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Abstract: The dynamics of a three-phase gas–liquid–liquid multiphase system is examined by direct
numerical simulations. The system consists of a continuous liquid phase, buoyant gas bubbles, and
smaller heavy drops that fall relative to the continuous liquid. The computational domain is fully
periodic, and a force equal to the weight of the mixture is added to keep it in place. The governing
parameters are selected so that the terminal Reynolds numbers of the bubbles and the drops are
moderate; while the effect of bubble deformability is examined by changing its surface tension, the
surface tension for the drops is sufficiently high so they do not deform. One bubble in a “unit cell”
and eight freely interacting bubbles are examined. The dependency of the slip velocities, the velocity
fluctuations, and the distribution of the dispersed phases on the volume fraction of each phase are
examined. It is found that while the distribution of drops around a single bubble in a “unit cell” is
uneven and depends on its deformability, the distribution of drops around freely interacting bubbles
is relatively uniform for the parameters examined in this study.

Keywords: multiphase flow; numerical simulations; three-phase flow

1. Introduction

The dynamics of a three-phase gas–liquid–liquid multiphase system is examined
by direct numerical simulations, where the continuum equations describing fluid flows
are solved sufficiently accurately so that every length and time scale are fully resolved
for unsteady systems. The system consists of a continuous liquid phase, buoyant gas
bubbles that rise, and heavy drops that fall, relative to the continuous liquid. Three-phase
gas–liquid–liquid systems are found in many engineering applications. One of the more
common ones consists of gas bubbles and oil drops in water as found in, for example, water
management in the oil industry and the separation of oil and grease from municipal and
industrial wastewater. The density difference between oil and water is generally small, so
separation relying on gravity-driven settling is slow. However, by injecting gas bubbles
into the mixture that stick to the oil drops and carry them to the top, the rate of separation
can be greatly increased. While the collision of bubbles and drops and their subsequent
interactions, such as when an oil drop engulfs an air bubble, are critical to the efficiency of
the process, here, we focus on the flows where the drops do not stick to the bubbles. Since
the sticking adds new physical processes and parameters not included here, we believe
that the non-sticking case is an important reference case and one that can also describe the
pre-collision stage. For a relatively recent review of gas flotation see [1], and discussions of
the capture of an oil drop by a gas bubble can be found in [2–4], for example. Oil–water–gas
flows are also found in many other circumstances, such as in oil wells and pipelines [5].

Numerical simulations, particularly direct numerical simulations, have come a long
way in the last two decades. Early simulations of many interacting bubbles can be found
in [6], who examined bubbles in initially quiescent liquid in fully periodic domains, and
more recent studies include [7,8] where the dynamics of bubbles in turbulent channel
flows is examined. While a large number of authors have examined the dynamics of
two-phase flows, fully resolved numerical simulations of three-phase systems are relatively
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rare and usually concerned with systems different from the one considered here. Those
include simulations of bubbles and drops in minichannels using a volume of the fluid
method by [9], Ref. [10], who used a level set method to study drops in two-layer stratified
flows, and Ref. [11], who examined the dynamics of a drop on the interface between two
different fluids, using smooth particle hydrodynamics. The only study we have found of
the dynamics of fully resolved bubbles and drops is [12], where a method that is referred
to as density functional hydrodynamics was used. Several pictures of the interaction of a
few bubbles with a few drops are presented but no quantitative information.

While the focus here is on the interactions of buoyant bubbles with heavy drops, we
expect the dynamics before the collision to be similar to the interaction of spherical solid
particles with bubbles, such as in froth flotation for mineral processing and recycling of
plastics, where hydrophobic particles stick to bubbles and are carried to the top of the
mixture and removed [13,14]. Most simulations of such systems involve considerable
simplifications such as where the bubbles and the flow around them are fully resolved, but
the solid phase is modeled as point particles. Ref. [15] simulated the motion of bubbles
in initially quiescent flow using a front tracking method to track the bubble surface but
modeling the particles as point particles, with two-way coupling. The bubbles were initially
put in the lower part of the computational domain, which contained a large number of
particles, and the simulations examined how particles were transported in the wake of the
bubbles as they left the particle-rich region. A similar study was conducted by [16], who
simulated the motion of one and two bubbles and their interactions with point particles,
using a VOF method to represent the bubble. Those studies were, however, limited to
two-dimensional flows. Other authors have focused on the interaction of a single bubble
with point particles. Those include [17], who captured the bubble by a phase-field method
and [18], who used an LBM method. Refs. [19,20] studied the influence of turbulence on
the interaction of several point particles with a single bubble but used a k− ε models for
the turbulence, rather than fully resolving the flow. In some cases, the bubbles are also
modeled as point particles, such as by [21], who simulated turbulent flow with bubbles and
solid particles, both modeled as point particles using a one-way coupling, so the disperse
phases did not affect the carrier phase. Similarly, a discrete element method has been
used to examine the interaction of several point particles with one bubble in [22,23]. The
only simulations that we are aware of, where both the bubbles and the solid particles are
resolved, are [24,25], who used a front tracking method for the bubbles and an immersed
boundary method (IBM) for the solid particles to simulate the interactions between several
bubbles and drops, and [26], who used a volume-of-fluid (VOF) method for the bubbles
and examined the interactions of a few bubbles and particles. Modeling of three-phase
systems using Euler–Euler models for the average flow are more common. For bubbles
and drops see, for example, Ref. [27], and for bubbles and solid particles see the extensive
review by [28].

2. Numerical Method and Problem Specification

We consider incompressible flow consisting of different fluids or phases, evolving in
time, governed by the Navier–Stokes equations as follows:

∂ρu
∂t

+∇ · ρuu = −∇p + (ρ− ρavg)g +∇ · µ(∇u +∇uT) + fσ and ∇ · u = 0. (1)

Here, u is the velocity, p is the pressure, ρ is the density, µ is the viscosity, g is the
gravity acceleration, and fσ is the surface tension term. Solving these equations accurately
gives the fully resolved flow field at any given time and spatial location. To identify the
different phases, we define two index or marker functions, χb to identify the gas phase and
χd to identify the heavy droplet phase.

χb(x) =
{

0 in the liquid
1 in the bubbles ,

χd(x) =
{

0 in the liquid
1 in the drops.

(2)
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The various flow quantities, such as density and viscosity can then be written as

φi = φl + (φb − φl)χb + (φd − φl)χd (3)

where φl is the property of the continuous liquid, φb is the property of the bubbles, and φd
is the drop property. Surface tension is assigned to each interface point and is different for
the bubbles and the drops.

The governing equations are solved using an explicit second-order finite volume
projection method on a staggered fixed regular grid. The advection terms are approximated
by a QUICK upwind scheme and the viscous terms by a centered scheme. To update the
marker function, and thus the material properties, we represent the interfaces between
different fluids by connected marker points (usually called front) that move with the fluid
velocity. The marker function is then constructed from the location of the marker points.
Surface tension is computed on the front and transferred to the fixed grid and added to the
discrete Navier–Stokes equations. For a detailed description of the method and various
verification tests, see [29].

The computational domain is a 3D hexahedron, with periodic boundaries in all
directions, and to prevent the system from “falling” due to gravity, we add a positive
upwards force equal to the weight of the mixture (ρavgg).

The dynamics of systems with bubbles or drops is usually described by the Morton
and Eötvös numbers, defined by

M =
∆ρgµ4

ρ2σ3 Eo =
∆ρgd2

σ
. (4)

For our system, we need to specify those for both the bubbles and the drops. In
addition, the volume fraction is generally needed for multiphase systems, and in this study,
where we work with bubbles and drops of specific sizes, we report the number of bubbles
Nb and the number of drops Nd.

3. Results
3.1. One 3D Bubble and Several Drops

We start by examining the motion of one relatively large bubble and several randomly
placed smaller drops in a cubical computational domain with side lengths equal to 1,
resolved by a 643 grid. The bubbles have a diameter db = 0.4, and the droplets have
diameters dd = 0.2. The density and viscosity of the continuous fluid are ρl = 1.0 and
µl = 0.002, respectively; for the bubble, we have ρb = 0.05 and µb = 0.0004, and for the
drops ρd = 2.0 and µd = 0.016. Surface tension is σd = 0.01 for the drop–liquid interface,
but the surface tension for the bubble–liquid interface is varied, resulting in different
Morton and Eötvös numbers, as shown in Table 1. While the grid resolution is relatively
low, grid refinement studies have confirmed that the results are reasonably accurate and
correctly describe the dynamics of the system. Similarly, we have taken the density of the
bubbles to be only 1/20 of the liquid, since we generally find that taking it smaller has only
a minor influence on the dynamics, and systems with small density differences are easier
to simulate. The number of drops is varied; we show results for Nd = [12, 16, 20]. The
simulations were run up to time 200, at which time the bubble had passed about 40 times
through the computational domain.

Table 1. The surface tension for the bubbles and the corresponding Eob and Mb.

σ 0.04 0.01 0.00667 0.004 0.002

Eob 0.5 2.0 3.0 5.0 10.0

Mb 3.1× 10−8 2.0× 10−6 6.7× 10−6 3.1× 10−5 2.5× 10−4
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Figure 1 shows the bubble and the 12 drops at time 0 and time 100 for Eob = 2.0 and
Eob = 10.0. For the lower Eötvös number, the bubble deforms only slightly as it rises, but
for the higher ones, more deformation is seen. The drops remain essentially spherical.
The results for Eob = 0.5 are similar to the Eob = 2.0 case, and the Eob = 5.0 results fall
in-between the Eob = 2.0 and the Eob = 10.0 case. In addition to the bubble and the drops,
the enstrophy (E = ω ·ω) is plotted in a plane cutting through the middle of the domain to
gain insight into where vorticity is generated and where it ends up. The highest values are
ahead and behind the bubble, spanning the region between the bubble in one period and
the next, suggesting it is the bubble that produces most of the vorticity and that it remains
in its wake.

Figure 1. A bubble and 12 drops at time 0 (left) and 100 for Eob = 2 (middle) and Eob = 10 (right).
The enstrophy is shown in a plane cutting through the center of the domain.

The slip velocities of the bubble and the drops are plotted versus time for Eob = 2.0
and Nd = 12 in Figure 2. The bubble wobbles slightly as it rises, as is seen in the nearly
periodic oscillations in the slip velocity. For the drops, we plot the average slip velocity,
which is negative and relatively steady. After the initial transient, the system reaches
an approximately stationary state where the average motion does not change. When we
compute average steady-state quantities for the system (shown below), we start at time
t = 100 and average until the last time simulated (t = 200). Results for other bubble Eötvös
numbers and different numbers of drops are similar.

Figure 2. The slip velocity versus time for Eob = 2 and Nd = 12.

The slip velocity values between the bubble and the continuous liquid, as well as
between the heavy drops and the continuous liquid averaged over time after the system
reaches an approximate stationary state, are shown in the left frame of Figure 3 versus
Eötvös number of the bubble (Eob) and Nd = 12. It is clear that while the droplet velocity
remains nearly unchanged, the bubble slows down slightly as it becomes more deformable,
although the decrease is relatively small and not completely monotonic. The right frame of
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Figure 3 shows the averaged slip velocity for different numbers of drops for Eob = 2.0, and
while the bubble velocity is only minimally affected, the velocity of the drops decreases
slightly as their number is increased.

Figure 3. The time-averaged slip velocity versus bubble Eötvös number for Nd = 12 (left) and versus
number of drops (Nd) for Eob = 2 (right).

In Figure 4, we examine the velocity fluctuations in the liquid by plotting the kinetic
energy of the liquid versus time for four Eötvös numbers on the left and the average kinetic
energy versus the number of drops for Eob = 2 on the right. For the less deformable
bubbles the kinetic energy is relatively constant after an initial sharp rise, but for the more
deformable bubbles, we see large fluctuations at later times. The dependency of the average
kinetic energy in the liquid on the number of drops rises slightly with the number of drops,
but the dependency is weak. Similar results are seen for other Eötvös numbers.

Figure 4. The kinetic energy in the liquid versus time for Nd = 12 and several Eötvös numbers (left).
The time-averaged kinetic energy versus Nd for Eob = 2 (right).

One of the main questions in many applications of dispersed three-phase flows is how
the drops (or solids) and the bubbles interact. In wastewater remediation, the efficiency
of the process depends critically on the bubbles colliding with and capturing droplets,
and the same is true for flotation in mineral processing, where the drops are replaced
by solid particles. To examine how the droplets are distributed around the bubble, we
show the angular and radial location of droplets with respect to the bubble in Figure 5 at
21 equispaced times, for 12 drops (Nd = 12). Data for Eob = 0.5 are shown on the left and
for Eob = 10 on the right. In both cases, the drops move past the bubble, with essentially
no drops directly ahead or behind the bubble. For the nearly spherical bubble, the drops
are clustered in a relatively narrow column that almost touches the bubble since the sum
of the bubble and drop radii is Rb + Rd = 0.3, but for the more deformable bubble, the
droplets are more spread out, and we see more drops closer to the centerline in front of the
bubble. Since the high Eob bubble becomes relatively “flat” as it rises and can change its
orientation, a few drops are found closer to the center than for the nearly spherical bubbles.
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Figure 5. The relative location of the drops for 21 time samples for Nd = 12. Eob = 0.5 on the left and
Eob = 10 on the right.

To examine the droplet distribution in more detail, we define a distribution function by

f (r, θ, ϕ) =
1

Nd
∑

i=1,Nd

K
[
δ(xB − xi)

]
(5)

where xB is the location of the bubble center, xi is where the center of drop i is, r is the
distance of the drop center from the bubble center, and ϕ and θ are the azimuthal and
polar angles, respectively. K is a smoothing kernel to produce a continuous curve, where
the width of the kernel is selected by trial and error. When averaging over the azimuthal
angle, we divide by 2πrsinθ to account for the dependency of the volume on the polar
angle. The weighted average radial and angular distributions are shown in Figure 6. The
left frame shows the radial distribution, averaged over the polar direction. The curves for
the two lower Eob are similar, and the curves for the two higher Eob are similar. For the
nearly spherical bubbles (lower Eob), there is a distinct maximum at r = 0.3, as also seen in
Figure 5, but for the two higher Eob, the distribution is more uniform, and there are fewer
drops close to the bubble. The angular distribution, averaged for r < 0.5, is shown in the
right frame, and it is clear that for the lower Eötvös numbers, the distribution is highest at
around θ = π/5, then relatively uniform but with another peak at around θ = 4π/5. At
the poles, we see very low values, consistent with the left-hand side of Figure 5, which
shows no drops there. For the higher Eob, the distribution is more uniform but tapers
slightly off at the back.

In Figure 7, we examine the effect of the number of drops on the relative velocity
between the bubble and the drops by plotting the probability that the relative tangential
velocity (left frame) and the relative radial velocity (right frame) are positive, following [6].
The tangential velocity is taken to be positive if the drop is moving toward the back of the
bubble, and the radial velocity is positive if the drops move away from the bubble. In all
cases, the plot on the left shows that the drops slide along the bubble surface from the front
to the back, as expected, with the highest probability at around π/5. Similarly, the plot on
the right shows that the drops are likely to be moving away from the bubble near its back
but not the front, as expected. Overall the results show relatively weak dependency on the
number of drops.



Fluids 2021, 6, 317 7 of 12

Figure 6. The angular average distribution function versus distance from the bubble center (left) and
radially average distribution function versus angle, measured from the top of the bubble (right).

Figure 7. The probability that the relative tangential (left) and radial (right) velocities of the drops
next to the bubble are positive, for Eob = 2.0 and different numbers of drops.

3.2. Several Bubbles and Drops

While examination of the interaction of several drops with one bubble in a “unit cell”
allows us to study some aspects of the system with relatively little effort, in real systems, we
expect to have several bubbles and many drops. Here, we present a few results for 8 freely
moving bubbles and 48, 96, and 192 drops in fully periodic domains. The parameters
are the same as in the previous section, and the bubble surface tension is varied to give
different Eötvös and Morton numbers. Initially, the bubbles and the drops are located
randomly in the domain. The simulations are run on 1283 grids, up to time t = 100 at which
time the bubbles have moved 10 times through the domain, on average. Figure 8 shows the
solution at the last time simulated for Eob = 1.0 (left frame), Eob = 3.0 (middle frame), and
Eob = 5.0 (right frame). In addition to showing the bubbles and the drops, we also show the
enstrophy in a plane cutting through the middle of the domain. An examination of those
plots, as well as others at different times, shows that overall, the flows are relatively similar.
Both the bubbles and the drops are distributed throughout the domain, although small
clusters of drops are often seen, such as here. Similarly, although sometimes the bubbles
collide with each other, persistent clusters or “streams”, as sometimes found for deformable
bubbles in fully three-dimensional flows, due to the differences in lift on spherical and
deformable bubbles [30,31], are not seen. Although we do see regions of high vorticity,
it is clear that it is not only concentrated in the wake of the bubbles, as we saw for the
single bubble in a unit cell. We note that for the freely moving and interacting bubbles,
we have not included results for Eob = 10 since the bubbles sometimes break, as they
interact when the surface tension is low. While we believe that the breakup is physical, we
have not implemented a topology change algorithm for the front in the current version of
the code, since we do not want the number of bubbles and their sizes to change during
each simulation.
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Figure 8. 8 bubbles and 96 drops at time 100, for Eob = 1.0 (left), Eob = 3.0 (middle), and Eob = 5.0
(right). The enstrophy is shown in a plane cutting through the center of the domain.

The slip velocity between the bubbles and the continuous liquid, averaged over the
eight bubbles, and the slip velocity between the drops and the continuous liquid, averaged
over all the drops, are shown in the left frame of Figure 9 versus time for all 3 Eötvös
numbers and 96 drops. In the right frame, the time average of the slip velocities is shown
for Eob = 3, versus the number of drops Nd. The bubbles rise due to buoyancy, so their
slip velocity is positive, while the drops are denser than the continuous liquid and fall
down with a negative slip velocity. The left frame shows that the flow reaches a statistically
stationary state very quickly, although the average bubble slip velocity fluctuates slightly.
This is presumably due to the relatively small size of the system, both in terms of the
number of bubbles and domain size. However, even in a larger system where the average
over all the bubbles might be better converged, we still expect individual bubbles to move
very unsteadily. The slip velocity of the drops fluctuates much less, in part because there
are more of them, so the average is better converged. As the number of drops increases, the
density of the liquid mixture (continuous liquid and drops) increases, but the resistance (or
effective viscosity) of the droplet/continuous liquid mixture also increases, overcoming the
increase in buoyancy and leading to a slight decrease of the average bubble slip velocity.
Similarly, we see a very slight decrease in the average drop slip velocity. Plots of the average
slip velocity versus Eob for a fixed Nb (not included) show essentially no dependency on
Eob. Although the flow reaches a stationary state quickly, the time average in the right
frame has been computed between time t = 50 and t = 100, using a time increment of
∆t = 0.0305, except for the Nd = 192 case, which was only run up to time 84.2. The
averages discussed below have all been computed in the same way.

Figure 9. Slip velocity for the bubbles and the drops. Left: The slip velocity versus time for 96 drops
and Eob = 1.0, 3.0 and 5.0. Right: The time-averaged slip velocity for Eob = 3.0 versus the number
of drops Nb.

The kinetic energy of the continuous liquid is plotted versus time in the left frame
of Figure 10 for 96 drops and Eob = 1.0, 3.0, and 5.0. For the nearly spherical bubbles
(Eob = 1), the fluctuations quickly reach a relatively constant level, but as the deformability
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of the bubbles increases, the kinetic energy initially becomes much larger, although for
Eob = 3.0, it then settles down to a similar value, as seen for the Eob = 1.0 case. For
Eob = 5.0, large-scale fluctuations seem to continue. We note that [30] found that the
velocity fluctuations were much larger for deformable bubbles, as compared to nearly
spherical ones, even when their rise velocity was similar and the deformable bubbles were
distributed relatively uniformly in the computational domain (not in a “streaming” state).
Figure 4 for a single bubble also shows similar differences in the average kinetic energy
between nearly spherical bubbles (low Eob) and more deformable ones (high Eob). The
time average of the kinetic energy of the continuous liquid is plotted in the right frame
of Figure 10 versus Nd for Eob = 3. The dependency on the number of drops is relatively
weak, although it increases slightly with Nb. We note that the relatively large fluctuations
and the short time over which the averaging is performed suggest a large uncertainty.
Reducing the uncertainty would require a longer averaging time and/or a larger system,
but we believe that the trend is correctly captured.

Figure 10. The kinetic energy of the liquid versus time for 96 drops and Eob = 1.0, 3.0 and 5.0 (left)
and the time-averaged kinetic energy versus the number of drops for Eob = 3.0 (right).

We also examined the distribution of drops around the bubbles. Figure 11 shows
the locations of drops with respect to the center of a single bubble, at 11 evenly spaced
times between t = 50 and t = 100, for Eob = 1.0 on the left of the symmetry axis, and
for Eob = 5.0 on the right. It is clear that the droplets are distributed relatively uniformly
around the bubbles. There are drop-free regions in front and behind the bubbles, with
the behind region slightly larger than the one in front, and a few more drops closer to the
centerline for the more deformable bubbles. Thus, unlike for the single three-dimensional
bubble in a “unit cell,” there is little dependency on the Eötvös number. This is shown by a
more detailed analysis, such as by examining the average radial and polar distributions of
the drops, f (r) and f (θ) averaged over the eight bubbles, shown in Figure 12 for different
Eob and 96 drops. The radial distribution is shown in the frame on the left and the polar
direction in the right frame, both found in the same way as in Figure 6 and smoothed in
the same way using a kernel function. The radial distribution is nearly uniform and very
similar for all three Eötvös numbers, but although the polar distribution is mostly similar,
the probability of finding drops ahead of the bubble increases with its deformability (Eob).
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Figure 11. The location of drops with respect to bubble centers. The drops at several times are shown
in the left frame for Eob = 1.0 (blue circles on the left) and Eob = 5.0 (red circles on the right).

Figure 12. The radial distribution (left) and the polar distribution (right), averaged around the
bubble, for three Eötvös numbers.

4. Conclusions

We examined the dynamics of a three-phase system where buoyant bubbles and heavy
drops move in a continuous liquid, focusing on the dynamics of relatively small systems
where the drops do not collide and stick to, or engulf, the bubbles. In particular, we
compared the slip velocity, the velocity fluctuations, and the distribution of drops around
the bubbles for a simple “unit cell” where we used one bubble in a periodic domain, with a
larger cell with eight freely moving bubbles. For one bubble in a cell the results show that
bubble deformability has a strong impact on the distribution of drops around the bubble,
but results for a larger number of freely moving and interacting bubbles show little effect
of deformability and that the drops are relatively uniformly distributed with respect to the
bubbles, for the parameters examined.

The main conclusions from the study is that for a system with freely evolving bubbles,
the droplet distribution and the slip velocity of the drops and the bubbles is relatively
insensitive to the bubble deformability and the volume fraction of drops, at least for the
parameter examined here, and that while a unit cell captures reasonably well the effect of
changing the bubble deformability and the number of drops, it does not predict accurately
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the average distribution of drops around each bubble. More studies, presumably using
larger systems and longer simulation times, are needed to clarify the role of deformability
on the velocity fluctuations. Moreover, in this study, we did not examine the effect of
changing the gas volume fraction.
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