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Abstract: This paper presents the Eulerian–Lagrangian approach for numerical modeling of high-
speed gas-droplet flows and aeroacoustics. The proposed hybrid approach is implemented using the
OpenFOAM library and two different methods. The first method is based on a hybrid convective
terms approximation method employing a Kurganov–Tadmor and PIMPLE scheme. The second
method employs the regularized or quasi-gas dynamic equations. The Lagrangian part of the flow
description uses the OpenFOAM cloud model. Within this model, the injected droplets are simulated
as packages (parcels) of particles with constant mass and diameter within each parcel. According to
this model, parcels moving in the gas flow could undergo deceleration, heating, evaporation, and
breakup due to hydrodynamic instabilities. The far-field acoustic noise is predicted using Ffowcs
Williams and Hawking’s analogy. The Lagrangian model is verified using the cases with droplet
evaporation and motion. Numerical investigation of water microjet injection into the hot ideally
expanded jet allowed studying acoustic properties and flow structures, which emerged due to the
interaction of gas and liquid. Simulation results showed that water injection with a mass flow rate
equal to 13% of the gas jet mass flow rate reduced the noise by approximately 2 dB. This result
was in good coincidence with the experimental observations, where maximum noise reduction was
about 1.6 dB.

Keywords: Eulerian–Lagrangian approach; water droplets; particle; jet; quasi-gas dynamic equations;
aeroacoustics; OpenFOAM

1. Introduction

One of the most important problems in the aerospace field is the minimization of
acoustic noise from jet engines [1]. The main source of noise from high-speed turbulent jets
is hydrodynamic instabilities, which lead to the emergence of forces acting from the flow on
the surrounding environment. In addition to large-scale turbulent structures, other noise
sources can be mentioned, such as small-scale turbulence, Mach waves, and resonating
elements of the flow [2–5]. Currently, various passive and active methods are used to
reduce noise from jets. Essentially, these approaches dwindle the full energy of the jet and
destruct coherent structures, emerging at the nozzle’s outflow of combustion products.
Water injection into the hot gas jet zone is one of these methods. This approach was studied
in papers [6–9]. Water droplets absorb kinetic energy from the gas flow due to resistance
and thermal energy due to heat transfer and evaporation processes. The corresponding
spatial changes in gas-dynamic fields lead to the destruction of flow structure. Usually,
the practical application of these approaches involves detailed complex and expensive
experimental studies of gas-dynamic and acoustic fields for small-scale models [8–11]. It
is also worthwhile to mention studies that are devoted to hydrodynamic investigation
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of liquid drops streamed from various micronozzles [12–14]. These investigations can be
used as validation data for new mathematical models, as well as boundary conditions for
droplet-flow models.

Recently, a fundamental understanding of the physical processes described above was
supplemented with numerical simulation methods. Three methods of jet-noise prediction
while accounting for water injection could be distinguished: semi-empirical models that
combine a large amount of experimental data with the theory of similarity [15], methods
of computational aero-gas-dynamics and acoustics using direct numerical simulation,
and hybrid strategies. In hybrid strategies, the computational domain is divided into
different subdomains.

Development and usage of numerical tools for adequate resolution and prediction
of the aforementioned phenomena are complicated by the range of factors—local inho-
mogeneity of the Mach number, the difference in spatially temporal scales, presence of
multiple phases, atomization of water jets, chemical reactions, interphase mass transfer,
the reflection of shock waves, etc. The most commonly used methods in practical appli-
cation are the finite volume method (FVM) and volume of fluid (VOF) [16,17]. However,
such methods are very computationally expensive if applied to complex multiscale prob-
lems. The authors of [18] proposed a less computationally expensive Eulerian–Lagrangian
approach with a point approximation of droplets. The entrainment effects in an evapo-
rating turbulent jet atomizer were studied in the work. Sigma-Y models with transport
equations for mass fraction and interphase surface-area concentration could replace the
Lagrangian description of a droplet flow [19]. Reduced order models were used to reduce
computational costs for computational aero-acoustic problems [20,21]. In these papers,
coherent structures of jet flow were identified using the proper orthogonal decomposition
method. Coupled simulation of gas-droplet jet flow and acoustics appears in a few studies.
The authors in [22] used the two-fluid model (Euler approach) implemented in ANSYS
software to simulate multiphase flow with water injection. However, droplet evaporation
was not taken into account in that study. Far-field noise was predicted using the Ffowcs
Williams—Hawkings analogy (FW-H). The papers [23,24] presented a study on jet-noise
reduction by air injection using a single-phase approximation. In [25], the effect of water
injection on noise reduction was carried out using an analytical investigation. In [26],
the authors solved the problem using the Lattice Boltzmann method (LBM). It was noted
that the undoubted advantage of LBM over traditional methods of computational fluid
dynamics was the simplicity of solving problems with complex geometry.

Therefore, the existing approaches discussed above are convenient for modeling
independent effects or phenomena. However, most of the mentioned approaches are not
suitable for modeling multiscale structures due to the complexity of implementation and
high computational costs. The numerical approach implemented in [22] partially allows
us to solve these problems. However, the high demands for computational resources, the
closed source code, and commercial licensing restrictions make the problem of developing
an appropriate numerical simulation method and its open-source implementation certainly
are relevant. The proposal in this work for solving the problem of determining acoustic
noise from a supersonic jet, taking into account water injection, is based on the less
resource-intensive Eulerian–Lagrangian approach. Gas-droplet flow is divided into two
models: continuous (Eulerian phase) and discrete (Lagrangian phase). The Eulerian system
describes the flow of a supersonic hot jet. The flow interacts with the environment and water
droplets, which are described by Lagrangian particles and account for evaporation and
atomization. The FW-H acoustic analogy is used for far-field noise prediction. The open-
source OpenFOAM package is selected as the main platform for the model implementation.

2. Governing Equations
2.1. Gas Phase

The Eulerian part of the model describes the nonreacting chemical and thermody-
namic equilibrium flow of the gas mixture. Individual transport of the mixture com-
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ponents is accounted through the motion of mixture with the mass-averaged velocity
and relative movement of components through the diffusion mechanism. The influ-
ence of the dispersed phase on the continuous phase is accounted via source terms in
the balance equations of mass, energy, and momentum. With account to the stated
assumptions, the mathematical model of a continuum compressible gaseous medium
consists of three-dimensional equations for turbulent supersonic and subsonic flow: a
mass-balance Equation (1), momentum-balance Equation (2), energy-balance Equation (3),
mixture-component transport (Equations (4) and (5)), and perfect gas equation of state
(EOS) for each component of the mixture (6).

The mass-balance equation is:

∂ρ

∂t
+∇ ·

(
ρ
→
U
)
=

.
ρv, (1)

where ρ is flow density, t is time, and
.

ρv is a source term describing the mass transfer
between the gas and droplet phases.

The momentum-balance equation is:

∂

(
ρ
→
U
)

∂t
+∇ ·

(→
Uρ
→
U
)
+ ∑

i
ρ0

i

→
Wi
→
Wi =

.
ρv
→
Uv +∇ · σ̂−∇p + ρ

→
g , (2)

where p is the mixture pressure, equal to the sum of components partial pressure; ρ0
i is flow

density of the ith component;
.

ρv
→
Uv is a source term that describes momentum exchange

between gas and droplets phases; and
→
g is the gravity.

The energy-conservation equation is:

∂(ρe)
∂t

+∇ ·
(

ρe
→
U
)
+ ∑

i
∇ ·

→
Wiρ

0
i ei +∇ ·

(
p
→
U
)
= −∇ ·

(
σ̂ ·
→
U
)
−∇ ·→q +

.
ρvev, (3)

where e is the total energy,
.

ρvev is a source term that describes the energy exchange between

gas and droplets, σ̂ = µ

(
∇
→
U + (∇

→
U)

T)
− 2

3 µI∇ ·
→
U is the stress tensor, µ is dynamic

viscosity, and I is unit tensor.
The heat-flux vector is calculated in accordance with Fourier’s law:

→
q = −λ∇T,

where T is the gas mixture temperature, and λ is mixture thermal conductivity coefficient:

λ =
µCp

Pr
+

µSGSCp

PrSGS
, Cp =

(
∂h
∂T

)
p
, ∇T =

∇h
Cp

,

where Pr is the Prandtl number; PrSGS is subgrid Prandtl number; µsgs = (Cs∆)2|S| is the
subgrid viscosity, where ∆ is filter size; Cs is an empirical constant (Smagorinsky constant):∣∣∣S| = (2SijSij

)1/2 , Sij =
1
2

(
∂Uj
∂xi

+ ∂Ui
∂xj

)
. Mixture-specific enthalpy h is the weighted sum of

specific enthalpies of its components:

h = ∑i Yihi,

where Yi =
ρ0

i
ρ is mass fraction of the ith component. Transport of the mixture components

is governed by:
∂ρYi

∂t
+∇ ·

(
ρYi
→
U
)
+ ρ0

i∇ ·
→
Wi =

.
ρi, (4)

where
.
ρi is a source term that describes generation or destruction of a species; namely,

generation of water vapor due to evaporation of droplets.
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The mass fractions of mixture components follow next algebraic rule:

∑i Yi = 1. (5)

The mass-average mixture velocity
→
U =

∑i ρ0
i

→
Ui

ρ and relative velocity of ith component
→
Wi =

→
U −

→
Ui are defined as:

∑i Yi
→
Wi = 0.

Diffusion approximation is used to calculate mixture components relative velocities:

ρ0
i

→
Wi = −Di∇ρ0

i ,

where Di =
νi
Sc is the diffusion coefficient of the ith component.

Each component of the gaseous mixture is an ideal gas with a constant molar mass:

pi = ρiRiT, (6)

where pi is the ith component pressure, ρi is thermodynamic density of the ith component,
and Ri is ideal gas constant.

The model is implemented as two OpenFOAM applications based on classical and
quasi-gas dynamic (QGD) systems of equations. The first solver, named reacting La-
grangianPimpleCentralFoam (RLPCF), uses the hybrid Kurganov–Tadmore technique
based on the flow model for an arbitrary EOS [27]. The second numerical algorithm is
implemented as reactingLagrangianQGDFoam (RLQGD) solver, and is based on regu-
larized or quasi-gas dynamic equations [28]. As an extension of the classical system of
Navier–Stokes equations, the QGD system contains regularizing terms that are propor-
tional to a coefficient with dimension of time. When this coefficient tends to zero, the QGD
system of equations reduces to the conventional system for perfect gas mixture motion
based on Navier–Stokes equations; e.g., (1)–(6). Detailed information about the regularized
equations employed in this study can be found in the papers [29–31].

2.2. Liquid Phase

The model of the liquid-droplet system is based on the OpenFOAM cloud model
formulated using the Lagrangian approach. Within this model, a system of liquid droplets
is represented as a cloud of so-called parcels or bundles of droplets with similar mass. Such
representation allows us to save computational resources for real applications in which the
resolution of each droplet is not feasible (the total number of particles is larger than 107).

Each parcel is characterized by the geometric center of masses xp of spherical particles

with diameter Dp, density ρp, mass mp = 1
6 ρpπD3

p, temperature Tp, and velocity
→
Up. The

evolution of each particle is governed by kinematic Equation (7), momentum-balance
Equation (8), mass-balance Equation (12), and energy-balance Equation (13). The resultant

force acting on a particle is the sum of the drag force from the fluid phase (
→
F D) and gravity

force (
→
F G).

d
→
x p

dt
=
→
Up, (7)

mp
d
→
Up

dt
= ∑

→
F i =

→
F D +

→
F G = mp

→
U −

→
Up

τp
+ mp

→
g
(

1− ρ

ρp

)
. (8)
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The drag force is formulated through the relaxation time of a particle—the time it
takes for a particle to respond to changes in the local flow velocity:

τp =
4
3

ρpDp

ρ·CD·
∣∣∣∣→U −→Up

∣∣∣∣ . (9)

The drag coefficient module CDRep is calculated via empirical Putnam dependency [32]:

CDRep =

{
0.424·Rep, Rep > 1000

24·
(

1 + 1
6 Rep

2/3
)

. Rep ≤ 1000
(10)

The particle Reynolds number is defined as:

Rep =

ρ

∣∣∣∣→U −→Up

∣∣∣∣Dp

µ
. (11)

The model also includes a drop mass-balance equation:

dmp

dt
=

.
mp =

mp

τe
, (12)

where τe is evaporation relaxation time.
The drop energy-balance equation is:

mpCpp
dTp

dt
= qT −

.
mpL, (13)

where Cpp is the particle-specific heat capacity at constant pressure, Tp is the particle
temperature, qT is total heat flux through the particle outer surface, and L is the latent heat
of vaporization.

It is assumed that injected water is already divided into separate droplets at the point
of injection; i.e., the cloud of droplets with a predefined diameter density function is
already formed. The droplet size distribution for mean droplet diameter dmean was set
according to the generalized normal distribution (Figure 1) [12,13]. The normal rebound
model (elasticity coefficient is equal to one) is used as a model of particle interaction with
the impermeable walls of a computational domain. If particles reach the inlet or outlet
boundaries of a computational domain, then they are removed from computations.
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The droplet-breakup mechanism due to hydrodynamic instabilities is accounted for
using the Taylor analogy breakup (TAB) model [33], which is based on Taylor’s analogy
between an oscillating distorting droplet and a spring-mass system. When the speed of
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a parcel increases, the number of droplets grows. On the other hand, drops with smaller
diameter evaporate faster. The final number of fragments after a drop breakup depends
on the critical Weber number, which equal to six in this model. The increase of the critical
Weber number leads to a reduction of the evaporation rate since droplets break slower, and
hence have a larger diameter.

2.3. Gas and Liquid Phase Coupling

During the motion, particles interact with the gas flow and exchange mass, momentum,
and energy via processes of viscous drag, heating, and evaporation. The energy transfer
rate between models is estimated using semiempirical closure relations between surface
heat flux and near-droplet temperature difference:

qT = htc·Sp·
(
Tsp − T

)
,

where Sp = πDp
2 is the drop surface area, htc = Nu·λ

Dp
is the heat-transfer coefficient, λ is

the thermal conductivity of the flow, and Tsp = 2
3 Tp +

1
3 T is the drop surface temperature.

The heat-transfer coefficient for a sphere in a flow of viscous gas is calculated using
the Ranz–Marshall correlation [34]:

Nu = 2 + 0.6·
√

Re· 3
√

Pr,

where Pr =
Cp ·µ

λ is the Prandtl number, and Cp is the flow-specific heat capacity at
constant pressure.

The evaporation of droplets is accounted via the Spaulding phase-change model [18],
which considers diffusive mass flux of liquid molecules from the surface of the spherical
droplet due to the saturated vapour concentration gradient.

2.4. Acoustic Prediction

The far-field acoustic pressure is predicted using the Farassat 1A formulation [35,36]
of the Ffowcs Williams—Hawking analogy implemented in the libAcoustics library [37,38].

The sound pressure level (SPL) is calculated as:

SPL(dB) = 20log10

(
prms/pre f

)
,

where prms is the root mean square of sound pressure; and pref is the reference sound
pressure, which is equal to 2·10−5 Pa.

3. Verification and Validation

The Eulerian part of the model for both of the system equations was verified by solv-
ing the various problems such as: (a) shock tube and other discontinuity evolution prob-
lems [27,28], (b) the flow around the forward and backward step with super- and subsonic
velocities [28,39], (c) flow around blunt bodies at trans- and supersonic velocities [27,28,39],
and d) hydrodynamic instabilities development and acoustic noise generation by a tran-
sonic jet [40,41]. The libAcoustics library of far-field noise analysis was successfully tested
for a number of models (monopole, dipole) and experimental problems [37,40,41]. The
verification of the droplet-dynamics model is presented in the next two sections.

3.1. Droplet Evaporation

The default OpenFOAM liquid evaporation model and Spalding model [18] have
been verified. According to the analytical solution, the time the droplet needs to vaporize
completely is proportional to the square of the droplet radius (r2-law). The case was
considered to have verified the r2-law when the stationary water droplet (diameter of
0.0017 m, mass of 2571·10−9 kg) evaporated in a very large volume without the influence
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of external forces and heat exchange. The environmental temperature (293 K) and pressure
(101,300 Pa) were constant. The numerical simulation results are presented in Figure 2a.
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In another test case, the water droplet evaporation was accompanied by the decline of
thermal energy (temperature). The water droplet with a temperature of 301.45 K fell freely.
External temperature was equal to 301.45 K and pressure was 101,300 Pa, and the air relative
humidity was set to 0.22. Two variants of expression for saturated pressure calculations
were used: the NSRDS function and the Clausius–Clapeyron equation. Results of the
current simulation were compared with a reference simulation and with the experimental
results in [18] (see Figure 2b).

Calculation of the isothermal droplet evaporation process using the implemented
model showed that the droplet radius evolution curve differed from r2 law by less than
10% (see Figure 2a) in the time interval of 0–1000 s. For the second case, the temperature
time dependence of the falling droplet was calculated and compared with experimental
measurements. The results of the calculations differed from the experiment by less than 5%
(Figure 2b).

3.2. Droplet Movement

The problem of droplet motion in gas is considered to validate the momentum model
(Figure 3). During the motion, a droplet exchanges momentum with the surrounding gas,
and as a result, it changes its shape, and can break into several smaller droplets. In turn,
this mechanism affects the processes of mass and heat exchange and ultimately influences
the acoustic noise level.

The droplet motion was considered with initial velocity Ud equal to 16 m/s in a gas
flow with uniform velocity field Ug = 59 m/s, temperature of 300 K, and a pressure of
0.5 GPa. The drop diameter was d = 170·10−6 m, the mass was md = 2571·10−9 kg, and the
temperature was Td = 300 K. The simulation area dimensions were 0.028 × 0.02 × 0.001 m,

the Reynolds Number was Re = 669, the Weber number was We =
ρ·
∣∣∣∣→Ug−

→
Up

∣∣∣∣2d

σ = 36, and
the surface tension σ was equal to 0.02 kg/s2.
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The results showed satisfactory coincidence between the simulation and the experi-
mental data [42]. It should be noted that mentioned differences between the reference and
computed values could be further diminished by adjusting model coefficients. However,
it did not seem necessary here because the typical practical problem statement includes
many other uncertainties, which can impact the result of far-field noise prediction. The
considered verification cases demonstrated overall correspondence of the model to basic
physical mechanisms.

4. Jet-Noise Prediction with Water Microjet Injection

The far-field noise prediction of a high-speed jet with and without water microjet
injection was considered as the validation case. Flow geometry and parameters matched
the experimental study conducted by Greska [43]. Six micronozzles, each forming a water
microjet supply, were evenly spaced around the gas nozzle exit. The acoustic pressure was
measured with and without the presence of a water supply at a distance from the nozzle
exit of about 30 diameters at different angles to the jet axis.

4.1. Computational Setup

When the exit diameter of the nozzle was D = 0.04 m, the jet of nonreacting gas
with γ = 1.338 was ideally expanded. The following parameters of the jet flow were used:
Uj = 880 m/s, Tj = 624 K, Mj = 1.8, ReD = 640,000. The nozzle pressure ratio (NPR) operating
pressure was equal to 5.6. The diameter of the water injection micronozzle was 800 µm.
Micronozzles were installed at an angle of 60◦ upstream of the gas jet. The mass flux of
the microjets’ water supply was 13% of the gas jet. The water injection was modelled from
conical micronozzles at an angle of 20◦. The flow of liquid droplets was resolved with a
Lagrangian model density of 106 parcels per second. The models based on the Eulerian–
Lagrangian approach required an initial distribution of size of droplets, but previous
experimental study [43] did not provide such information. The common way to define
initial sizes of droplets is to use Rosin–Rammler distribution with the volume median
droplet diameter (D50) as a parameter. It was established in a previous investigation [13]
that droplet size was insensitive to liquid viscosity. The volume median diameter can be
estimated as D50/b ∼We−1/3, where b is the characteristic length, We = ρliqU2

liqb/σ. The
plot of the used droplet size distribution is presented in Figure 1.

The computational domain (Figure 4) was a rectangular parallelepiped in which the
outlet boundary was placed at the distance 80D between opposite sides in the jet axis
direction, and at a distance of 20D in other directions. The inlet boundary corresponded to
the gas nozzle exit of circular shape, with the center located in the origin of the coordinates
(Figure 4).
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The computational mesh was refined in the region from the gas nozzle exit 30D down-
stream. According to the recommendations presented in [40,41], two meshes for each solver
were constructed. It was shown in previous studies that two numerical algorithms required
different mesh resolutions to simulate the instabilities arising from the mixing layer of a
high-speed jet. The first mesh, with uniform refinement of 40 cells per diameter (CPD) in
the region surrounding 30D of the jet and a total number of cells equal to 33.5 million was
used for the QGD algorithm. Spatial resolution of 60 CPD in the jet core and 30 CPD in
the remaining part of the refinement region was used for the second mesh. This mesh was
used with the RLPCF solver. Both grids were uniform in the area of interaction between
the hot jet and water droplets. The uniform grid remedied numerical problems arising in
water–gas interaction region described in the paper [44].

The mass fraction of the air component equalled 1 in the internal field at the initial
time. Gas with the conditions prescribed above was set on the inflow boundary. A
turbulent pulsation of the velocity field equal to 2% was imposed on the inlet boundary. The
Smagorinsky subgrid scale model with constant Cs = 0.05 and the Adams–Bashforth scheme
for time discretization were used. The numerical schemes and regularized parameters for
both RLPCF and RLQGD solvers are presented in detail in the papers [40,41].

Virtual microphones were placed at a distance of R = 3.048 m. The angle of microphone
position θ varied from 30 to 90◦ to the jet axis and was measured from the downstream
jet axis.

4.2. Near-Field Results

The near-field results were similar for both solvers. The axial distributions of the
velocity field with and without water injection are presented in Figure 5. The paper [43]
does not contain information about the jet centerline parameter distribution to validate
numerical methods. Therefore, to check our numerical models, we used experimental
data from the investigation conducted by Baars and Tinney [45], in which parameters at
the nozzle exit section were similar to those specified in [43]: Mj = 1.55, ReD = 596,000,
Tj = 735 K. As can be seen from Figure 5, the computed values from the model setup [43]
were in good qualitative agreement with experimental data [45].
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Typical flow structures for the RLPCF solver are presented in Figures 6–8. The mean
streamwise velocity fields and the spatial distribution of the injected parcels are shown in
Figures 6 and 7, respectively. The mass fraction of water is depicted in Figure 8. The initial
and the final (end of simulation) droplet size distributions are presented in Figure 9a, and
droplet diameter versus jet axis coordinate is plotted in Figure 9b.
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The interaction of water microjets occurs in the shear layer of the gas jet. Droplets
are rapidly breakup to a size of about 10 µm during the distance equal to one jet nozzle
diameter in the axial direction. The further propagation of water parcels in the shear
layer occurs their partial evaporation. It is found that about 20% of the mass fraction of
water evaporated, while the size of the droplets significantly decreased compared to their
initial sizes.

4.3. Acoustic Far-Field

Two open surfaces were constructed (they are schematically depicted in Figure 10)
using recommendations for FW-H generations from [46,47] for jet-flow acoustic-pressure
predictions. Control surfaces began 0.1D downstream of the inflow boundary and extended
to 35D along the streamwise direction.
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Simulation results of the overall sound-pressure level (OASPL) for the jet without
water injection are presented in Figure 11a. Figure 11b illustrates the effect of the microjets
influence on the OASPL of the ideally expanded jet in comparison with the experimental
data. Figure 12 shows the far-field narrowband frequency noise spectra and a comparison
with experiment data at θ = 90◦ [43].
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The results showed good quantitative agreement of the OASPL distribution and
relatively satisfactory qualitative agreement of the OASPL difference in circumferential
direction. The direction of maximum radiation magnitude was shifted by 2–3◦ and was
near 52.5◦. The largest difference was about 2.5 dB at an angle of 70◦. The comparison of
narrowband spectra showed some overestimation of the calculated SPL, with experimental
values near 6 kHz frequencies. According to the qualitative comparison, the QGD algorithm
reproduced the spectrum better than the hybrid approach (RLPCF). Water microjet injection
with a mass-flux ratio of 13% led to a small transformation of the structure and to the
appearance of a weak shock-cell structure. Such changes caused redistribution in the
intensity and direction of the pressure waves generated by the jet. In these conditions,
water injection reduced the overall sound pressure level for an ideally expanded jet over
an entire range of studied angles (Figure 11b). The injection of water microjets at θ = 90◦

affected low frequencies mainly in this setup. Maximum noise reduction was observed in
the range of 45–55◦, and was equal to 1.75–2 dB. The discrepancy of ∆OASPL (the difference
between OASPL w/o and w/water injection) for the calculated and experimental values
was about 0.5–1.25 dB. A maximum discrepancy also was observed at an angle of 70◦. These
differences can be explained by uncertainty in the profile of the velocity field at the inflow
boundary in the experiment. The insufficient grid resolution in the area of propagation
of perturbations from the jet and the shape of the FW-H surfaces also could be the source
of acoustics far-field prediction error. Thus, the numerical simulation results showed a
satisfactory agreement with the results of the experiment conducted by Greshka [43].

5. Conclusions

In this study, a flow model encompassing a description of a multicomponent gas
mixture, droplet cloud motion, evaporation, and interaction with the acoustic analogy
was developed. The proposed mathematical model was implemented using the Eulerian–
Lagrangian approach in OpenFOAM open-source package using two numerical approaches:
(a) hybrid Kurganov–Tadmor and a PIMPLE algorithm; and (b) a QGD algorithm. Separate
parts of the model were verified using problems with a known solution for water-droplet
dynamics, gas dynamics, and acoustic-perturbation propagation. The whole model was
validated with a case combining all three phenomena. In this case, the jet-noise reduction
by water microjet injection was considered. The results obtained from the numerical simu-
lations of far-field noise showed a satisfactory agreement with the experimental data. The
calculated maximum noise reduction by water injection was 2 dB, while the experimental
reduction was about 1.6 dB. The spatial direction in which the maximum reduction was
observed also coincided with the experiment. This direction corresponded to the direction
of maximum sound radiation. Simulation showed that the injected droplets’ size changes
at axial distances up to one nozzle diameter from the inlet plane downwind. Droplets’
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velocity rapidly increases with the developing gas flow, leading to their breakup after
injection. The final size of the droplets depends primarily on the gas flow velocity; i.e.,
among two factors (the breakup and evaporation), the first one plays the major role.

The calculations showed the importance of CFD tool application in numerical far-field
acoustic noise numerical prediction in the presence of interaction between gas and liquid
flows. According to the common notion regarding the general influence of cold droplets
on the sound generated by hot jets, the mean energy of the gas flow is absorbed, and
therefore, the OASPL reduces. However, it is worth noting that in some circumstances,
the spatial interaction between two phases could lead to a redistribution of flow structure,
yielding sustainable or even growing acoustic noise due to the emergence of sources of
another type.

Similar problems, such as fuel injection in automobile engines, injector operation in
steam boilers, or gas atomization of metal to produce powder for 3D printing, can be also
solved using the proposed approach.
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