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Abstract: The purpose of this article was to present the solution for the critical Taylor number in the
case of the motion between rotating coaxial cylinders based on the theory of stochastic equations
of continuum laws and the equivalence of measures between random and deterministic motions.
Analytical solutions are currently of special value, as the solutions obtained by modern numerical
methods require verification. At present, in the scientific literature, there are no mathematical
relationships connecting the critical Taylor number with the parameters of the initial disturbances in
the flow. The result of the solution shows a satisfactory correspondence of the obtained analytical
dependence for the critical Taylor number to the experimental data.

Keywords: stochastic equations; equivalence of measures; nature of turbulence; critical Reynolds num-
ber

1. Introduction

Analytical solutions are currently of special value, as the solutions obtained by mod-
ern numerical methods require verification. As it is known, an advantage of analytical
formulas is the visualization of physical relationships between quantities. Therefore, the
development of physical and mathematical theories for complex physical nonlinear pro-
cesses, which are described by inhomogeneous high-order partial differential equations, is
especially significant.

Moreover, analytical dependences including theoretical estimates are extremely im-
portant in the analysis of experimental data, when it is necessary to take into account the
effect of substantial quantities, which are random in time and space, instead of only to give
average statistical estimates.

Different ideas of the theory of turbulence are presented in [1–10]. Mathematical
methods for obtaining solutions of the Navier–Stokes equation, the theory of solitons, and
the theory of strange attractors are presented in [11–24].

Numerical DNS methods, and stochastic and statistical equations for investigating
turbulent motion are given in [25–34]. Special attention was given to the theoretical
solutions for the critical Reynolds number. It should be noted that the most well-known
ratio based on the theory of dimension was determined using experimental data [35–40].
Therefore, based on these experimental formulas, it was impossible to obtain a new theory
for determining analytical dependences for the critical Reynolds number of turbulence in
different flows.

The theory of turbulence based on stochastic equations and the theory of equivalent
measures makes it possible to derive analytical dependences for the first and second critical
Reynolds numbers in the cases of isothermal and nonisothermal flows on a smooth flat plate
and in a round tube [41–44]. The progress of this theory gives a new method for determining

Fluids 2021, 6, 306. https://doi.org/10.3390/fluids6090306 https://www.mdpi.com/journal/fluids

https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0001-5911-9389
https://doi.org/10.3390/fluids6090306
https://doi.org/10.3390/fluids6090306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fluids6090306
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids6090306?type=check_update&version=2


Fluids 2021, 6, 306 2 of 10

analytical dependences for profiles of averaged velocity and temperature fields [45–47],
the friction and heat-transfer coefficients [48–50], second-order correlations [51,52], the
correlation dimension of an attractor in the boundary layer [53–56], and the formulas for
the Reynolds analogy [56–58] in theoretical solutions for spectral functions of the turbulent
medium [59–63].

As a result, it was determined that the spectrum E(k)j depends on wave number k for the
interval of the generation of turbulence in the form of E(k)j~kn, n = –1.2/–1.5, –1.66 < n < –1.
This formula was named as the ratio of uncertainty in turbulence generation [62,63].

Other types of fluid motions, which are important for both theory and practice, were
also investigated. For example, the determination of the critical Reynolds number in a jet
and for the flow near a rotating disk is presented in [64,65].

Thus, we presented here the analytical solution for the critical Taylor number in the
case of the motion between rotating coaxial cylinders.

2. Equations of Conservation for the Stochastic Process

The equations were derived in [39–41] and take the following form:
The equation of mass (continuity)

d(ρ)col st
dτ

= −
(ρ)st
τcor

−
d(ρ)st

dτ
, (1)

the momentum equation

d
(

ρ
→
U
)

colst
dτ

=div(τi,j)col st
+div(τi,j)st −

(ρ
→
U)st

τcor
−

d(ρ
→
U)st

dτ
+ Fcol st + Fst (2)

and the energy equation

dEcol st
dτ

= div(λ
∂T
∂xj

+ uiτi,j)
col st

+div(λ
∂T
∂xj

+ uiτi,j)
st
−
(

Est

τcor

)
−
(

dEst

dτ

)
+ (ui F)col st + (ui F)st (3)

Here, E, ρ,
→
U, ui, uj, ul , µ, τ, τi,j are the energy; the density; the velocity vector; the

velocity components in the directions xi, xj, and xl (i, j, l = 1, 2, 3), respectively; the

dynamic viscosity; the time; and the stress tensor τi,j = P + σi,j, where σi,j = µ
(

∂ui
∂xj

+
∂uj
∂xi

)
−

δij
(
ξ − 2

3 µ
) ∂ul

∂xl
, i and j are the tensorial notations, δij = 1 if I = j, δij = 0 for i 6= j. j is the

pressure of a liquid or gas; λ is the thermal conductivity; cp and cv are the specific heat at
constant pressure and volume, respectively; F is the external force. Further, L = LU,P = LU
is the scale of turbulence. The subscripts (U,P) and (U) refer to the velocity field and
the subscript (T) refers to the temperature field. The turbulence scale L is taken along the
radius r. The subscript “col st” refers to the components that are deterministic. The subscript
“st” refers to the components that are stochastic. Then, for the nonisothermal motion of
the medium, using the definition of equivalence of measures between deterministic and
random processes at the critical point, the sets of stochastic equations of energy, momentum,
and mass are defined for the next space–time areas: (1) the onset of generation (subscript
1,0 or 1); (2) the generation (subscript 1,1); (3) the diffusion (1,1,1); and (4) the dissipation of
the turbulent fields.

3. Stochastic Equations for Critical Taylor Number

For the critical numbers, sets (1)–(3) of the equations of mass, momentum, and energy
for the area (1) referring to the pair (N, M) = (1, 0) is:(

d(ρ)col,st

dτ

)
1,0

= − ρst

τcor
,
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
(

d(ρ
→
U)col,st
dτ

)
1,0

= −
(

(ρ
→
U)st

τcor

)
;

div(τi,j)col,st1 =
(ρ
→
U)st

τcor
,

(4)


(

d(E)col,st
dτ

)
1,0

= −
(
(E)st
τcor

)
1,0

;

div(λ ∂T
∂xj

+ uiτi,j)
col,st1

=
(
(E)st
τcor

)
1,0

.

The motion between rotating coaxial cylinders is described in detail in [34–38]. In
particular, for the laminar motion during the rotation of both cylinders, the velocity profile
is determined for laminar motion by the dependence [31]

ur =

[
1

r2
2 − r2

1

][
r
(

ω2r2
2 −ω1r2

1

)
− r2

2r2
1

r
(ω2 −ω1)

]
. (5)

In the case when the inner cylinder rotates and the outer cylinder is at rest, it is also
characterized by the bifurcation in laminar motion with the formation of Taylor vortices
instead of only by the transition of deterministic motion to the random motion. Then, the
velocity profile for the laminar motion without the formation of Taylor vortices [31] is

ur =

[
1

d
(
r2 + r1

)][ r2
2r2

1

r
(ω1)− r

(
ω1r2

1

)]
. (6)

In Formulas (5) and (6), r1, r2, v1, v2, and d are the radius and speed of rotation of the
first and second cylinders, and the distance between the cylinders, respectively.

Taking into account the set of stochastic equations of the presented theory of equivalent
measures for a continuous isothermal medium, we write for the space–time region of
the beginning of the resonance–correlation “determinism–randomness” according to the
equivalence of measures (4) of deterministic and random motion, and we define the
derivative

∂ur

∂r
=

∂

∂r

[
ω1
(
r2

1
)

d
(
r2 + r1

)][ r2
2

r
− r
]
=

[
ω1
(
r2

1
)

d
(
r2 + r1

)][− r2
2

r2 − 1
]

∂ur

∂r
=

∂

∂r

[
ω1
(
r2

1
)

d
(
r2 + r1

)][ r2
2

r
− r
]
=

[
ω1
(
r2

1
)

d
(
r2 + r1

)][− r2
2

r2 − 1
]

µ

(
∂ur

∂r

)2
= ρ · ν ·

[
ω1
(
r2

1
)

d
(
r2 + r1

)]2[
r2

2

r2 + 1
]2

= ρ · ν ·
[ω1

d

]2
[ (

r2
1
)(

r2 + r1
)]2[

r2
2 + r2

(r2)

]2

(7)

Transforming Equation (7), we obtain

µ

(
∂ur

∂r

)2
= ρ · ν ·ω1

2

[(
r4

1
)

d2

][
1

r1
(
2 + d/r1

)]2[
r2

2 + r2

(r2)

]2

≈ ρ · ν ·ω1
2

[(
r2

1
)

d2

]
. (8)

then

µ

(
∂ur

∂r

)2
≈ ρ · ν ·ω1

2

[(
r2

1
)

d2

]
=

∣∣∣∣ Est

τ0
cor

∣∣∣∣
1,0

(9)

or we have
(

ν
d2 τ0

cor

)(
r2

1ω1
2

Est/ρ

)
= 1.
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For the case of the time correlation
(
τ0

cor
)

1,0 = L√
Est/ρ

, we can write

(
ν

d2
L√

Est/ρ

)(
r2

1ω1
2

Est/ρ

)
= 1

or ((
ν

r1ω1 d

)
L
d

)(
r1ω1√
Est/ρ

)3

= 1 (10)

Thus, we write that

(
r1ω1 d

ν

)
=

(
r1

d
L
r1

)(
r1ω1√
Est/ρ

)3

(11)

and obtain the dependence

Ta =

(
r1ω1 d

ν

)√
d
r1

=

(√
r1

d

(
L
r1

))(
r1 ω1√
Est/ρ

)3

(12)

and, finally, the formula for the critical Taylor’s number is

Ta =

(
r1ω1 d

ν

)√
d
r1

=

(√
r1

d

(
L
d

)(
d
r1

))(
r1 ω1√
Est/ρ

)3

=

(√(
d
r1

))(
r1 ω1√
Est/ρ

)3(
L
d

)
(13)

4. Critical Point in the Case of Motion between Rotating Coaxial Cylinders

We determine the position of the critical point. The critical point definition is found
from the equation

+∆V|2∫
−∆V|2

d
(
Ecolst

)
1;0 =

∫
X

dEst (14)

Est is the random energy component in the space X with the measure m(Est) < ∞

Est = Est(
→
xi, τi, mi) < ∞ (15)

In accordance with ergodic theory,∫
X

dEst =
1

∆V

∫
V

Estδ((∆V)critic − ∆V)dV =
1

τ0
cor

∫
τ

Estδ(τ
0
cor − τ)dτ = (Est)critic (16)

(Est)critic is the energy of the stochastic field at the critical point, or

∫
X

dEst =
1
L

∫
L

Estδ((xi)critic − xi)dL =
1

τ0
cor

∫
τ

Estδ(τ
0
cor − τ)dτ = (Est)critic (17)

L is the scale of disturbance. Then, we can write

+V|2∫
−V|2

d
(
Ecolst

)
1;0
∼=
(
0, 5ρu2

r
)+L/2
−L/2 = 0, 5ρω1

2
([

(r2
1)

d(r2+r1)

][
r2

2
r − r

])2 +L/2

−L/2
=

= 0.5ρω2
[

r2
1

d(r2+r1)

]2{[
r2

2
(r+L/2) − (r + L/2)

]2
−
[

r2
2

(r−L/2) − (r− L/2)
]2
}
≈ 0.5ρω2

[
r2

1
d(r2+r1)

]2
3.75d2r2

22rL
(r+L/2)2(r−L/2)2

(18)
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An estimate of Equation (18), when r → r1 and r2 ≥ r1 >> d, may be written as

0.5ρω1
2

[
r2

1

d
(
r2 + r1

)]2
3.75d2r2

22rL

(r + L/2)2(r− L/2)2 = 0.5ρω1
2
[

r2
1

2dr2

]2 3.75d2r2
22rL

(r + L/2)2(r− L/2)2 ≈ K · ρ
(

ω1
2r2

1

) L
r

(19)

Here, K = 0.94/0.93, and finally,

+V|2∫
−V|2

d
(
Ecolst

)
1;0 ≈ Kρω1

2r2
1

(
L
d

)(
d
r1

)
r1

r
(20)

Therefore, we obtain

Kρω1
2r2

1

(
L
d

)(
d
r1

)
r1

r
≈ Est (21)

Then, we finally have the formula for the critical point in the case of the motion
between rotating coaxial cylinders

rcr ≈ K
(

d
r1

)(
r1 ω1√
Est/ρ

)2(
L
d

)
r1 (22)

5. Results of Estimates of the Critical Taylor Number

We present the results of calculations for the conditions of the experiment of Taylor [31],

when (d/r1) = 0.028, the pulsation intensity
(√

Est/ρ

r1 ω1

)
is 1–2%, the relative magnitude of

the turbulence scale (L/d) is 0.01–0.02, and the experimental value of the critical Taylor
number is (Ta)cr~400 [31,66].

We emphasize that it is of interest to make a similar estimate, when the laminar-
motion velocity profile is determined by the motion of Taylor vortices, but this version of
the definition is not used here.

Thus, the critical Taylor number and critical point using Formulas (13) and (22),
and depending on the values of the pulsation intensity and the scale determined from
experiments, may be calculated as

Ta =

(√(
d
r1

))(
r1 ω1√
Est/ρ

)3(
L
d

)
=

(√
(0.028)

)
(62.)3(0.01) = 398 (23)

rcr ≈ 0.93
(

d
r1

)(
r1 ω1√
Est/ρ

)2(
L
d

)
r1 = 0.93(62.)2(0.01)(0.028)r1 = 1.0009r1 (24)

The accuracy and the physical validity of the expression for the critical point can be
verified indirectly. Thus, having experimental relationships for quantities

(
d
r1

)
,
(

L
d

)
, it

is possible to obtain an indirect empirical value for the scale of turbulence. At the same
time, calculating the distance from the surface of the first cylinder to the critical point
∆r = rcr − r1, it is necessary to take the ratio of the scale to this distance. The resulting
value must be compared with the von Karman constant.

Thus,
(

d
r1

)
= 0.028,

(
L
d

)
= 0.01; thus, L = 0.00028r1. The distance from the surface of

the first cylinder to the critical point is ∆r = rcr − r1 ≈ 0.0009r1. The calculated value is k
~L/∆r ≈ 0.312 and, at the same time, the empirical value of the von Karman constant is
k = 0.39/0.41. Thus, the deviation in the calculated dependence from the empirical one is
less than 25%, which confirms the satisfactory agreement of dependence (22) for the critical
point. It should be noted that the main studies [67–125] do not contain information on
analytical solutions for the critical Taylor number as a function of the initial intensity and
scale of perturbation.
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6. Conclusions

We presented the analytical Formula (13) for the critical Taylor number for the motion
between rotating coaxial cylinders based on the theory of stochastic equations of continuum
laws and the equivalence of measures between random and deterministic motions. The
analytical Formula (22) for the critical point in the case of the motion between rotating
coaxial cylinders is also derived. The result of the solution of Equation (13) shows a
satisfactory correspondence with the obtained analytical dependence for the critical Taylor
number to the experimental data. For validating the dependence for the critical point,
the indirect calculated dependence of the von Karman constant was compared with the
empirical value of this constant. The result of the comparison shows the satisfactory
agreement between the calculated and empirical values of the von Karman constant.

Thus, the obtained analytical dependences can be used for validating both experi-
mental and numerical studies of the onset of turbulence in a fluid flow between rotating
cylinders, which is important for the practice of developing various technical devices such
as hydraulic cylinders, as well as oil and water-cooling systems.
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