtain the boundary conditions in (40) and (41) for the axial velocity in the hollow
region and the empty area wh and we, respectively. Integrating (33) and using boundary
conditions (37) and (40) give the hollow region velocities uh and wh in terms of the hollow
region pressure gradient as

uh(r, z) =
r

16
(2l2 − r2)

d2 ph
dz2 ,

wh(r, z) = −1
4

(
l2 − r2

)dph
dz

.
(42)

Similarly, by integrating (35) and applying boundary conditions (39) and (41), we obtain
the following equations for the empty area velocities ue and we in terms of the empty area
pressure gradient

ue(r, z) = − 1
16

M(r)
d2 pe

dz2 ,

we(r, z) =
1
4

(
r2 − 1 + γ ln r

)dpe

dz
,

(43)

where

γ =
1− (1 + ε∗)2

ln(1 + ε∗)
, M(r) = r

(
r2 − 2 + γ(2 ln r− 1)

)
−

(1 + ε∗)2

r

(
(1 + ε∗)2 − 2 + γ(2 ln(1 + ε∗)− 1)

)
.

(44)

Furthermore, using the boundary conditions (40) and (41) along with integrating of (34)
yield the velocity um and the pm in the membrane:

um(r, z) =
ũm(z)

r
,

pm(r, z) = pe(z) + ũm(z)
∫ 1

r

dr′

r′k(r′, z)
,

(45)
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where

ũm(z) = (ph(z)− pe(z))
(∫ 1

l

dr′

r′k(r′, z)

)−1

, (46)

is determined as part of the solution to the reduced model. At this stage, we now emphasize
each quantity that depends on space and/or time. Combining (40), (41), (42), (43), (45) and
(46) gives the resulting simplified model for ph(z, t) as

l4

16

(∫ 1

l

dr′

r′k(r′, z, t)

)
∂2 ph(z, t)

∂z2 − φph(z, t) = −φpe(z, t), (47)

M(1)
16

(∫ 1

l

dr′

r′k(r′, z, t)

)
∂2 pe(z, t)

∂z2 − φpe(z, t) = −φph(z, t), (48)

subject to boundary conditions

∂ph
∂z

(0, t) = 0, ph(1, t) = 0. (49)

∂pe

∂z
(0, t) = 0, pe(1, t) = 1, (50)

obtained by (36), (38), (42) and (43). By adding (47) and (48) together, then integrating and
using boundary conditions (49) and (50), the coupled system can be simplified further

pe(z, t) = 1− l4

M(1)
ph, (51)

l4

16

(∫ 1

l

dr′

r′k(r′, z, t)

)
∂2 ph(z, t)

∂z2 −
(

1 +
l4

M(1)

)
φph(z, t) = −φ,

∂ph
∂z

(0, t) = ph(1, t) = 0.

(52)

Note that, after solving (52), we can obtain the velocities and pressures in all three regions
using (42)–(46). In addition, the total dimensionless flux of fluid flowing across the filter
outlet, introduced in (32), becomes

q =
∫ l

0
rwh|z=1dr, (53)

where wh can be obtained from (42) and (52).

2.1.3. Fluid Velocity and Streamfunction

For purpose of illustration, we show the visualization of the fluid flow through the
membrane and the hollow region. Recall that the flow in our model is two-dimensional
(axisymmetric assumption) and quasi-static; therefore, we employ streamfunction ψm and
ψh in the membrane and the hollow region, respectively,

ui(r, z) = −1
r

∂ψi
∂z

, wi(r, z) =
1
r

∂ψi
∂r

, i ∈ {m, h}. (54)

Using the flow velocities for the membrane and the hollow region, (42) and (45), respectively,
along with (54), give us the streamfunctions in these two regions as

ψh(r, z) =
1
4

(
l2 r2

2
− r4

4

)
dph
dz

,

ψm(z) = −
∫ z

0

ph(z′)− pe(z′)∫ 1
l

dr′
r′k(r′ ,z)

dz′.
(55)
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2.2. Membrane Fouling

In general, the average of the support layer and membrane permeabilities k(r, z, t)
varies in both space and time as membrane fouling occurs. For a given average permeability
k(r, z, t), the boundary value problem (52) is solved to determine the velocities in both
the hollow region and the membrane, as explained earlier. To close the model, we need
an equation for the time evolution of the average permeability due to membrane fouling.
Here, we present just the average permeability estimate (the derivation is provided in
Appendix A),

k(r, z, t) ∼ N km(r, z, t)ks(r, z)
N 2km(r, z, t) + ks(r, z)

, N =
π(Rm + Rh)

Hs
, (56)

where ks(r, z) is the average permeability in the support layers, km(r, z, t) is the permeability
in the membrane and N is a dimensionless measure of packing density, which we call the
packing density factor. Note that we assume the average permeability of the support layers
ks(r, z) is not a function of time, since fouling does not happen in the support layers.

To derive an asymptotic model for membrane fouling with variations along the z
direction, we modify the model described in Sanaei et al. [31] by introducing nonzero
z-dependent pressure at the end the membrane. The membrane permeability km varies
quasi-statically and is expressed as a function of the pore radius a(z, t) and the number of
unblocked pores per unit area n(r, z, t). The model assumes that membrane pores are long,
thin cylindrical tubes, spanning the membrane, which initially all have the same radius.
A more sophisticated model would allow for nonuniform shrinkage of pores due to the
adsorption, but in our simple model we assume uniform adsorption so that the pore radius
does not vary spatially. The time evolution of the membrane permeability induces time
variation for the pressure in the support layer ps. Here, we just present the final reduced
model with modifications to account for the axial-dependence pressure at the interface
between the membrane and the hollow region, and refer the readers to Sanaei et al. [31] for
more details. The full dimensionless system is

a(z, t) = 1− βt,

km(r, z, t) = a(z, t)4
(

n(r, z, t) +
1− n(r, z, t)
1 + ρba(z, t)4

)
,

(57)

∂n(r, z, t)
∂t

= −n(r, z, t)a(z, t)4e−ba(z,t)(
2ps(r, z, t) + c1(z, t)

∫ 1

r

dr′

ks(r′, z)
+ c2(z, t)

)
,

(58)

∂

∂r

(
ks(r, z)

∂ps(r, z, t)
∂r

)
− 2Γkm(r, z, t)ps(r, z, t) =

Γkm(r, z, t)
(

c1(z, t)
∫ 1

r

dr′

ks(r′, z)
+ c2(z, t)

)
,

(59)

subject to conditions
n(r, z, 0) = 1, (60)

ps(1, z, t) = pe(z, t),
∂ps

∂r
(1, z, t) =

c1(z, t)
ks(1, z)

, (61)

ps(l, z, t) = −
(

c1(z, t)
∫ 1

0

dr′

ks(z, r′)
+ c2(z, t) + ph(z, t)

)
,

∂ps

∂r
(l, z, t) = 0,

(62)

where ps is the pressure in the support layer, β = (8µEHm)/(πa4
0P0g∞) is the dimen-

sionless pore shrinkage rate representing the time scale in which pores close due to
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adsorption, relative to that in which particles block individual pores from upstream,
g∞ is the total large particle concentration and E is the rate of pore radius shrinkage.
Γ = Km0(Rm − Rh)

2/(KsHm Hs) is a dimensionless measure of the relative importance of
the resistance of the packing material to that of the membrane, b is the ratio of initial pore
size to characteristic particle size and ρb is the dimensionless parameter that characterizes
blocking strength.

3. Results

The model consists of various dimensional and dimensionless parameters shown in
Tables 1 and 2, respectively, with typical ranges of values in practice. The fixed parameter
values used in the simulation are shown in the caption of each figure (Figures 2–7). Our
numerical scheme is based on second-order accurate finite difference spatial discretization
of Equations (52) and (59), with a simple first-order implicit time step in the blocking
Equation (58), and trapezoidal quadrature to find the integrals in (52), (53), (55), (58), (59)
and (62). The solution scheme for this system is straightforward:

1. At t = 0, assign km(r, z, 0) = km0 = 1, then find k(r, z, 0) from (56) by using ks(r, z) = 1
for a given N .

2. Solve (52) for the pressure in the hollow region ph, and then use the result in (51) to
find the pressure in the empty area pe.

3. Solve (59) along with the boundary conditions (61) and (62) in order to find ps, c1,
and c2.

4. Use these resulting values to update the number of unblocked pores per unit area n,
in (58).

5. Use (57) to update the pore radius a, and the membrane permeability, km, respectively.
6. Return to step (1) and repeat until the membrane pore radius a→ 0.

Table 1. Dimensional parameter values [11,28,31,37–39].

Parameter Description Typical Value

L Length of the pleats 0.2–0.5 m

Rh Radius of the hollow region 1–1.5 cm

Rm Radius of the membrane area 2–3 cm

Re Radius of the empty area 3–4.5 cm

Hs Support layer thickness 1 mm

Hm Membrane thickness 300 µm

P0 Pressure drop 10–100 K Pa

Ks Average support layer permeability 10−11 m 2

Km0 Clean membrane permeability 5× 10−13 m 2

K
Average of the support layer and

10−13 m2
clean membrane permeabilities
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Table 2. Dimensionless parameters and approximate values [11,31,40].

Parameter Formula Typical Value

ε Rm/L 0.04–0.15

l Rh/Rm 0.1–1

φ Pleated membrane porosity 0.01–0.9

Γ Km0(Rm − Rh)
2/(Ks Hm Hs) 1–100

N
π(Rm + Rh)/Hs

0.4–5Packing density factor

ρb Blocking strength
0.25–10,

2 used here

b Ratio of initial pore size to particle size
0.2–10,

0.5 used here

β (8µEHm)/(πa4
0P0g∞)

0.001–0.1,
0.02 used here

ε∗ Re/Rm − 1 0.03–1.25
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Figure 2. (a) Pressure in the hollow region ph(z, t) (blue) and empty area pe(z, t) (red), for φ = 0.5
at several different times t = 0, 0.2t f , 0.4t f , 0.6t f , 0.8t f , and t f (the final filtration time) with the
membrane porosity φ = 0.5. (b) The initial pressure in the hollow region ph(z, 0) for several different
values of local porosity, φ. In both figures, we use the parameters l = 0.5, Γ = 10, N = 1, β = 0.02,
ρb = 2, b = 0.5, and ε∗ = 0.5.

Figure 2a shows the hollow region and empty area pressures, ph and pe, respectively,
as functions of z for several different values of time t, up to the final filtration time t f , at
which the filtration process stops. Our results demonstrate that the hollow region pressure
attains its maximum value at the top of the cartridge (z = 0) and monotonically decreases
along the positive z direction, which creates a pressure gradient that allows for downward
flow for the entire duration. As time progresses, the fouling in the pleated membrane
increases the system resistance, which in turn lowers the hollow region pressure until it
eventually reaches a uniform value of 0 at the final time, t f . The maximum pressure of
the empty area instead happens at the bottom of the cartridge (z = 1) and reaches the
minimum at the top of the cartridge (z = 0), which creates a pressure gradient that allows
fluid to flow from the bottom of the cartridge to the top of the empty area, as the model
intended. At a later stage of filtration, the empty area pressure becomes nearly constant
along the entire length of the cartridge due to the complete fouling and blocking of the
membrane. In Figure 2b, we investigated the effect of the local porosity φ on the initial
pressure in the hollow region ph(z, 0), along the axial direction of the pleated filter z. As
expected, we observed that the higher pressure drop occurs with higher porosity. It is
important to note that for every variation of φ, as z increases, the initial pressure in the
hollow region tends to zero, which is consistent with the boundary condition in (52). For
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φ = 0.9, ph(z, 0) is the largest and also witnesses the steepest drop in comparison to the
other values of the local porosity used here.

We plot the streamlines of the hollow and membrane regions side by side in Figure 3
for t = 0.4t f and 0.8t f . It shows the fluid enters the membrane region (Figure 3b,d) at
r = 1 from the empty area and flows into the hollow region (Figure 3a,c) and then moves
out of the cartridge at z = 1. The flow in the membrane region is dominated by the
radial direction at the leading order; as a result, the fluid travels horizontally through the
membrane. In addition, as shown by the contour values, more of the fluid travels near
the bottom of the cartridge due to the higher pressure difference across the membrane,
which is consistent with the results of Figure 2a. On the other hand, the flow in the hollow
region moves in both the radial and axial directions towards the filter outlet (z = 1). Our
results also show that the streamlines in both regions have become more uniformly spread
out along the axial direction as time evolves. This uniformity stems from the membrane
fouling, which in turn causes the empty area and the hollow region pressures approach
constant values of 1 and 0, respectively, as demonstrated in Figure 2a. Furthermore, the
additional resistance due to the membrane fouling reduces the flow greatly in both the
hollow and membrane regions at t = 0.8t f compared with t = 0.4t f , as indicated by the
color bars of Figure 3.
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Figure 3. Contour plots showing the streamlines at time t = 0.4t f in (a) the hollow region and (b) in
the membrane region. Plots (c,d) show the streamlines in the hollow region and membrane region,
respectively, at time t = 0.8t f . Parameter values are φ = 0.5, l = 0.5, Γ = 10, N = 1, β = 0.02, ρb = 2,
b = 0.5, and ε∗ = 0.5.

Figure 4a,b show the pressure contour plot in the membrane region pm(r, z), at
t = 0.4t f and 0.8t f , respectively. We observe that the pressure difference across the mem-
brane has a strong axial dependency at early times (such as t = 0.4t f ) and becomes nearly
independent of z as time evolves (e.g., t = 0.8t f ). This suggests more fluid travels through
the membrane (or higher flow rate) near the bottom initially and gradually turns into
uniform flow through the entire membrane, which is consistent with the results shown in
Figure 3b,d.
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Figure 4. Contour plots showing pressure in the membrane region pm(r, z) at (a) t = 0.4t f ; and
(b) t = 0.8t f . Parameter values are φ = 0.5, l = 0.5, Γ = 10, N = 1, β = 0.02, ρb = 2, b = 0.5, and
ε∗ = 0.5.

We now examine how the membrane permeability evolves as the membrane fouling
occurs. This can provide us with more explanations on how the pressures and fluid
streamlines change due to membrane fouling. We first plotted the membrane permeability
at a very early time t = 0.01t f , in Figure 5a. This figure indicates that the membrane
permeability achieves its maximum at the very bottom of the cartridge z = 1, while the
membrane becomes clogged more at the top z = 0, presumably due to the high fluid
velocity caused by the higher pressure drop near the bottom, which results in less clogging.
This figure also reveals that the membrane permeability contour curves upwards near the
bottom of the membrane, suggesting that fouling occurs preferentially at the middle rather
than the membrane pleat valleys and tips. This observation is the exact opposite of an earlier
2D simple model of the filter cartridge [31]. On the other hand, it is consistent with [11] in
terms of membrane permeability symmetry about the midway of the membrane.
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Figure 5. Contour plot showing membrane permeability km(r, z) at times (a) t = 0.01t f , (b) t = 0.4t f ,
and (c) t = 0.8t f . Parameter values are φ = 0.5, l = 0.5, Γ = 10, N = 1, β = 0.02, ρb = 2, b = 0.5, and
ε∗ = 0.5.
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Figure 5b,c show the membrane permeability at t = 0.4t f and 0.8t f , respectively
(at the same time that the streamlines and membrane pressure were plotted earlier; see
Figures 3 and 4). Our results show that after a moderate amount of fouling (t = 0.4t f )
as well as almost the end of the filter’s life span (t = 0.8t f ), the membrane permeability
becomes uniform over most of the (r, z) plane.

There are several ways to characterize the performance of a filter and, among them,
making a flux-throughput graphs is one of the most common experimental approaches.
The dimensionless flux of fluid flowing across the filter outlet q(t) is given in (53) and
the throughput is defined as the amount of filtrate fluid up to a certain time, i.e., v(t) =∫ t

0 q(t′)dt′. Note that it is important for a filter to have high flux, while it attains the
maximize total throughput v(t f ). In other words, the filter with the longer life span t f and
higher total throughput is the most desirable. Note that high flux in a filter can be achieved
at the expense of having a low total throughput (e.g., the filter possesses a lower life span)
or a filter may have a high throughput but in return very low flux (overall slower filtration).
Both scenarios are costly in different ways, and usually in practice some compromise
between these two is found [31,41]. Since the flux and throughput are both functions of
time, they depend on the amount of fouling that occurs in the filter, where more fouling
causes less flux and as a consequence less total throughput. As the resistance increases
with time due to fouling, more energy is required to be put into the system to conserve the
same initial efficiency of the filter. Therefore, it is more desirable in industry to have the
flux remain as high as possible through the filter life cycle so that the minimal amount of
energy will be used to overcome fouling [42,43].

Figure 6 shows flux q(t) versus throughput v(t), for several different values of mem-
brane porosity φ. Our results demonstrate two drops for each curve: a very rapid drop at
early times and a much more gradual decrease for the remaining time. The initial rapid
drop may be interpreted as modeling the scenario where sieving (pore blockage from
large particles) is dominant, while the latter gradual drop may be explained as fouling by
adsorption (small particles stick to the pores and walls and shrink them) [4,15,17,18]. The
simulated results show that the pleated filter’s performance increases for larger values of
φ, providing less resistance to the flow in the membrane.
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Figure 6. Flux q(t), as a function of throughput v(t) =
∫ t

0 q(t′)dt′, for several different values of
porosity φ, with l = 0.5, Γ = 10, N = 1, β = 0.02, ρb = 2, b = 0.5, and ε∗ = 0.5.

In order to examine the effects of the PPD and the filter cartridge geometry on the
filtration performance, the packing density factor N = π(Rm + Rh)/Hs (defined in (56)
previously) was varied in two different ways. We let the radius of the membrane area
Rm vary and kept the support layer thickness Hs constant and vice versa in Figure 7a,b,
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respectively. Note that increasing Rm (equivalently N ) corresponds to a higher membrane
surface area. These figures represent the total throughput v(t f ) as a function of N . Note
that the dimensionless measure of the relative importance of the resistance of the pack-
ing material to that of the membrane (Γ = Km0(Rm − Rh)

2/(KsHmHs), see Table 2), also
changed as we varied either Rm or Hs. Our results here demonstrate that the total through-
put increases with Rm, as shown in Figure 7a. The physical significance of our results is
that increasing the length of the pleats (as Rm increases), while keeping the support layer
thickness constant, will allow more of the membrane’s surface to be packed into the filter
cartridge and, as a consequence, more throughput was achieved. Figure 7b investigates
how the support layer thickness Hs, affects the total throughput. By decreasing Hs, the
total throughput initially increases rapidly and peaks at N ≈ 1.36, but then decreases at a
slower rate. Note that, initially, as Hs decreases, N increases, meaning that more pleats
will be in the cartridge and therefore the throughput increases. Continuing to decrease
Hs beyond a critical threshold will further increase the overall system resistance from the
support layers. Even though there are more pleats in the filter cartridge (as N increases),
the excessive resistance causes the total throughput to decay.
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Figure 7. Total throughput v(t f ) as a function of the packing density factorN , with parameter values
φ = 0.5, β = 0.02, ρb = 2, b = 0.5 when: (a) the radius of the membrane area Rm and (b) the support
layer thickness Hs, varies. In (b), l = 0.5, ε∗ = 0.5.

4. Discussion and Conclusions

In this work, we have developed a mathematical model for the fluid flow in a pleated
membrane filter cartridge composed of three regions: empty area, pleated membrane, and
central hollow duct (see Figure 1). We considered the effect of pressure variations along
the axis of the pleated filter cartridge. Fluid was pumped into the empty area via the
inlet, it passed through the pleated membrane and then flowed out of the exit into the
hollow region. The fluid flow in the empty area and hollow region are governed by the
axisymmetric Stokes equations and the pleated membrane region was modeled by the
work of Sanaei et al. [31] with modifications to account for the axial pressure variations.
The governing equations have been reduced through careful asymptotic analysis to exploit
the separation of length scales inherent in the filtration flow problem through a pleated
membrane filter cartridge. The resulting leading-order system of equations has been
solved numerically.

Our model is able to describe the flow through the whole pleated filter cartridge.
Figure 2a shows that the pressure gradients in the empty area and hollow region are
positive and negative, respectively, which creates a flow driven through the membrane
from the inlet to the outlet. In addition, our model demonstrates that the pressure difference
across the membrane increases with the axial direction as well as time (see Figures 2 and 4).
These were not investigated in the simple 2D models in the previous studies [11,31]. Our
model also reveals the permeability variations in both the axial and radial directions within
the membrane region in Figure 5. We examined the change in membrane permeability km
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in the (r, z) plane at various times and found that there is a strong axial dependence at
early times, which fades away as time evolves.

The main focus of this work is to understand the importance of the pleat packing den-
sity on the performance of pleated membrane filters. When determining the effectiveness
of any membrane filter, there are multiple metrics which can be used. Here, we focus on
the total throughput, which is the most common experimental characteristic in industry.
Specifically speaking, we defined the packing density factor as N = π(Rm + Rh)/Hs
in (56) and plotted the total throughput versus N in Figure 7. Our results show that the
optimum filtration performance was achieved under two conditions: (i) when the length
of the pleat was relatively long (compared with the cartridge housing radius), in order
to increase the total membrane surface area, and (ii) when the optimal number of pleats
were packed into the filter cartridge. Taken together, our findings show that only the “just
right”—neither too few nor too many—number of pleats, ensures optimum performance
in a pleated filter cartridge.

Our model is a valuable step towards a qualitative understanding of the effects of
pleat packing density and axial-pressure variations on the filtration performance of pleated
membrane filters, which can be used to inform future design. The results of our work in
this paper are a novel extension to the earlier effort of Sanaei et al. [31]. Solving the full
problem numerically (in the whole filtration region, including the inlet and outlet) would
give great insight into the validity of the model reduction presented here. However, this
would be very difficult numerically and computationally intensive, and is beyond the
scope of this paper. Moreover, we focused on the geometry of the pleated membrane filter
rather than particle capture efficiency and more complex fouling mechanisms. It would be
an interesting extension of the model to incorporate the transport of particles, which can
lead to multiple modes of fouling.
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Appendix A. Derivation of k(r, z)

In order to derive the expression for the average of the support layers and membrane
permeabilities k(r, z), given in (56), we need to balance the resistance across a pleat, as
shown in Figure 1d. Note that the resistance of the membrane, for the top and bottom sup-
port layers, are in series with each other; therefore, the summation of these two resistances
is equal to the average resistance of the support layers and membrane:

1
k(r, z)π(R2

m − R2
h)θ

=
2

Ks(Rm − Rh)Hs
+

1
Km(Rm − Rh)Hm

, (A1)

where Ks is the average support layer permeability, Km is a typical initial clean membrane
permeability, and θ is the angle that sweeps a pleat in the cartridge, which is O(2× 10−2).
Note that the resistance is the reciprocal of permeability times area, which was used in
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deriving (A1). By using the scaling for the membrane and support layers permeabilities
given in [31], as well as hats to denote dimensionless variables, we obtain

ks(r, z) = Ks k̂s(r̂, ẑ), km(r, z, t) = Km k̂m(r̂, ẑ, t̂), (A2)

along with the scalings in (16). Dropping hats, (A1) simplifies to

1
k
=

2Kθ

Ks

N
ks

+
π2Kθ(Rm + Rh)

2

Km Hm Hs

1
N km

. (A3)

Assuming that θ ∼ O(2× 10−2) and using the dimensional parameter values given in

Table 2, we come to the conclusion that 2Kθ
Ks

and π2Kθ(Rm+Rh)
2

Km Hs Hm
both are O(1); therefore,

(A3) gives

k(r, z, t) ∼ N km(r, z, t)ks(r, z)
N 2km(r, z, t) + ks(r, z)

, N =
π(Rm + Rh)

Hs
, (A4)

as in (56).
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