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Abstract: This paper considers the problem of thermal convection of a calcium chloride solution
in a vertical borehole. A non-uniform temperature distribution with a given vertical gradient is
set at the walls of the borehole. The non-stationary temperature distribution along the borehole
axis was analyzed, and its deviations from the temperature at the walls were investigated. From a
practical point of view, this problem is important for estimating the error in distributed temperature
measurements over the depth of thermal control boreholes during artificial ground freezing. In this
study, an area near the bottom of the borehole was identified where the fluid temperature at the
borehole axis deviates significantly from the temperature at the wall. The maximum deviations of
the fluid temperature from the temperature at the walls, as well as the length of the temperature
deviation sections, were determined.

Keywords: artificial ground freezing; thermal control borehole; thermal convection; temperature
measurement errors; numerical simulation

1. Introduction

A common method for the construction of mine shafts in flooded and unstable soils is
artificial ground freezing (AGF). The purpose of AGF is to form a protective frozen wall
(FW) around the shaft under construction to prevent groundwater from entering it and to
strengthen the loose walls of the shaft during its construction. This method is widely used
in the construction of shafts of potash mines [1,2].

The AGF procedure is usually accompanied by monitoring of the state of the frozen
soil [3], which is necessary to determine when the FW has reached the required thickness.
The most common monitoring method is temperature monitoring in several thermal control
(TC) boreholes. The temperature distributions measured over the TC borehole depths are
used to adjust the parameters of thermodynamic models of the frozen soils and to determine
the actual parameters of the FW [4,5].

Adequate adjustment of the parameters of the thermodynamic models is impossible
without accurate determination of the temperature distribution in TC boreholes, which
may be subject to error [6]. Pavlov [7] stated that most errors arise due to:

1. Free thermal convection of the fluid in the borehole in a temperature-inhomogeneous
field, and

2. A mismatch in the heat transfer rate in the casing (especially metal) and soil.

Another important factor, according to our previous data [8], is the error in determining
the deviation of the borehole from the designed vertical position.

In this paper, we will focus on the effect of thermal (free) convection of a fluid in a TC
borehole on distributed temperature sensing (DTS). With DTS, a fiber optic cable is placed
in the borehole, extending from its mouth to the bottom. Usually, the influence of thermal
convection is observed in boreholes, where the temperature increases with depth [9,10]. In
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the case of vertical TC boreholes during the construction of mine shafts using AGF, the
temperature measured in the TC boreholes can both increase and decrease with depth. As
an example, Figure 1 shows the measured temperature distributions over the depth of two
TC boreholes that were used in the construction of the skip shaft of a potash mine in the
Republic of Belarus [1].

Fluids 2022, 7, x FOR PEER REVIEW 2 of 12 
 

placed in the borehole, extending from its mouth to the bottom. Usually, the influence of 
thermal convection is observed in boreholes, where the temperature increases with depth 
[9,10]. In the case of vertical TC boreholes during the construction of mine shafts using 
AGF, the temperature measured in the TC boreholes can both increase and decrease with 
depth. As an example, Figure 1 shows the measured temperature distributions over the 
depth of two TC boreholes that were used in the construction of the skip shaft of a potash 
mine in the Republic of Belarus [1]. 

 
Figure 1. Temperature distributions over the depth of two TC boreholes at different time points; 
TC-1 (a) and TC-2 (b). 

Free convection in a vertical channel filled with fluid arises at certain critical param-
eters of the fluid, which are usually expressed in terms of the critical Rayleigh [11–13] or 
Grashof [14,15] numbers. Kazakov et al. [12] found that for laminar flows, the critical Ray-
leigh number is relatively small, with a value of about 100. Another important parameter 
that determines the presence of free convection is the ratio of the thermal conductivities 
of the fluid and the borehole casing [13]. 

According to [16,17], the phenomenon of free convection in boreholes can signifi-
cantly distort the temperature field established in the soil surrounding the borehole. Based 
on a large sample of experimental data, Demezhko et al. [16] showed that convective tem-
perature noise has a normal distribution. For this reason, to estimate the temperature de-
viation relative to the mean value, it is convenient to use statistical criteria, such as the 
standard deviation, σT, and the maximum range, ΔTmax [9,18]. In [16], the following for-
mula was proposed: 

4 12max TT σ G RΔ = = ⋅  (1)

where G is the temperature gradient, °C/m; and R is the borehole radius, m. 
Thermal convection leads not only to temperature fluctuations relative to the actual 

temperature of the soil (which could easily be eliminated by averaging over time), but also 
to a long-term quasi-stationary effect (QSE) [12], which is manifested as a consistent de-
crease in the temperature gradient relative to its value in the soil. Demezhko et al. [17] 
found that the maximum gradient decrease is observed in the upper and lower parts of 
the borehole, with an average value of 7.5% over the length of the borehole estimated for 

Figure 1. Temperature distributions over the depth of two TC boreholes at different time points; TC-1
(a) and TC-2 (b).

Free convection in a vertical channel filled with fluid arises at certain critical param-
eters of the fluid, which are usually expressed in terms of the critical Rayleigh [11–13]
or Grashof [14,15] numbers. Kazakov et al. [12] found that for laminar flows, the critical
Rayleigh number is relatively small, with a value of about 100. Another important parame-
ter that determines the presence of free convection is the ratio of the thermal conductivities
of the fluid and the borehole casing [13].

According to [16,17], the phenomenon of free convection in boreholes can significantly
distort the temperature field established in the soil surrounding the borehole. Based
on a large sample of experimental data, Demezhko et al. [16] showed that convective
temperature noise has a normal distribution. For this reason, to estimate the temperature
deviation relative to the mean value, it is convenient to use statistical criteria, such as
the standard deviation, σT, and the maximum range, ∆Tmax [9,18]. In [16], the following
formula was proposed:

∆Tmax = 4σT = 12G · R (1)

where G is the temperature gradient, ◦C/m; and R is the borehole radius, m.
Thermal convection leads not only to temperature fluctuations relative to the actual

temperature of the soil (which could easily be eliminated by averaging over time), but
also to a long-term quasi-stationary effect (QSE) [12], which is manifested as a consistent
decrease in the temperature gradient relative to its value in the soil. Demezhko et al. [17]
found that the maximum gradient decrease is observed in the upper and lower parts of
the borehole, with an average value of 7.5% over the length of the borehole estimated for
Rayleigh numbers up to 105. At the same time, this feature may be due to insufficient
calculation time and the limited volume of soil mass surrounding the borehole. In [19],



Fluids 2022, 7, 298 3 of 11

an assumption was made and verified that the QSE is similar to the effect caused by the
circulation of fluid during borehole drilling or flushing.

Other studies in the scientific literature have not considered the QSE. In our opinion,
this effect is important for correct temperature measurements in vertical boreholes. It is not
clear what local temperature errors may arise due to QSE, since only the average error has
been estimated previously. It is also not known which sections of the well are most affected
by the QSE. These questions are explored in this study.

Taking into account the fact that previous studies were carried out using a limited
range of Rayleigh numbers, in this paper we attempted to extend our analysis to Rayleigh
numbers that occur during AGF up to values in the order of 107. For this, an unsteady
convective motion of a calcium chloride solution in a TC borehole is considered with a
constant temperature gradient at the walls. This study focuses on an analysis of the reasons
for the decrease in the temperature gradient at the mouth and bottom of vertical boreholes,
which has been poorly studied.

2. Methodology

A straight vertical section of the TC borehole with a radius of 0.073 m and a length of
25 m is considered (see Figure 2). The borehole is filled with a solution of calcium chloride
(CaCl2), which does not freeze at negative temperatures [20]. On the upper base of the
cylindrical domain, which is a section of the borehole, a pressure outlet-type boundary
condition is set. The side wall and the lower base of the cylindrical domain are smooth
impermeable walls, where the zero-velocity vector is set.
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Figure 2. Geometry of the computational domain and the mesh.

An irregular 2D mesh of quadrangular elements is built on the upper base of the
cylinder. This mesh is then swept over the entire height of the borehole. A fixed number
of vertical mesh layers is set, which varies from 60 to 250 depending on the density of the
selected mesh. The pre-modeling on several meshes and how we selected the best option
are discussed below.

The solution flow is assumed to be unsteady, incompressible, non-isothermal, and
laminar. To account for thermal convection in the borehole, a gravity field and a linear
dependence of the density of the solution on its temperature are set. Two concentrations of
CaCl2 solution are considered: 15% and 25%.

The dependences of solution densities ρ on temperature T for these two concentrations
are as follows:

ρ15% = 1137.0− 0.321T (2)
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ρ25% = 1239.0− 0.462T (3)

These dependences were obtained from [21] by searching for a linear approximation
of the tabular values of the solution densities at different temperatures.

The other thermophysical properties of the solutions are assumed to be independent
of temperature. These properties, considered at a temperature of 0 ◦C, are summarized in
Table 1.

Table 1. Properties of calcium chloride solutions at 0 ◦C.

Property CaCl2 Concentration
15% 25%

Specific heat capacity,
J/(kg·◦C) 3328 2868

Thermal conductivity,
W/(m·◦C) 0.549 0.535

Dynamic viscosity, Pa·s 0.00256 0.00425

As follows from Formulas (2) and (3), the density increases with an increase in the con-
centration of CaCl2 in the solution, and the dependence on temperature becomes stronger.
The specific heat capacity and dynamic viscosity of the solution strongly depend on the
CaCl2 concentration. The thermal conductivity of the solution changes insignificantly with
increasing salt concentration in the solution. We do not take into account the temperature
dependences of the specific heat capacity, thermal conductivity and dynamic viscosity of
CaCl2 solutions because they are rather weak and do not affect the solution in the consid-
ered temperature range. At the same time, the dependence of density on temperature is
one of the key physical factors in the problem.

The total temperature variation in the TC boreholes rarely exceeds 10 ◦C (see Figure 1),
and therefore, the variation in solution density can be considered to be small. The Reynolds
values calculated at typical fluid flow rates in a borehole (1 mm/s) are 32 for 15% CaCl2,
and 21 for a 25% CaCl2 solution. Thus, for the selected parameters of the solution, the flow
regime will be laminar. This allows us to formulate the problem of heat and mass transfer in
a borehole in the form of the classical Boussinesq problem [22,23]. In this case, it is necessary
to solve the following system of mass, momentum, and energy balance equations:

∂ρ

∂t
+∇ · (ρV) = 0 (4)

∂

∂t
(ρV) +∇ · (ρVV) = −∇p +∇ · τ+ ρ(T)g (5)

∂

∂t
(ρE) +∇ · (ρVE + pV) = ∇ · (λ∇T + τ ·V) (6)

where t is the time, s; V is the water velocity vector, m/s; p is the pressure, Pa; E is the
specific energy of water, J/kg; g is gravity vector, m/s2; and τ is the shear stress tensor, Pa,
calculated by the formula:

τ = µ
[
∇V + (∇V)T

]
(7)

where µ is the molecular viscosity of the solution, Pa·s.
This system of equations is supplemented with the following initial (IC) and boundary

conditions (BC):

IC : T|t=0 = T0 + G
h
2

, V| t=0 = 0, (8)

BC at the bottom : T|z=0 = T0, V| z=0 = 0, (9)

BC at the top : T|z=h = T0 + Gh, p|z=h = 0, (10)

BC at the side walls : T|r=R = T0 + Gz, V| r=R = 0, (11)
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where G is the vertical temperature gradient at the borehole wall, ◦C/m; h is the height of
the investigated section of the borehole, m; z is the vertical coordinate, m; R is the borehole
radius, m; and r is the radial coordinate, m. The origin of the cylindrical coordinate system
is at the bottom point of the borehole in the middle of its cross section.

The vertical temperature gradient G is determined based on experimental temperature
measurement data along the depth of TC boreholes for the skip shaft of a potash mine
under construction in the Republic of Belarus (see Figure 1). The temperature gradients
of the experimentally measured temperatures along the depth of two TC boreholes are
shown in Figure 3. They were calculated for temperature measurements at fixed spatial
steps of 0.5 m.
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Figure 3. Distributions of temperature gradients along the depth of TC-1 (a) and TC-2 (b) boreholes.

Analysis of the curves in Figure 3 showed that the average temperature gradient for
different boreholes across time varies between 0.056 ◦C/m and 0.083 ◦C/m. The average
temperature gradient was calculated by the formula:

〈G〉 = 1
N − 1

N−1

∑
i=1

Ti − Tt−1

zi − zi−1
(12)

where N is the number of measurement points.
The modular maximum temperature gradient, given by the formula:

maxG = max
i=1,...,N−1

∣∣∣∣Ti − Tt−1

zi − zi−1

∣∣∣∣ (13)

can reach 1.3 ◦C/m locally. It is important to note that in determining these estimates, we
did not take into account the first 2 m near the mouth of the borehole, where the gradient is
very high due to the influence of atmospheric conditions. The temperature distribution
dynamics in this small area are very different from those in the rest of the borehole. Notably,
soil layers at a depth of more than 5 m are of the greatest interest for freezing analysis.

Based on the estimated value of G under real conditions, we further studied thermal
convection in boreholes for G values ranging from 0.025 to 0.2 ◦C/m. Taking into account
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the data from Table 1, the corresponding Rayleigh numbers range from 6.8 × 105 to 5 × 107.
The Rayleigh numbers are calculated using a formula from [12]:

Ra =
gR4βG

νa
(14)

where a is the thermal diffusivity, m2/s; β is the coefficient of thermal expansion, ◦C−1; and
ν is the kinematic viscosity, m2/s.

The numerical solutions to Equations (4)–(11) were obtained using the SIMPLE method of
the Ansys Fluent 2021 program [24]. Spatial discretization was carried out using second-order
schemes, while time discretization was conducted using an implicit first-order scheme.

3. Results and Discussion

First of all, we analyzed the independence of the solution from the spatial mesh and
the time step. The criterion for analysis was the temperature distribution along the borehole
axis for a temperature gradient of 0.2 ◦C/m at the wall. The temperature of the wall is
0 ◦C at the bottom of the borehole, and −5 ◦C at the mouth. The simulation time was 1 h.
Figure 4 shows temperature distributions along the borehole axis for three spatial meshes
and at four time steps. The data in Figure 4a was obtained using a time step of 20 s. The
data in Figure 4b was obtained using a mesh of 137,280 cells. In general, it can be seen
from the preliminary simulation that it was not possible to achieve identical results for any
pair of calculations. However, it is important to understand that temperature fluctuations
during thermal convection are quite chaotic and sensitive to many parameters of the
problem. Therefore, it was important that the numerical model could correctly calculate
the average amplitude of temporal temperature fluctuations in the thermal convection
area and the temperature deviations near the bottom of the borehole. For this reason, a
mesh of 137,280 cells was chosen. Simulations at various time steps from 5 to 40 s did
not reveal a significant effect of the time step on the solution. Nevertheless, the curve
in Figure 4b for the 40 s time step reflects the temperature profile near the bottom of the
borehole less accurately than the other curves. Therefore, a time step of 20 s was considered
for further calculations.
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Next, we analyzed the temporal dynamics of the temperature distribution along
the borehole axis for the selected mesh. We selected the borehole axis since this line is
the farthest from the borehole walls and will most likely show the largest temperature
deviations from the linear distribution specified at the wall. In addition, fiber optic cables
or point sensors are usually located closer to the middle of the borehole.
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Figure 5a,b shows the temperature distributions for a 15% and 25% CaCl2 solution,
respectively. The temperature gradient at the wall is still 0.2 ◦C/m. It can be seen from
Figure 5 that the initially homogeneous velocity field rapidly changes in line with the
given borehole wall temperature field (black dashed line). The temperature field of the
solution tends toward linearity, but it is not exactly linear due to the presence of undamped
temperature fluctuations caused by thermal convection. However, as shown in [17], aver-
aging the temporal temperature fluctuation data due to thermal convection in the center
of the borehole solves this problem and allows the required linear temperature profile to
be obtained.
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Of greatest interest is a small section of the borehole near its bottom, where the
temperature of the solution near the borehole axis differs significantly from the temperature
of the wall during the entire simulation time, and this is not eliminated by simple time
averaging. The greatest differences are observed at the shortest time of 30 min; in this case,
the length of the borehole section with a different solution temperature reaches 7 m. This
effect at short times is due to the influence of the initial temperature condition. Later, the
temperature field at this section of the borehole stabilizes and ceases to change with time,
and the dependence on the initial conditions disappears. In this case, a section about 3–4 m
in length still remains, in which the solution temperature profile differs greatly from the
linear profile set at the wall. In this section, the temperature curve is almost parallel to the X
axis, which indicates a value of zero for the temperature gradient G. Thus, the temperature
gradient deviation along the axis of the borehole near its bottom differs from the specified
temperature gradient at the walls by approximately 100%.

At the other end of the borehole, where the outlet condition is set, the fluid temperature
profile corresponds closely to the wall temperature. For a time of 12 h, the measured
temperature gradient along the borehole axis differs from the gradient specified at the wall
by about 3–4%.

In order to understand the anomalous behavior of the fluid temperature profile near
the bottom of the borehole, it is necessary to analyze the velocity and temperature fields
in the transverse and longitudinal sections of the borehole. The velocity fields are shown
in Figure 6 for a simulation time of 4 h and 15% CaCl2 concentration. Figure 7 shows
the temperature fields for the same simulation time and CaCl2 concentration. The fluid
streamlines at the bottom of the borehole are presented in Figure 8. The upstream fluid flow
is marked in red, and downstream flow is marked in blue. The maximum fluid velocities
are about 0.015 m/s, which corresponds to Re ≈ 480.
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the flow.

It can be seen from Figures 6 and 8 that in the area near the bottom of the borehole, a
stable extended three-dimensional convection cell is formed with a downward flow in the
center of the borehole and an upward flow near the walls. This leads to the distortion of the
temperature field in the area near the axis of the borehole. The temperature is lower in the
center of the cross section and higher near the borehole walls (see Figure 7). At a distance
from the borehole bottom, the flow structure changes and spiral vortices are formed, the
existence of which is also noted in the experimental work [16].
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In the zone of a spiral vortex flow, the distribution of the vertical component of the
fluid velocity in various horizontal sections is always similar and differs in rotation by
some angle. This spiral structure is inevitably broken near the bottom of the borehole,
because the condition of zero velocity is set on it. At the same time, due to the action of
buoyancy forces in the bottom of the borehole, another convective flow structure is formed,
a convection cell, which coexists well both with the zero-velocity boundary condition at
the lower base of the domain and with the spiral vortex structure above.

Such an extended vortex is not formed at the borehole mouth due to the features of the
boundary condition set at this boundary surface (pressure outlet). The fluid can freely flow
out of and back into the computational domain through this boundary. However, if we
set the condition of an impermeable wall at the mouth of the borehole, then the observed
results are similar to those obtained at the bottom. As an example, Figure 9 shows the
calculated temperature distributions along the borehole axis under the same boundary
conditions at both ends of the borehole (in terms of the zero-velocity vector), considering a
25% CaCl2 solution.
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For convenience, dimensionless temperature is marked along the Y axis in Figure 9a.
This makes it possible to visually compare the temperature profiles at different tempera-
ture gradients G. Based on the data presented in Figure 9a, it can be concluded that the
maximum deviation of the fluid temperature along the borehole axis from the value at
its wall depends on the temperature gradient approximately according to the linear law:
∆Tmax = Twall − Taxis ≈ 5 G (◦C). However, the length of the temperature deviation section
does not depend on G, but rather depends on the borehole radius R, as seen in Figure 9b
and Table 2.

Table 2. Lengths of the temperature deviation sections at different borehole radii.

Radius, m Section Length, m

0.04 ≈0
0.055 3.2
0.073 5.0

0.1 6.05

The length of the temperature deviation section for each radius was calculated using
the following method:
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1. An approximation of the horizontal section of the temperature curve near the borehole
bottom was determined in the form T = const.

2. The point of intersection of the T = const curve with the curve of Equation (11), which
is a given function of wall temperature, was found. The abscissa of this intersection
point was taken to be equal to the length of the temperature deviation section.

The obtained dependence of the length of the temperature deviation section on the
radius R is essentially non-linear. In our opinion, it can be approximated by a logarithmic
dependence of the form A + B log(R − C). For the properties of the borehole and fluid
considered in this case, the parameters of this dependence are: A = 11.92, B = 2.06, and
C = 0.04. These values were obtained using the least squares method [25].

From a practical point of view, a deeper study of the approximating functions for
this dependence is most likely unnecessary. In this case, it is important to understand the
general size of the identified area of deviation of fluid temperatures in the central region
of the borehole. In the practice of AGF, boreholes with a radius of no more than 0.1 m are
usually applied. This indicates that large temperature errors due to thermal convection
can occur only in the lower section of a borehole up to 6 m in length. Experimental
measurements of fluid temperature in a borehole can lead to an underestimation of the
actual temperature at the walls of no more than 5 G (◦C). This conclusion is valid only in
the case of a negative temperature gradient along the borehole height: dT/dz < 0.

In fact, during AGF, there are alternating sections with positive and negative tempera-
ture gradients. Nevertheless, near the bottom of the TC borehole, a negative temperature
gradient should be observed more often. This is related to the influence of the Earth’s heat
flow on the lower part of the FW.

Another important consideration is that, in practice, temperature sensors may not
be located in the center of the borehole cross section but can be shifted to its wall. Gen-
erally speaking, the position of the DTS cable in the cross section is an indeterminate
parameter. Hence, we considered the most pessimistic scenario for the deviation of tem-
peratures measured in the center of the borehole from the temperatures at the wall. In
addition, the measuring cable itself (at a certain thickness) can influence the structure of
convective currents in the borehole. This issue is not considered in this work and requires
separate investigation.

4. Conclusions

From the simulation of thermal convection of a calcium chloride solution in a TC
borehole, the following interesting and important results were obtained:

1. An area near the borehole bottom was identified where the fluid temperature at the
borehole axis deviates significantly from the temperature at the wall. This effect is
observed when the boundary condition of an impermeable wall is set at the lower
base of a cylindrical borehole. A similar effect is observed at the mouth of the borehole
if the impermeable wall condition is set at the upper base of the cylindrical region.

2. An analysis of the structure of the fluid flow in the borehole was carried out. Based
on this analysis, we determined that the extended vortex is formed at the bottom of
the borehole with a downward flow of fluid in the central part of the cross section and
an upward flow of fluid near its walls. At the same time, in the rest of the borehole,
the fluid flow is characterized by a system of helical jets, which is in agreement with
data reported in the literature.

3. The maximum deviations of the fluid temperature from the temperature of the walls
near the bottom of the borehole and the length of the temperature deviation sections
were determined. The proposed formula for calculating the magnitude of deviations
will be useful for specialists in monitoring the Earth’s thermal field and artificial
ground freezing.
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