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Abstract: In this paper, we discuss some well-known experimental observations on self-organization
in dissipative systems. The examples range from pure fluid flow, pattern selection in fluid–solid
systems to chemical-reaction-induced flocking and aggregation in fluid systems. In each case, self-
organization can be seen to be a function of a persistent internal gradient. One goal of this article is to
hint at a common theory to explain such phenomena, which often takes the form of the extremum
of some thermodynamic quantity, for instance the rate of entropy production. Such variational
theories are not new; they have been in existence for decades and gained popularity through the
Nobel Prize-winning work of theorists such as Lars Onsager and Ilya Prigogine. The arguments have
evolved since then to include systems of higher complexity and for nonlinear systems, though a
comprehensive theory remains elusive. The overall attempt is to bring out examples from physics,
chemistry, engineering, and biology that reveal deep connections between variational principles in
physics and biological, or living systems. There is sufficient evidence to at least raise suspicion that
there exists an organization principle common to both living and non-living systems, which deserves
deep attention.

Keywords: dissipative systems; entropy production; self-organization; fluid mechanics

1. Introduction

The modern, hard-science perspective of nature draws from the successes of Twentieth
Century science and sees quantification as the dominant approach to questions of episte-
mology. The alternative approach, based on qualitative explanations, typically adopted in
the humanities and social sciences, is considered subsidiary to quantitative methods. The
post-modern view [1,2] argues for a systemic explanation drawn by a melding of quantita-
tive and qualitative approaches. Likewise, contention between linear causality and circular
causality, physics and biology, and art and science have set up false dualities, which hinder
progress in our ability to approach fundamental issues such as a definition of “life” in a
meaningful way. On this question, the mechanistic (i.e., information-based) view defines
life as a machine [3,4], while perception–action-based models [1,5,6] suggest a broader,
non-local definition, whereby a living system needs to be characterized more holistically
through its connection to its environment. We do not pretend to know the answer to this
question and therefore cannot advocate for any particular viewpoint; there are certainly
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valuable insights on either side. This paper is an attempt to further examine the non-dual
perspective advocated by Gibson and Rosen, albeit in much simpler, tractable systems.
The literature on self-organization is extremely broad, and it is not our aim to review this
literature. We are more narrowly focused on specific examples of self-organization that are
observed in dissipative systems that are insightful with regard to establishing links between
physics and biology. Our sentiments were well articulated by Goldenfeld and Woese [7],
who stated that the “...key issues of how rapidly evolution occurs, and its coupling to
ecology have not been satisfactorily addressed and formulated”,thereby arguing for the
need for a synergistic theory of physics–biology, especially when it comes to understanding
evolution, self-organization, and pattern formation.

The case for our undertaking to find a common ground between biology and physics
was brilliantly made by Vitas and Dobovisek [8] in their article, where they painstak-
ingly scoured the literature to formulate a definition of life: “Life is a far from equilibrium
self-maintaining chemical system capable of processing, transforming and accumulating infor-
mation acquired from the environment”, which is grounded in the fundamental laws of
thermodynamics and built upon the more isolated view of living systems that had been
previously suggested.

1.1. Dissipative Structures and Organisms

The objective of this paper is to delve deeper into the thermodynamic aspect of dis-
sipative systems and explore some examples of such self-organization in nature. More
specifically, the goal of this article is to demonstrate by argument and example that fluids
are ideal systems to illustrate the notion of self-organization in a complex system and to
highlight thermodynamics as the underlying self-organizing principle of any system that
lies outside thermal equilibrium. We chose to make our case by means of some examples in
fluid mechanics. Since fluids are dissipative systems, they are “thermodynamically analo-
gous” [9] to living systems and provide insight into the mechanism of self-organization, not
only in physics, but also in biology. In this regard, our approach is more in line with the Gib-
sonian rather than the Fristonian philosophy [6], where the environment plays a significant
role in determining the fate of the system. This work is by no means an exhaustive review
of the subject. It specifically focuses on some very interesting phenomena that exemplify
the thermodynamic basis of self-organization. While it has correctly been pointed out that
complexity and self-organization can be traits of physical systems that are not living [8],
what is somewhat lacking in the literature is a nuanced examination and categorization
of the specific physical examples where self-organization is displayed and their overlaps
with biological systems. While our contribution is also somewhat restricted in this regard,
it is the start of such a venture to which we hope there will be more contributions in the
years ahead.

Dissipative structures have been long recognized for their similarity to biological
organisms [10–12]. Oscillating chemical reactions, or chemical clocks, are widely present in
the biological world. Chemical pattern formations in dissipative structures were clues to
how morphogenesis might occur in biological development. More recently, it was discov-
ered that non-living dissipative structures can also exhibit bio-analog behavior [13,14]. This
has further strengthened the view that biological organisms are a subset of dissipative struc-
tures. To make this point clear, it would help to contrast dissipative structures/organisms
with machines. The contrast is particularly important to address the question: are organisms
complex machines, or are they a different class of systems such as dissipative structures? Let us
look at the fundamental differences between dissipative structures and machines:

• The structure and function of a dissipative structure arises from processes within the
system, while the structure of a machine is a result of external design;

• A dissipative structure is created and maintained by entropy-generating and Gibbs- or
Helmholtz-energy-dissipating irreversible processes. In contrast, a machine’s structure
does not require any entropy generation, and in fact, a machine becomes more efficient
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with decreasing entropy generation: an ideal machine has no losses and produces no
entropy. It is a fundamental difference between the two classes of systems;

• Generally, the design of a machine is based on reversible laws of mechanics, while
dissipative structures are described using irreversible thermodynamic processes. It
could be argued that mechanics gave us machines, while the thermodynamic theory
of dissipative structures is the foundation for a science of biological organisms;

• Dissipative structures are stable and self-healing in the sense that if the structure is
perturbed, the processes that created it can also restore it. The processes that create the
structure also “heal” the structure from damage, an important property of all living
organisms. With rare exceptions that we discuss below, machines are generally not
self-healing;

• Machines are designed to perform a specific function, which they do independent of
the context. End-directed behavior in dissipative structures shows context-dependent
behavior [15].

Thus, two fundamental differences distinguish machines from dissipative structures
among others: (i) Entropy generating irreversible processes create a dissipative structure;
when these processes cease to operate, entropy production reduces to zero, thermodynamic
equilibrium is reached, and the dissipative structure ceases to exist. The structure of a
machine does not require continuous generation of entropy for it to exist. While a machine
is functioning or during its assembly, entropy may be generated; but once assembled, the
existence of a machine does not require continuous entropy generation. As noted above,
entropy generation during its operation only reduces a machine’s efficiency. (ii) In most
cases, an ideal machine is one that does not generate any entropy during its operation. Its
operation is described by reversible laws of mechanics. Dissipative structures, on the other
hand, are described using irreversible thermodynamic laws. In this manner, machines are
coupled with mechanics, while dissipative structures are coupled with thermodynamics.
Regarding self-healing, we note that it is a consequence of the stability of a dissipative
structure. Within limits, when a dissipative structure is momentarily perturbed, the struc-
ture is restored to its original state. Since an equilibrium state is also stable, a component
of a machine that is in an equilibrium state can restore its structure after a momentary
perturbation. For example, a spring or pressure-controlled component of a machine can
restore its structure after a perturbation. However, a broken spring does not heal itself
as a muscle does. In dissipative structure, such as a chemical clock, the entire structure
(temporal in this case) and its function are restored after a perturbation.

These important differences between dissipative structures and machines, on the one
hand, and the similarities between dissipative structures and organisms, on the other, make
it clear that organisms are a class of dissipative structures, not complex machines. René
Descartes famously claimed that animals are complex machines (soulless and emotionless
and incapable of suffering). As machines that humans build became more complex, the
machine metaphor became dominant in describing organisms: the brain as a computer,
DNA as an information-carrying molecule, a “blueprint” of an organism, the eye as a
camera, and living cells as molecular machines. While the machine paradigm is not
universally accepted, a clear alternative paradigm is important to identify. In our view,
dissipative structures provide a distinctly different paradigm. Now, we even have examples
of bio-analog behavior emerging in dissipative structures. Could there be any ambiguity
between dissipative structures and machines? Could animals be complex machines and
also dissipative structures? We do not think there is any ambiguity between machines and
dissipative structures: either the existence of a structure requires the production of entropy
or it does not. Dissipative structures require the production of entropy; machines do not.

We would also like to note that the practical use of a dissipative structure does not
make it a machine: we use a dog for its ability to smell and a horse to pull a cart. However,
that does not make a dog nor a horse a machine. Our ability to control and manipulate
biological organisms do not make them machines. Indeed, we hope our understanding
and study of dissipative structures will lead to the discovery and creation of dissipative
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structures that are of practical use. It is our opinion, however, that they should be clearly
distinguished from the traditional machines and identified as dissipative structures with
practical utility.

Since this paper has a fundamentally ambitious goal, we also feel it is necessary to
include a discussion about certain philosophical aspects of science that would be essen-
tial to capture the behavior of self-organizing systems, i.e., end-directedness, which has a
controversial history in the sciences.

1.2. Optimality and Final Cause

Theoretical arguments about ontology are usually related to optimality arguments.
Variational principles abound in physics and point to the beauty and elegance of scientific
theories [16]. While such principles are often discussed in the physics classroom, they have
largely been valued for their utility alone. Linear causal thinking still dominates theoriz-
ing in physics with the Newtonian laws providing the underlying mechanistic structure.
However, there is no apparent reason to attribute primacy status to the Newtonian, causal
world view [1,17]. In the words of Braithwait [18]: “Both causation and purpose appear to be
psychological primitives that we naturally use to make sense of our surrounding world. It remains
unclear which of these two crucial concepts is epistemologically more objective or valid”. This issue
has still not been settled. Variational arguments such as Hamilton’s least action principle
can be used to derive the governing equations of classical and quantum mechanics [19].
Furthermore, the Euler–Lagrange equation, to a large extent, under the appropriate con-
ditions (i.e., Lagrangian), appears to be a generalization of well-known dynamical laws.
They do, however, concern the end-directed nature of the variational theories, which has
stymied their progress [16]. In the past several decades, certain key elements about the
nature of “purpose” in science and nature have emerged [13,20,21] that provide a new
way of thinking about nature’s optimality and possibly even to fundamental ontological
questions.

In a 1991 paper, Schoemaker [22] argued that the optimality principle is “most system-
atically and successfully used in the physical sciences where its case is weakest...and least in social
sciences...where its case is strongest(because of the conscious striving of people and the presence
of competition and selection)”. However, from the point of view of Gibsonian psychology,
the common-place interpretation of end-directedness and “conscious striving” that is at-
tributed to human action are cast in doubt [6]. Ecological psychology hypothesizes that [9]
“...behavior can be explained without recourse to internal models or mediating constructs residing
within the agents”. Accordingly, insights into human behavior can be sought through the
laws of physics, which govern the feedback of interactions between agents and their envi-
ronment. More recently, ecological psychologists have offered that some forms of biological
end-directedness, especially foraging for resources and structural self-maintenance, is best
modeled as the optimization of a physical variable, rather than reducing goals to a system’s
internal states [15]. In trying to explain several organizational structures in animal social
interactions, the laws of thermodynamics have been found to potentially have a say [9,14].
Kugler et al. [21] went even further, synthesizing the behavior of living and non-living
systems as falling under gradient-based laws and differentiated by purely thermodynamic
or also including informational gradients. The ultimate litmus test for optimization is
the Occam’s razor principle: “We allow that Nature may generalize its operational principles,
but believe it honors parsimony too much to violate them wantonly simply because intentions
evolve” [21].

Wiener et al. [20] argued that one useful way of classifying “active behavior” was
in terms of its purpose or lack thereof, where “The term purpose is meant to denote that the
act or behavior may be interpreted as directed to the attainment of a goal... ”. A fundamentally
significant idea that emerged in Wiener’s work on Cybernetics was the idea of feedback,
which was considered synonymous with the idea of purpose, and therefore, his notion
of teleology was distinct, but not contrary to the deterministic notions of the scientific
community. More recently, optimization arguments rooted in the idea of feedback and
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optimization have been utilized to explain behavior and organization in living systems [3].
Another related concept that needs to be discussed is that of “side-effects”, which sets the
stage for “entropy” as a significant player in emergent self-organization.

1.3. Side-Effects and Control

The second law of thermodynamics, or the entropy law, is perhaps one of the deepest
and most insightful statements of physics. Confusion about what entropy actually means
has given rise to various definitions and interpretations; one powerful way of thinking
about entropy, from the point of view of classical thermodynamics, is as a side-effect. Every
act of doing work produces a side-effect (or entropy), usually in the form of unrecoverable
heat, which is dissipated in the larger system, bringing it back, just a little closer, to a
state of thermal equilibrium. The aim of thermodynamics can therefore be described as an
attempt to preserve thermal equilibrium. According to non-equilibrium thermodynamics,
when the system is outside thermal equilibrium, it is the rate at which entropy is produced
that is pertinent. Consequently, when thermal disequilibrium persists, the dissipation of
heat energy in the system is enacted in such a way to result in emergent structures. In
a manner of speaking, in systems out of thermal equilibrium, side-effects can be said to
control the system.

Such notions are not new: Wiener’s Cybernetic theory [20,23] pointed to the signif-
icance of feedbacks in a system. These feedbacks show up as causing a reconfiguration
of the entire system as a result of the constant dissipative heat flow produced in and out
of the equilibrium system. This sort of circularly causal connection results in an eventual
mechanical equilibrium (in physical systems), which persists as a result of the thermal
disequilibrium. The formation of self-organizing patterns is therefore a central feature of
all thermo-mechanical systems and speaks to the significance of side-effects produced by
the particular configuration and constraints present in the system.

Therefore, in seeking to understand and explain pattern formation and self-organization,
one must examine the “agent”, as well as the system in which it is embedded. Take, for
instance, the example of a rigid object falling freely in a fluid medium (air, water, etc.),
which will be discussed in further detail in the following section. The central object of
attention is the rigid body, while the background environment is the fluid that must also be
accounted for. As the rigid body falls in the liquid, it displaces the liquid, thereby activating
the internal friction within, as the liquid moves. There is thermal disequilibrium in the
system, between the boundary of the rigid body and fluid and parts of the fluid domain that
are far away from the body. The feedback cycle of energy exchange plays itself out thusly:
an increase in the kinetic energy of the body causes a change (say, drop) in the potential
energy of the body, which is countered by a change (increase) in the potential energy of the
fluid followed by a change in the kinetic energy of the fluid. This cycle continues until, in
the steady state, the kinetic energies are maintained at a steady state, and only potential
energy exchange participates as the cause of frictional heat loss. The movement of the body
and fluid work towards bringing the system closer to thermal equilibrium (see Figure 1).

Another system demonstrating such agent–environment reciprocities is an electrically-
driven self-organizing dissipative system. In this system, metal ball bearings are placed
in a glass dish with a shallow bath of oil [24,25]. A metal ring connected to a grounding
electrode lines the edge of the dish, surrounding the metal beads. Electrical charges are
sprayed out over the beads from a source electrode above the dish, separated by a 5 cm
air gap. The beads collect charges, become dipoles, and spontaneously self-organize into
branching chains of beads, called trees, rooted on the grounding ring. With sufficiently high
voltage, these trees will tend to move through the oil, translating along the grounding ring,
bending and swaying their limbs. There is a wealth of evidence supporting that the system
self-selects for morphologies and dynamics that increase the rate of entropy production
through the system, as measured via the electrical current. Crucially, this flow of charges
and the irreversible entropy-producing processes within the system provide the forces
that maintain the trees’ stability. This constitutes a rudimentary teleology for the system
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where it is end-directed to maximize the entropy production and, thus, end-directed to
maintain its own stability. This system displays remarkably sophisticated lifelike behaviors
stemming from this teleology, including self-healing, coordination among trees, and even
an analogue of learning [9,15,24–26].

Figure 1. Energy feedback and dissipation mechanism in the case of a sedimenting body in a fluid.
The feedback process can only stop when each component of the system stops moving, as a result of
which no dissipation occurs. This is the state of zero entropy production.

Whether optimality principles are real or not will be debated and argued about for
much longer. For now, they are and should continue to be used as a positive heuristic [22]
and for their various affordances [16]. What they do allow us to see are common underlying
features in seemingly different physical (and biological) systems. Thermodynamics in
particular has been observed to play a major role in organizing the behavior of complex
physical dissipative systems [27,28]. More specifically, we will see that thermodynamic
variables such as free energy and the rate of entropy production contain information about
the stability of the system; in fact, the extremum of these quantities in several examples
discussed below serve as selection principles for the most stable from among the permitted
steady states. The rest of the paper focuses on the theory of dissipative systems and
specific examples of dissipative structures in physical and biological systems that appear to
be governed by similar underlying principles.

2. Theory of Dissipative Systems

Experimental evidence from our studies [13,14,29–32] in different systems and those
in the literature point to the fact that complex dissipative systems are capable of revealing
a host of stable and metastable equilibria, which can be mathematically investigated and
explained through relevant dynamical equations and their stability. The larger goal of de-
veloping an overarching theory of self-organization first took form through the Nobel Prize-
winning work of Onsager [33,34] and Prigogine [28], who put forth a thermodynamics-
based variational argument for irreversible dissipative systems. The rate of entropy produc-
tion has been identified to be such a powerful objective function synthesizing the common
physical traits of the class of dissipative systems and can be given by the expression

∂ts =
2

∑
α=1

~Jα · ∇Xα (1)

where ∇Xα corresponds to the “driving force” in the system and Jα represents the flux,
which have specific meanings in different physical systems. Curie’s principle generalizes
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these relationships allowing the rate of entropy production to be written in general for any
collection of forces and fluxes, as a product of tensor, vector, or scalar expressions:

∂ts = ∑
α

Jα · Fα + ∑
β

~Jβ · ~Fβ + ∑
γ

¯̄Jγ · ¯̄Fγ. (2)

Phenomenological relations, for systems slightly out of thermodynamic equilibrium,
allow us to write the fluxes in terms of the forces, that is,

Jα = LαβFβ = Lαβ∇Xβ

where Lαβ are constants subject to Onsager’s reciprocity relations [33,34]. As a result,
Equation (1), for instance, becomes

σ̇ = ∂ts = ∑
α,β

Lαβ∇Xα∇Xβ (3)

which has contributed to the discovery of principles such as the Minimum Rate of Entropy
Production by Prigogine and co-workers. Since then, some notable advancements have been
made under slightly different out-of-equilibrium conditions, such as the Maximum Rate of
Entropy Production by Has Ziegler [35], where the force is prescribed and σ̇ is extremized
with respect to the flux. However, a generalized theory has proven to be elusive. The larger
goals of this study are therefore to identify and evaluate the possibility of developing a
generalized variational argument for dissipative, self-organized systems based on observed
commonalities between recent developments in this area. Another objective of such a study
would be to categorize and classify the multitude self-organizing dissipative phenomena
in the literature along with their physical characteristics and thermodynamic profiles in the
hopes that it might be insightful in bridging the physics–biology gap.

3. Self-Organization in Fluids

Fluids are dissipative systems; a flowing fluid naturally generates internal heat due
to its viscosity, which puts it in constant thermal disequilibrium with its surroundings.
Therefore, when studying fluids, it is appropriate to apply the laws of non-equilibrium
thermodynamics, which require that we examine the time rate of change of entropy, i.e., the
rate of entropy production (REP). The literature on fluid mechanics is rich with examples
of self-organization, and these problems are often insightful in gaining an understanding of
other larger, more complex systems. We contend that problems of fluid flow or fluid–solid
interactions provide simple and insightful examples of pattern formation, which can guide
our understanding of physics, biology, and all that lies at the intersection of the these two
disciplines. In the rest of this section, we give a few examples that illustrate these points
clearly. Another point that needs to be emphasized is that the cases being discussed in
this article indeed constitute a complex system, despite in some cases possessing only
two components. The complexity of such a system comes from the sophisticated internal
structure of the two components, described by the coupled governing equations, which
include the fluid flow and heat equation in example 1 and the fluid flow and rigid body
motion equations in examples 2 and 3. The feedback (see Figure 1) between the dynamics
of the two components is what gives rise to self-organization in these systems.

3.1. Benard Convection

One problem of self-organization in fluid mechanics that has been studied extensively
is the problem of Benard convection [36–39]. The out-of-equilibrium state of a fluid heated
from below, upon sufficiently large departure from thermal equilibrium, results in convec-
tion in the fluid, giving rise to organized motion and the well-known Rayleigh–Benard
cells on the liquid’s surface (see Figure 2). It has been argued that convective rolls serve
the purpose of dissipating the excess thermal energy within the system, at the fastest rate
possible, when the system is sufficiently far from thermodynamic equilibrium (T > Tc) [40];
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below this threshold (T < Tc), conductive heat transfer suffices. From a thermodynamic
perspective, the particular mechanism of energy flow in systems not too far from thermal
equilibrium has been described by the Constructal Law [40–42] as being “tree-like”, which
is precisely how conduction is typically visualized. A comparison of the rate of entropy
production (indicated as REP) between conduction and convection shows that:

REPcond > REPconv, T < Tc (4)

REPcond < REPconv, T > Tc (5)

Figure 2. Benard convection cells observed in gold paint heated from below. Image taken from [43].

A simple mathematical way to illustrate the point made by Equation (5) is using the
example of Hamiltonian paths (HP) on a graph. Consider the question of defining the
path of least time for a point traversing on an n×m graph. A Hamiltonian path touches all
nodes in a lattice just once, i.e., without any crossings. In general, this is a hard counting
problem, and a simple recurrence formula cannot be readily found. Therefore, in this paper,
based on computations performed on smaller graphs, we enumerate the total number of
such paths, which are shown in Table 1. The question of interest here is to identify the
paths that best correspond to the convection-type patterns. While this is a mathematical
simplification of the real physical situation, one can draw valuable insights from such an
analysis. The task is now to classify the types of paths one observes while keeping track of
some of their properties. Figure 3 illustrates this idea for a 3 × 3 graph, which has eight
total allowable HPs.

Table 1. Number of Hamiltonian paths in a rectangular grid of dimension m× n.

n (→) 2 3 4 5m (↓)
2 2 3 4 5
3 3 8 13 76
4 4 13 52 165
5 4 76 165 702

While this approach has the appearance of a mathematical abstraction, the number of
turns in the HP is a way of introducing some physics into the problem. The reciprocal of the
number of turns in any given path can be thought of as being proportional to the time taken
to traverse this path. In the particular case of the 3 × 3 graph, a simple visual inspection
reveals that the path of least time is a spiral (Figure 3a,e) or a wave (Figure 3c,f). Computations
for all HPs depicted in Table 1 denote the same overall trend; the path of least time in all of
these cases is a spiral or wave. Such modes of energy dispersal are ubiquitous in nature
and have been discussed in detail in a review article by Makela and Anilla [44]. Whether,
in this particular case, the path of least time is symptomatic of a more general variational
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principle is not clear, and more work needs to be performed for confirmation. The example
presented here says nothing about the transition from conduction to convection, which is
a far more nuanced issue than can be handled using these methods. However, a simple
heuristic argument about the possible pathways for convection can be quite revealing and
point to underlying optimality in the system. Earlier studies have shown that the maximum
rate of entropy production to correlate the transition from conduction to convection as a
means of dispersing energy to the system.

Figure 3. The panels (a–h) in this schematic present various possible Hamiltonian (non-overlapping)
paths in a 3× 3 graph, starting at the cell ’1’. The darker cells indicate locations of greater energy. The
path from dark red to orange to yellow indicates the arrow of time. The Table 1 reveals the number of
such Hamiltonian paths for a general m× n system.

3.2. Pattern Selection of a Rigid Body in a Fluid

A second example of fluid self-organization for a two-component system involves a
fluid flow around an immersed rigid body.

Symmetric bodies such as spheroids and cylinders, when moving in a Newtonian fluid,
orient themselves in a steady configuration such that their longer axis is perpendicular
to the direction of the flow (see Figure 4). This mechanical steady state depends on the
shape, size, density of the rigid body, and nature of the surrounding fluid [45]. To probe
further, we define a critical parameter, the Reynolds number (Re) (the Reynolds number is
given by the expression Re = ρUL

µ where ρ is the density of the fluid, U is the characteristic
velocity of the fluid, L is the characteristic scale, and µ is the dynamic viscosity of the
fluid), which describes the competing effects of inertia to viscosity. Experiments have
shown that in the case when Re << 1, referred to as creeping flow (Stokes regime), any
orientation of the body is permitted, i.e., there are infinitely many allowable configurations
of the rigid body. However, there are critical Reynolds numbers, Re1, Re2, so that for
0 < Re1 < Re < Re2, a symmetric body such as a cylinder or spheroid, orients itself with
its longest axis perpendicular to the direction of gravity (or flow) [46]. However, as Re is
increased beyond Re2, the fluid–solid system becomes highly nonlinear, and the effect of
inertia, as a result of vortex shedding (see Figure 5), is seen to give rise to bifurcations from
the steady orientation to periodic oscillations [46], which eventually leads to autorotation,
i.e., complete and sustained flow-induced rotation.
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Figure 4. A numerical computation (using Comsol) of the velocity field around a static ellipse placed
at the centerline of a parallel channel. The color in this graph indicates the normalized flow speed,
with blue indicating zero speed and red indicating the maximum speed of unity. The entrance velocity
is prescribed to be parabolic, and flow along the wall boundaries is taken to be perfect slip.

While rigorous dynamics-based explanations have been provided for several of these
observations [45], in this paper, we focus on the thermodynamic perspective. Some recent
studies [30] have shown that the entropy production of such a system, given by

P =
1
T

∫
Ω

¯̄D : ¯̄D dΩ−me~g · ~U (6)

where ¯̄D is the symmetric part of the fluid velocity gradient, Ω is the fluid domain, me
is the effective mass, T is the ambient temperature, ~g is the acceleration due to gravity,
and ~U is the velocity of the body, captures the mechanical steady states of the rigid body,
thereby showing potential for consideration as an overarching organizing principle. The
first integral term is the dissipation energy of the fluid, while the second term on the
right-hand side is relevant in the case when the body is falling freely due to gravity and is
not considered in an equivalent variation of the study when the body is hinged and flow
driven past it. In any case, it is worth noting at the outset that this term does not contribute
to the eventual outcome of the study. In the Stokes case, i.e., when Re << 1, Equation (6)
correctly predicts that any orientation is allowed, since the flow is reversible and the entropy
production rate is zero. In the case when the flow speed increases beyond Re1, which is
sensitive to the geometric features of the immersed body, wake structures emerge, giving
rise to symmetry breaking in the flow. In the case of cylinders and spheroids, when Re
goes past this critical limit, calculations show that the maximum rate of entropy production
corresponds to the experimentally observed equilibrium state [32] (as shown in Figure 4).
Furthermore, the rate of entropy production is also effective in selecting the experimentally
observed stable equilibrium configurations of bodies with fewer symmetries such as a
half-cylinder [32]. In such a case, at least in the one example that has been reported on, the
maximum rate of entropy production is replaced by the min–max of the rate of entropy
production, i.e., while the equilibria of the system correspond to the configuration of
the maximum REP, the stable state is the min of the set of maximum REPs. Additional
examples of such systems possessing multiple equilibria are needed to verify the generality
of this result.

Other self-organizing patterns of free-falling bodies in fluids reveal that orientational
configurations, cooperative flocking, and a general response to the environment of a body
moving in a Newtonian fluid [32] is clearly influenced by the thermodynamic state of the
system and especially by the REP. The following section discusses a classic self-organizing
behavior observed in fluids with implications in biology.



Fluids 2022, 7, 141 11 of 23

Figure 5. This experimental figure shows a two-dimensional slice of the wake vortex structure formed
behind a spheroidal body. The wake is illuminated using a a laser sheet, which is scattered by the
micron-sized glass powder, which seeds the fluid, thereby illuminating and revealing the vortex
spiral. This can be thought of as a zoomed-in image of the computational wake image shown in
Figure 4.

3.3. The Segré–Silberberg Effect

We now examine an example of natural pattern formation, the Segré–Silberberg effect;
first observed by its eponyms in 1961 [47], the Segré–Silberberg effect has hence become the
subject of a large body of fundamental and applied research. The Segré–Silberberg effect
describes the behavior of neutrally buoyant sedimenting particles carried through flow in a
bounded domain. The Segré–Silberberg effect corresponds to particle settling at a particular
distance from the walls. The first experimental observations of this natural pattern selection
showed that spheres suspended in Poiseuille flow tend to settle at a position within a
channel equal to about 0.6–0.7-times the radius of the channel [47].

The stable settling positions depend on the size of the particle, the speed of the flow,
and the material properties of the fluid. Many studies have uncovered the Segré–Silberberg
radial equilibrium displacements for different flow parameter regimes [48]. Parabolic flow
profiles give rise to translational and rotational forces exerted on a sedimenting particle,
which in turn give rise to rich dynamical motions such as tumbling and spinning [49–51].
In nature, the effects of the Segré–Silberberg effect are felt when cells tumble through blood
vessels, contaminants move through plumbing systems, or in the sedimentary motion
in rivers.

The existence of a translational force toward the boundary of flow would suggest that
all sedimenting particles tend toward the boundary and would quickly crash into the wall.
However, a “wall effect” felt by particles near the boundaries of flow allow particles to settle
in an equilibrium position away from the wall. This near-wall interaction is mostly driven
by the viscous property of fluids in the vicinity of the boundary. Many studies have shown
the potential for varying equilibrium positions, dependent mostly on the viscous properties
of the fluid. Groups of sedimenting particles and particles of varying size have equilibrium
positions within the Segré–Silberberg radius [52]. In a neatly constrained system such as a
pipe, particles are seen to suspend in stable positions in the Segré–Silberberg radial band
(as shown in Figure 6).

In order to model this effect, COMSOL 4.3’s CFD - Laminar Flow module was used.
A circle was placed within a walled channel of fluid at varying displacements from the
center of the channel. The sedimenting object in our model was held fixed as the fluid flows
by it, simulating buoyancy. The fluid’s density was taken to be 1 kg

m3 , and its viscosity was
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0.001Pa× s. The diameter of the channel was 0.4 m. Inlet velocities [0.000025− 0.0025]m
s

were assigned such that the Reynolds number was varied between [0.01− 1]. Many particle
sizes were investigated. The length of the channels were tested between 1.1 m and 6.6 m.

Figure 6. Sample diagram of particles settling near the Segré–Silberberg radius (the shaded region).

To model the near-wall dynamics of the sedimenting particle, we prescribe a slip
velocity to mimic the angular velocity for the circlerepresenting the particle. The angular
velocity is given by [53]:

ω =
3U
32a

( a
l

)4
(

1− 3
8

a
l

)
(7)

Here, a is the radius of the particle, l is the distance from the particle to the wall, and
U is the defined inlet velocity.

In Figure 7, the two-component system of concern is shown. A particle spins as it
is placed at varying radial positions inside the channel. The particle’s angular velocity
depends on the inlet speed, the particle’s radius, and its distance from the wall. A ther-
modynamic approach was taken to examine the stability of the Segré–Silberberg radius.
As a function of particle placement and the resulting dynamics, we can determine the
thermodynamic landscape of the fluid for particular configurations. To this end, we cal-
culated the rate of entropy production (REP) contained in the entire system. Thus, one
can determine if the placement of the particle in the channel correlates with the overall
system’s maximum REP. Therefore, our approach can establish a link between the tail
(the thermodynamic landscape of the system including the sedimenting particle and its
surrounding fluid) wagging the dog (the Segré–Silberberg effect).

Calculations of the REP were carried out using the deformation function. The REP
in the case of a sedimenting particle in a viscous fluid can be expressed in the functional
form [32]:

P =
1
T0

(∫
Ω

T : D dΩ
)
=

2µ

T0

(∫
Ω

D : D dΩ
)

(8)

=
1
T0

∫
Ω

[
2µ

[(
∂x
∂vy

)2
+

(
∂vy

∂y

)2
]
+ µ

[
∂vy

∂x
+

∂vx

∂y

2
]]

dΩ (9)

where T0 is the constant ambient temperature, T is the Cauchy stress tensor, D = 1
2 (∇u +

∇Tu) is the symmetric part of the velocity gradient, u is the fluid velocity field,
∫

Ω repre-
sents a three-dimensional volume integral, and U is the far-field velocity of the fluid as
x → ∞. Further, the stress tensor can be decomposed into T = −pI + 2µD, with p being
the isotropic pressure and µ the viscous coefficient. Furthermore, me is the effective mass
with me = (ρb − ρ f )|β|, where |β| is the volume of the sedimenting particle and ρb and ρ f
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are the density of the body and the fluid, respectively. Ω is the flow domain where Ω = Ω0
β ,

and β is the volume occupied by the particle. In the case of a hinged body in horizontal
flow, the gravitational term can be neglected; thus, the REP is identical to the dissipation in
the system.

(a) (b)

Figure 7. Panel (a) depicts the results of our numerical computation of the pressure gradients
surrounding the model of a sedimenting particle; (b) numerical computation of fluid velocity fields
surrounding a sedimenting particle. The color scheme in (a) represents the flow speed, with blue
corresponding to zero speed and red to the maximum speed. Flow velocity at the channel walls are
taken to correspond to no-slip velocity, while perfect slip conditions are prescribed on the boundary
of the cylinder.

The exchange of kinetic and potential energies in the fluid flow can adequately define
the rate of entropy production, as shown in previous work [31], as it satisfies three key
conditions: (i)P is positive over the entire domain; (ii)P → 0 as the Reynolds number tends
to zero in the reversible, Stokes case; (iii) P satisfies Onsager’s reciprocity relations [30].
The results for a particle of radius of 0.024 m for various Reynolds numbers are shown in
Figure 8. Displacement is equal to zero in the center of the channel. Here, we see a peak in
the REP when the particle is placed within the Segré–Silberberg radial band.

Preliminary results on low Reynolds number flows have suggested that a system
realizes a maximum REP when the particle is placed near the Segré–Silberberg radius.
These results bode well in an attempt for a thermodynamic explanation of the formation of
the Segré–Silberberg equilibrium position. Our results suggest that the pattern formation
observed regularly in experiments and simulations could be attributed to the system’s
search for a state corresponding to the maximum rate of entropy production.
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(a) (b)

Displacement
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P
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0

0.018
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(c)

Figure 8. The rate of entropy production versus the non-dimensional wall distance from the center of
the channel to one of the walls at (a) Re = 0.00001, (b) Re = 0.01, and (c) Re = 1. The rate of entropy
production shows a maximum near the outer wall, which agrees well with the observations.

3.4. Benzoquinone Particles at the Air–Water Interface

This system consists of a collection of Benzoquinone (BQ) particles at the air–water
interface in a Petri dish [54,55]. The BQ particles slowly dissolve in water and, in doing so,
generate heterogeneous interfacial surface tension gradients. As a result of these gradients,
the BQ particles move on the surface of the medium. The motion of the BQ particles
can be understood as an example of the Marangoni effect; there are interfacial tension
variations along the solid–liquid–air interfaces. A single BQ particle will move continuously,
eventually slowing as the particle decays. However, when the system comprises multiple
particles, things become more interesting. If the particles are irregular in shape, we see
collective behavior in the form of “flocks” (irregularly shaped particles are formed by
breaking up larger circular particles, and thus, they have complex edges, jagged points,
etc.). Flocks are loose collections of particles, in which the particles continue to move about,
but tend to remain in close proximity with each other (see Figure 9). Individual particles
may join or leave a flock, but the flocks generally persist for extended periods of time.
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Figure 9. An example of flocking. The panels (A–H) show the time evolution of the development
of a flock with 15 irregular BQ particles. Reprinted with permission from Satterwhite-Warden, J.E.,
Kondepudi, D.K., Dixon, J.A. and Rusling, J.F., 2019. Thermal-and Magnetic-Sensitive Particle Flock-
ing Motion at the Air–Water Interface. The Journal of Physical Chemistry B, 123(17), pp. 3832–3840.
Copyright 2019 American Chemical Society.

A rather different set of dynamics arises if the particles are circular (rather than
irregularly shaped). With circularly shaped particles, we see non-random behavior, both
in terms of trajectories and events (e.g., collisions), but flocks rarely form, even for a short
period of time [54]. The formation of flocks was something of a mystery at first, since upon
first consideration, it seems that particles should mutually repel each other in systems such
as this one (for a detailed example, see [56]). As a particle dissolves, it increases the local
concentration, thereby lowering the local surface tension; any neighboring particle should
move away from that particle, toward regions of higher surface tension. Thus, two nearby
particles should move away from each other, all other things being equal.

It is proposed that the observed flocks are dissipative structures whose spatio-temporal
organizations are formed and maintained by dissipative processes. Consistent with this
hypothesis, it was found that the dissolution rate constant, k, which approximates the rate
of entropy production, was higher for irregular particles compared to regular particles [55].
More recently, using a mass action kinetic framework, it was shown that both the flocking
and non-flocking behaviors (in the irregular and circular particles, respectively) could
be explained as a consequence of minimizing the Gibbs free energy, which indirectly is
equivalent to the maximization of the rate of entropy production (these results converge
on a thermodynamic explanation (optimality principle) for the collective behavior of the
particles in this system). Figure 10 shows the results of the free energy computations
for the patterns revealed by the BQ interaction dynamics. For the sake of computational
convenience, the analysis was performed by binning the flocks into fives sizes, denoted “A”
through “E” in progression of increasing size. The figure appears to show that irregularly
shaped particles have a greater propensity to form very large flocks (since the free energy is
a minimum for the “E” flocks in this case), while regularly shaped, disk-like BQ particles are
more likely to stabilize at intermediate sizes (indicated by the free energy being minimized
for a “C” flock). If we accept that a thermodynamic optimality principle is responsible
for the behavior of the particles and, thus, the flocks, then, it follows that more complex
behaviors of BQ flocks may also be due to this optimality principle. We discuss two of
these behaviors, emphasizing their commonalities with biological phenomena.
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Figure 10. This graph shows the change in the Gibbs free energy for the various flock sizes for regular
(black) and irregular (red) BQ particles. ∆G < 0 is required for the stability of the configuration with
the most stable state corresponding to the most negative. It is clear that in the case of regular particles,
the most stable are the mid-sized “C” flocks, while the irregular particles tend towards the larger,
“E” flocks.

Sensitivity to thermal gradients. In another set of experiments, we asked whether BQ
flocks would be sensitive to environmental conditions that were relevant to their energy
consumption [55], keeping in mind that as dissipative structures, their existence depends
on energy consumption. When a hot or cold probe is placed near the air–water interface,
it creates a thermal gradient on the surface. Flocks of irregular BQ particles will migrate
down a cold gradient and up a warm gradient (see Figure 11). One explanation of this
phenomenon is that the dissipation rate is higher in warmer regions; thus, the flock moves
in accord with the optimality principle (REP or min free energy). By doing so, it seems
likely that the flock increases its stability.

Flocks with sensors. In another set of experiments, we asked if a flock could become
sensitive to a low-energy gradient, much as biological systems are [55]. Biological systems
respond disproportionally to very-low-energy gradients (e.g., chemical gradients, acoustic
vibrations, light). Further, it is often the case that an element in the biological system has
unique sensitivity to that specific gradient. These elements are usually called “sensors” and
the very-low-energy gradients are often called “information”. To make a candidate sensor,
a single irregular BQ particle was infused with iron oxide nanopowder and included with
14 additional typical BQ particles on the air–water interface. After a flock had formed,
a very-low-energy gradient was imposed by positioning a magnet at a predetermined
height above the surface of the water. (The height was set at the minimum height, such
that the magnet field would not control the behavior of a single iron oxide with no other
particles in the dish.) Only the sensor (i.e., iron-oxide-infused) particle was sensitive to
this low-energy gradient, but the entire flock moved to the region below the magnet (see
Figure 12). A control condition with 15 irregular BQ particles, but no sensor particle,
showed that the sensor particle was indeed required for sensitivity to the gradient. An
additional control condition with 15 circular BQ particles (that do not flock), one of which
was infused with iron oxide, showed that flocking was also necessary for sensitivity to the
gradient. This set of experiments demonstrates how a system that is maintaining itself far
from equilibrium may be able to use very small energy gradients in ways that are analogous
to biological systems.
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Figure 11. The two columns of panels on the left show the response of a flock to the introduction of
a cold probe (Panels A, C, and E) and corresponding thermal images (Panels B, D, and F). The two
columns of panels on the right show the response of a flock to the introduction of a warm probe and
corresponding thermal images. Reprinted with permission from Satterwhite-Warden, J.E., Kondepudi,
D.K., Dixon, J.A. and Rusling, J.F., 2019. Thermal-and Magnetic-Sensitive Particle Flocking Motion at
the Air–Water Interface. The Journal of Physical Chemistry B, 123(17), pp. 3832–3840. Copyright 2019
American Chemical Society.

Figure 12. The panels (A–F) show the response of the flock to the introduction of a low-energy
magnetic field at different times. The single sensor particle is highlighted in red. Reprinted with
permission from Satterwhite-Warden, J.E., Kondepudi, D.K., Dixon, J.A. and Rusling, J.F., 2019. Thermal-
and Magnetic-Sensitive Particle Flocking Motion at the Air–Water Interface. The Journal of Physical
Chemistry B, 123(17), pp. 3832–3840. Copyright 2019 American Chemical Society.

4. Self-Organization in Nature

Dispersal of seeds happens in a variety of ways [57]; therefore, wind dispersal in
particular is pertinent to the discussion here. Recent studies have borne out the fact that
trees and forests are quite intelligent systems, which are capable of: “consciousness” at
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various levels including the ability to respond to external stimuli and their environment;
cooperative behavior; self-replication, etc., all traits commonly associated with complex
biological, living systems. Therefore, the argument we are making is that trees are part of a
Darwinian evolutionary process, which is the cornerstone of biology, and the evolution of
the various variety of seed shapes is nature’s selection process to find shapes that maximize
the potential to survive through the invocation of thermodynamic principles.

Two modes of dispersal have been identified thus far: (i) parachuting motion and (ii)
winged flight, which includes gliding, rocking, and spinning (or autorotation) [57,58] (see
Figure 13). The mathematics of these modes of motion have been quite well studied in
the past decades. What is striking about this biological event is the similarity between this
event and the discussion in Section 3.2. Biologists and scientists attribute “intention” to
dispersal mechanics. Minami and Azuma [58], for instance, remarked that “Each flying seed
is designed to have a small rate of descent and to float in the air current as long as possible, according
to their environmental conditions”. Of course, this could be passed off as merely a manner
of speaking about the adaptation of trees. After all, we have a natural affinity toward
anthropomorphize. There are ecological advantages to local dispersal by wind, the most
significant perhaps being that it prevents competition and seed mortality near the parent
plant [57]. This example of seeds is significant in explaining how a complex biological
system bound by the laws of thermodynamics evolves to have the best selective advantage
for reproduction. While it might be a stretch to argue that the laws of thermodynamics
and entropy production rates are the underlying rules of living and non-living systems
alike, it appears reasonable to say, based on these examples, that living systems take
advantage of such optimal principles for their survival. After all, given the environmental
constraints that a tree has to contend with, the seeds are produced with shapes that lead to
the lowest rate of descent or those experiencing maximum drag, which coincides with the
configuration of the maximum rate of entropy production. In some recent work exploring
the connections between Darwin’s theory of natural selection and Hamilton’s principle of
least action [59,60], it is argued that the two are very likely to be similar and may be bound
together by the fastest energy flows across the respective energy landscapes.

Figure 13. A sketch of the shapes of wind-dispersed seeds.

Another intriguing example from biology comes from the work of Vallino and Hu-
ber [61], who applied the maximum rate of entropy production principle to model and
explain microbial organization in Siders Pond in Falmouth, Massachussettes, USA, and the
response of the microbial community to changes in the environment. The model considers
a network of coupled redox reactions among phytoplankton, sulfur bacteria, aerobic and
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anaerobic grazers, aerobic organoheterotrophic bacteria, sulfate-reducing bacteria, pho-
toheterotrophs, and sulfide-oxidizing bacteria through a system of nonlinear dynamical
equations. The model is built on the assumption that “microbial systems organize to use all
available energy sources...”, which they identified as the Gibbs free energy, which is another
way of recasting the MEP principle. While predictive models have been successfully used
in such contexts, they face considerable challenges in efficiently being able to resolve highly
complex systems; the systems-based thermodynamic approach proves to be an effective
alternative approach in this regard. In their paper, the MEP principle was used as an
optimization argument to determine the rate constants of the system, as a result of which,
the computational results were in good agreement with the observations.

Yet another example can be found by surveying the foraging capabilities of bacteria.
The stability and persistence of organisms are intrinsically tied to their ability to maintain an
in-flux of energetic resources (food) that drive physiological processes, maintain structure,
and power behaviors. All such maintenance processes are irreversible entropy-producing
processes [62], and thus, the importing of food is substantively related to the entropy
production within living systems. Foraging, the behaviors associated with detecting,
navigating to, and ingesting energetic resources, should similarly be related to the entropy
production of organisms.

For example, bacteria will follow increasing concentration gradients of metabolizable
resources such as sugar. In one set of famous experiments by Adler [63], a long, narrow
tube was filled with a uniform distribution of sugar. A bacterial colony was placed at
one end of the tube. The bacteria consumed local supplies of sugar, which generated a
concentration gradient, which they then followed throughout the length of the tube. This
induced concentration gradient drives them to move up-gradient, consume sugar, and
generate new gradients. There is thus a circular relationship between the activity of the
organisms and the state of the environment, much like the preceding cases discussed herein.
The feedback effects between colony and sugar gradients drove the system to a steady state
of consuming sugar while moving up the concentration gradient. A recent thermodynamic
analysis of this behavior provides evidence that the chemotactic and reproductive dynamics
are consistent with the bacterial colony’s entropy production being maximized [64]. Both
the circular causal structure of dissipative systems and the intimate relation to entropy
production are likely to be evident in many other biological examples [65,66].

5. Conclusions

We made the case here through multiple examples in dissipative, fluid systems that
thermodynamic variational arguments provide essential clues about self-organization in
complex systems. Such complex systems can be non-living or even living systems, as in the
cases discussed in Section 4. While these cases are independent, for the most part, there
are recurring physical traits that make the case for an underlying structure for all of nature
quite compelling (see also the summary in Table 2). One of these common traits is the
emergence of spiral patterns. In convection, energy distribution is seen to best happen
along a spiral path. The spiral pattern is also key to the energy dissipation of the fluid in
our second example; Figure 5 shows a close up image of a primary wake vortex behind a
spheroid in its steady orientation in a flowing liquid.

A very detailed and insightful discussion in the papers by Annila and co-workers (see,
for instance, [44,59]) was provided on the prevalence of specific patterns in nature through
which energy is dispersed. The natural selection of a small subset of patterns from the
plethora that could be conceived of points to a fundamental, preferred pattern. It is argued
that nonequilibrium systems seek to “consume free energy in the least time” [44]. Spirals are
not the only patterns we see: tree-like paths of energy distribution occur in several physical
systems. However, in such systems, energy flow occurs from a source to multiple sinks or
vice versa, giving rise to the tree-/fractal-like structures [40].
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Table 2. The table summarizes the various examples of self-organization in dissipative systems and
fluid–solid interaction that have been tackled by us, where the maximum REP or related thermody-
namic variational principle appears to correspond to the stable steady state. The table also provides
the various forces and gradients that drive the system to its emergent steady configuration. Here,
MEP refers to the maximum REP, CT to constructal theory, and MFE is the minimum free energy of
the system. Note that in invoking variational arguments such as the max REP, we are in fact making
an argument about stability, namely of the various configurations or self-organized states that a
system allows for; the stable one is seen to the one that maximizes the rate of entropy production.

Physical
Forces Gradient References

Thermodynamic
Problem Principle

1. Channel Flow viscous velocity [67–69] MEP

2.
Orientation

viscous velocity [30,40,70]
MEP,

in a NF CT

3.
Orientation viscous,

velocity [70,71] MEPin a VEF elastic

4.
Deformable

body viscous,
velocity [16,72] MEP

in a NF spring

5.
Orientation of

two viscous velocity [31,73] MEP
spheres in a NF

6.
Sphere falling

near viscous velocity Section 3.3 MEP
a wall in NF

7.
Chemical
flocking

viscous, Surface tension [24,26] MFEchemical

8.
Flocking in viscous, charge

[25,26] MEPE&M field magnetic distribution

The biggest drawback in convincing biologists and physicists alike of the underlying
unity of these two fields is the concept of “purpose”, which we discussed in detail in the
earlier parts of this paper. However, it must be noted that the kind of purposive action that
we refer to in living systems where a direct correlation can be made between the intent and
action are simple ones; in most of these cases, there is a direct, linear connection between
the two events. For instance, the intent to travel from point A to point B can lead to a direct
action and successful enactment of the intent. In more complex cases, “purposefulness”
may be irrelevant, and intent may have no bearing on the outcome of the action. It is
plausible that in these nonlinear cases, a host of complexly tied events, the environment,
etc., may result in some emergent consequences. This is where the laws of complexity
theory and non-equilibrium thermodynamics may be able to provide valuable insights.
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