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Abstract: The reduction in energy consumption and the increasingly demanding emissions regula-
tions have become strategic challenges for every industrial sector. In this context, the glass industry
would be one of the most affected sectors due to its high energy demand and emissions productions,
especially in terms of NOx. For this reason, various emission abatement systems have been developed
in this field and one of the most used is the air staging system. It consists in injecting air into the
upper part of the regenerative chamber on the exhaust gases side in order to create the conditions for
combustion that reduces NOx emissions. In this work, the combined use of CFD with data analysis
techniques offers a tool for the design and management of a hybrid air staging system. Surrogate
models of the bypass mass flow rate and uniformity index in the regenerative chamber have been
obtained starting from DoE based on different simulations by varying the air mass flow rate of the
two injectors located in a bypass duct that connects the two regenerative chambers. This model
allows a UQ analysis to verify how the uncertainty of the air injectors can affect the bypass mass
flow rate. Finally, an optimization procedure has identified the optimal condition for the best bypass
mass flow rates and uniformity of the oxygen concentration in the chamber. High values of the mass
flow rate of the pros injector and medium-low values for the cons injectors are identified as operating
parameters for best conditions.

Keywords: glass furnace; low emissions; CFD; optimization; Uncertainty Quantification

1. Introduction

A glass production plant is very energy-demanding, reaching temperatures over
2000 [K] in order to melt the raw material and obtain a high-quality glass [1]. In Italy, the
glass industry energy demand is about 5% of the total industrial consumption (1.33 Mtoe)
without the addition of all the related activities (transport, packaging, etc.); its environ-
mental impact is, therefore, significant (greenhouse effect, etc.). In the first decade of the
2000s, it has been estimated that this sector in the EU25 required a 7.8 GJ average per year
and has produced 0.57 tons of CO2 per ton of saleable product [2]. International climate
agreements, such as the recent COP26, have imposed strict regulations for energy con-
sumption reduction, but above all for the related pollutant emissions [3,4]. In this context,
the glass industry sector also requires the development of specific strategies to reduce its
environmental impact. Preheating the combustion air through regenerative chambers is the
main strategy. They are built upon a series of refractory bricks, that are used to store heat
when hot gases from combustion flow; this process has reached 70% of thermal efficiency
and it allows a recovery of about 1500 kJ per kg of glass [5–8]. The University of Genova,
partner in the EU Funded PRIMEGLASS Life project, has contributed to developing numer-
ical models for the regenerative chambers design [9]. Another strategy to further exploit
the residual heat of the exhausted gases is to preheat the glass raw material. In fact, the
gases still have a temperature of the order of 500 [◦C] that would otherwise be wasted.
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Several industrial sectors, like steel or cement production, have raw material preheating
systems [10] and a specific research activity has been performed to test the strategy for
glass raw material [11].

New European rules have imposed strict regulations on NOx emissions in many in-
dustrial fields, including glass production [12]. The formation mechanisms of this thermal
pollutant are well described by the Zeldovich theories and its extensions [13–15] when
high-temperature reactions are involved. However, the maximum temperature reduction
in the combustion process is not sufficient to decrease the NOx production; local air-fuel
distribution (oxygen concentration), the nitrogen presence and the residence time of the
chemical species at high-temperatures are additional aspects to be considered. Long-term
studies in different engineering areas (internal combustion engines and power generation
plants) have already demonstrated methods to reduce chemical emissions: primary and
secondary [16]. The primary methods modify the design parameters of the combustion
process, such as the exhaust gas recirculation (EGR) and staged combustion. The secondary
methods consist of post-treatment of the combustion gases with chemical treatment, such
as the urea injection, to reduce the NOx emissions. Within the framework of the Life
PRIMEGLASS projects, two primary methods have been studied: the Waste Gas Recir-
culation system (WGR) and hybrid air staging [17,18]; both are applied to regenerative
glass production plants. The WGR system is based on recirculation of a portion of exhaust
gas taken from the regenerative chamber during the hot phase and injected into the lower
part of the regenerative chamber on the air side, through a forced fan system. The portion
of recirculated gas allows partial diluting of the air concentration in order to reduce the
NOx formation. This system has been studied by several authors mainly in automotive
applications [19–21] and the specific strategy for glass furnaces has been developed [22–24].

The air staging (AS) consists in injecting air into the upper part of the regenerative
chamber on the fumes side in order to reduce the NOx. The combustion is set with a low
value of oxygen to lower the NOx formation, but a high content of CO is obtained as a result.
The combustion is completed in a secondary phase outside the combustion chamber and
inside the top chamber at a lower temperature using the air staging system. Mainly three
different air staging types exist: cold air staging (where the cold air at ambient temperature
is injected in the chamber), the hot air staging (where the hot air flows naturally through a
U-shaped duct from the adjacent chamber) and the hybrid air staging (that combines the
two methods). Numerous authors in several industrial sectors have studied the air staging
technique. For example, investigations on air staging and fuel staging have been carried
out with an electrically heated tube reactor [25]. Experiments with a newly designed
controlled multiple air staging technology in grate firings have shown a considerable
reduction in NOx emissions [26]. Experiments were carried out on an electrically heated
multi-path air inlet one-dimensional furnace to assess NOx emission characteristics of an
overall air-staged (also termed air staging along furnace height) combustion of bituminous
coal [27]. Recent studies have shown the success of the air staging also to reduce the
emissions from the combustion of problematic fuels in small scale combustion systems [28].
Biedermann revised the data on air staging based on experiments with nine automated
boiler technologies and concluded that significant reductions in both NOx and particulate
emissions are possible if low primary air ratios are used [29]. Different biomass fuels
have been burnt in a small-scale biomass boiler to investigate the effect of air staging on
emissions [30]. Numerical approaches have been published to model the system with a
600 MWe tangentially fired pulverized-coal boiler configured with the deep-air-staging
combustion technology [31]. A numerical model has been proposed to demonstrate that
the emissions at the outlet of the combustion chamber are greatly reduced if the deep air
staged combustion with the burner stoichiometric ratio of 0.75 is adopted [32]. A CFD
simulation method has been proposed to identify the optimal geometric parameters related
to air staging in a wood pellet boiler [33].

CFD simulations combined with the use of data analysis techniques can be a useful
tool to improve the understanding of flow structures in industrial components, to identify
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design features, to optimize their performance and to support the operation management.
In the latter use the numerical tools became part of the Artificial Intelligence field. Dif-
ferent approaches can be developed using surrogate models based on response surface
methodologies for the above purposes [34]. In this paper, CFD simulations have been used
to study the hybrid air staging system in the regenerative chambers of glass production
plants in order to reduce the NOx emissions. First, the flow structure in this system is
shown for a baseline case. Then, a simulation dataset (DOE) has been built by varying
design parameters like air mass flow rate from the pros and cons injectors. Starting from
the DOE, surrogate models have been obtained to build system response surfaces in a
given operating range. A sensitivity analysis on the uncertainty that stems from injectors
mass flow rate has been also performed. Finally, an optimization process has supported
the optimal configuration for the system operating condition.

2. Layout of the Glass Production Plant with Regenerative Chamber and the Hybrid
Air Staging

The glass furnace considered for this research is the regenerative End-Port, which is
composed essentially from a combustion chamber and two regenerative chambers to re-
cover the heat from the exhaust gases. A typical plant layout is in Figure 1. The combustion
chamber, made of refractory material, allows the raw material to be melted by the combus-
tion processes fueled by natural gas; in fact, the glass bath must reach temperature between
1700–1800 [K] and the exhaust gases generally have a high energy content (temperature
between 1400–1500 [K]). The two regenerative chambers (a Martin-Siemens original idea)
alternately feed with air (cold phase) or exhaust gases (hot phase) with twenty minutes
cycles. The regenerative chambers, that can exceed ten meters height, consist of three main
areas: bottom chamber, checkers zone and top chamber. The checker’s zone is filled with
material bricks assembled in a modular way with different shapes in order to absorb the
heat of the waste gas during the hot phase and release it to the incoming air during the cold
phase. The top of the regenerative chambers conveys the pre-heated air for the combustion
and the exhaust gas through the Port necks.
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Figure 1. Plant layout of a regenerative end-port glass furnace.

The hybrid air staging system (whose position in the plant is shown in Figure 1 by the
red rectangle, while its operating scheme is explained in Figure 2) is placed between the
two Port necks in order to provide the recirculation of a preheated air portion, coming from
the top chamber of the regenerator (side air), inside the exhaust gases (that are allocated
in the top chamber on the fumes side). The recirculated air flows through a bypass duct
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between the two chambers and is controlled by the air jets at ambient temperature from the
injectors, which also affects its mixing. The injectors are alternatively called pros and cons
injectors, in accordance with the air/fume’s cycles of the regenerator.
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3. Numerical Model
3.1. Governing Equations

The mathematical problem is set by the Reynolds-averaged Navier–Stokes equations.
The conservation of mass and momentum take the Eulerian conservative divergence form:

∂ρ

∂t
+∇·

(
ρ
→
u
)
= 0 (1)

∂
(

ρ
→
u
)

∂t
+∇·

(
ρ
→
u ×→u

)
= −∇P +∇·τ + SM (2)

where τ is the tensor of the normal and tangential stress due to viscosity and SM is the
momentum source. The turbulence closure adopted to model the momentum source (the
Reynolds stress tensor) is the standard k-ε [35,36]. This model has been applied on different
industrial fluid dynamic applications [37,38]. The additional transport equations of the
model are:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
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µt

σk

)
∂k
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∂xj
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+ C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
+ Sε (4)

In these equations, Gk represents the generation of turbulent kinetic energy due to the
mean velocity gradients; Gb is the generation of turbulent kinetic energy, due to buoyancy;
YM represents the contribution of the fluctuating dilatation in compressible turbulence
to the overall dissipation rate; while Sk and Sε are source terms. The turbulent (or eddy)
viscosity µt is computed by combining k and ε:

µt = ρCµ
k2

ε
(5)

The following standard model coefficients have been adopted: C1ε = 1.44, C2ε = 1.92,
Cµ = 0.09, σk = 1.0 σε = 1.3. These values have been selected in accordance with Ansys
Fluent, the commercial software adopted for the following model set-up [39].
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3.2. CFD Model

The CFD model has been set up through the commercial software Ansys Fluent. The
calculation domain consists of the top chambers of the regenerative chambers, which
include the bypass duct and the air injectors, but also a portion of the checkers zone for the
exhaust gases side equipped with cruciform shape checkers. The U-shaped bypass duct
has two injectors inside. This reduced geometrical model is representative of the portion of
interest for the work purpose. The geometric characteristics of the regenerative chamber
are reported in Table 1.

Table 1. Geometrical parameters of the reference regenerative chambers.

Geometrical Parameters Value

Aexhaust/Aair 0.05
Aexhaust/Aexit 0.1

Bottom chamber AR 3.9
Top chamber AR 1.5

The computational domain has been discretized with an unstructured mesh using
tetrahedral elements in the upper part of the regenerator, including the bypass duct and
the two injectors, due to the geometry complexity. A series of mesh densities has been set
to refine the duct area; in top chambers, a maximum cell size of 60 [mm] has been imposed,
while in the bypass duct a maximum of 28 [mm] and a minimum near the injectors of
12 [mm]. At the walls the mesh is clustered with prism layers to satisfy the y+ value around
30, in order to ensure activation of the wall functions; the prism layer consists of 8 layers
where the first cell has a size of 0.3 [mm], a growth rate of 1.2 and an average aspect ratio
of 20. Figure 3 shows a cut-plane of the volume elements of this zone, with a zoom on the
bypass duct. The checker’s zone has been discretized with a structured hexahedral grid.
Both parts of the computational domain have been generated with Ansys ICEM CFD with
a global mesh of 11 million cells. This grid has been set up and selected after a sensitivity
analysis carried out in previous works [11,23].
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in the bypass duct.

The turbulence model is the standard k-ε with scalable wall functions; this model
offers good results with a stronger numerical stability when high turbulence jets are
present inside industrial components [40]. The air and the exhaust gases are treated as
gas mixtures with related properties and the set of transport equations of the chemical
species is solved. In addition, the energy equation is activated. The portion of the checkers
zone has been modelled as a porous domain; the source terms for momentum and energy
governing equations to model flow resistance and heat transfer are set as described in [9].
Figure 4 shows the different boundary conditions imposed in the various patches. In
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the regenerative chamber on the air side, an inlet condition has been set with a uniform
mass flow rate equal to 4.185 [kg/s], a temperature T = 1563 [K] and with a chemical
composition of 21% oxygen and 79% nitrogen. An outlet conditions at ambient pressure
has been imposed from its relative tower. On the other hand, from the tower of the
fumes side an inlet condition has been set with a mass flow rate equal to 5.036 [kg/s], a
temperature T = 1773 [K], and a chemical composition with 2% oxygen, 11.5% water vapor,
19.5% carbon dioxide and the remaining percentage of nitrogen. The simulations have
been carried out keeping constant the operating conditions of the furnace (inlet/outlet
conditions, air/exhausted gases). The operating conditions of air staging have been varied
by changing the distribution of the total inlet mass flow rate of the two injectors from the
design condition, where the distribution is about 92% for the pros injectors and the 8% for
the cons injectors. The walls have been modelled as adiabatic with no-slip. An interface
between the fluid and the porous domain is set between the top chamber and the checkers
zone (for the exhaust side).
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The steady simulations have been solved with the SIMPLE scheme and all the equa-
tions were solved with second order numerical schemes.

4. Flow Analysis—Baseline Case

The hybrid air staging is a gas recirculation strategy operated at the port neck level.
A set of two injectors, as previously described, are present in order to be able to control
both the flow of recirculated gas and the mixing in the chamber. It is clear that for a given
geometry of the furnace and regenerative chamber, the air mass flow through the injectors
should be optimized. This section shows the flow structure of the reference case (baseline).
Figure 5 shows the velocity streamlines generated by the two injectors.

The cons injector (right) is activated with the aim of cooling the gases contained in
the top chamber, while the pros injector (left) activates the recirculation of the flow by
entraining it into the chamber and by enhancing the flow mixing. Figure 6 shows the
contour of the oxygen concentration in a section of the top chamber, while Scheme 1 reports
the respective values in a set of sectors that discretize the same above control surface.

For the baseline condition, the mass flow rate through the bypass duct is equal to
0.517 [kg/s] and gives an oxygen concentration between 0.04 and 0.05 almost everywhere.
Therefore, it is strategic to be able to optimize this flow structure and evaluate the effective-
ness of the system, by varying some operating parameters, to get the above distribution as
uniform as possible with the lowest overall additional air mass flow rate.
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5. Surrogate Models

Due to the considerable size of the computational domains and the phenomena
complexity, the simulations require significant computational resources. The development
of an appropriate surrogate model for the system response can support the optimization
phases to dramatically reduce the overall time required. The surrogate model is built from
a Design of Experiment (DoE) technique used to identify a set of simulations carried out in
a given operating range. The choice of points within the range is generally entrusted to a
random sampling technique that allows uniform coverage. One of the best and most used
techniques is the Latin Hypercube Sampling (LHS) [41–44].

The surrogate model has been created from the DoE dataset using the Gaussian Process
(GP), also known as Kriging [41]. It effectively builds a response surface system in the
predetermined operating range. Therefore, by interrogating the surrogate model it is
possible to obtain the system response in a negligible time compared to the time required
by a fully 3D CFD run. The surrogate model is particularly useful to perform sensitivity
analysis in the uncertainty quantification process or for design optimization.

The set of simulations have been carried out by keeping constant the operating con-
ditions of the furnace (constant inlet/outlet for air/exhaust gases) and by varying the
operating condition of the Air Staging with a different inlet mass flow rate repartition in the
two injectors. The mass flow rate through the bypass duct has been chosen as the system
response in this phase, since dilution effectiveness of the exhausted gases increases with
the recirculated mass flow rate.

The construction of the metamodel has been performed through the joint use of Ansys
Fluent (for the CFD simulations) and Dakota software for the DoE construction and for
the response surface setup. The input variables are the air mass flow rate injected by the
pros (ṁpros) and cons (ṁcons) injectors in an operating range between 100–160 [m3/h] and
20–60 [m3/h], respectively. Using the LHS method, 64 cases have been simulated to evalu-
ate the mass flow rate in the bypass duct. Figure 7 shows the point of the DoE considered
with the output value from a combination of the two mass flow rates in the injectors.
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Figure 7. DoE of the bypass mass flow rate.

It is evident that the LHS method has a very good coverage of the design space. Using
the above data, the surrogate model using the GP method has been built. The response
surface obtained from the GP is shown in Figure 8 where the data from the DoE are added
as points. The accuracy of the surrogate model can be checked qualitatively by observing
that all the DoE points lie perfectly on the surface but also quantitatively.
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Figure 8. Response surface of the bypass mass flow rate obtained with the 64 samples of the DoE
(highlighted with the black crosses).

Using the Dakota software, the quality of the surrogate model is quantified with the
Leave-one-out Cross validation (also called Prediction Error Sum of Squares PRESS) [41].
In Table 2 have been reported the values of the mean square error (rms), average error and
maximum error. The accuracy of the surrogate model is confirmed, and it can be used for
the following analysis on Uncertainty Quantification and Optimization.

Table 2. Geometrical parameters of the reference regenerative chambers.

Metrics ṁbypass [m3/h]

Means quare error 1.37
Average error 0.61

Maximum error 8.16

6. Uncertainty Quantification Analysis—UQ

The surrogate model estimates the response of the system in a very short time and
with negligible computational effort compared to a 3D CFD run. This is essential to perform
the UQ analysis that normally requires a large number of simulations. The UQ considers
the input variables as probabilistic variables, i.e., as defined by an average value, by a
standard deviation (which represents the uncertainty as a first approximation) as well as by
a probability density function (pdf) associated with the variables. The purpose is to evaluate
how uncertainty propagates in the physical system (or through simulations) and how it
affects the output variables. A validated approach has been adopted by following previous
work [45]. In this case, the two mass flow rates of the injectors have been considered as
probabilistic input parameters with their pdfs and their impact on the output variable
(bypass mass flow rate) has been analyzed.

The analysis has been divided into two steps: a uniform pdf for the input variables in
the first and a normal distribution centered in the intervals mean values in the second.

6.1. Uniform Distribution

The two mass flow rates can be considered with a uniform probability distribution
within the range 110–150 [m3/h] for ṁpros and 20–60 [m3/h] for ṁcons. A significant
number of samples are obtained using the LHS method directly on the surrogate model. In
this case 1000 samples were considered. The result of the probability distribution of the
bypass flow rate (output variable) is represented by the histograms in Figure 9.



Fluids 2023, 8, 76 10 of 18

Fluids 2023, 8, x  10 of 18 
 

6. Uncertainty Quantification Analysis—UQ 

The surrogate model estimates the response of the system in a very short time and 

with negligible computational effort compared to a 3D CFD run. This is essential to per-

form the UQ analysis that normally requires a large number of simulations. The UQ con-

siders the input variables as probabilistic variables, i.e., as defined by an average value, 

by a standard deviation (which represents the uncertainty as a first approximation) as well 

as by a probability density function (pdf) associated with the variables. The purpose is to 

evaluate how uncertainty propagates in the physical system (or through simulations) and 

how it affects the output variables. A validated approach has been adopted by following 

previous work [45]. In this case, the two mass flow rates of the injectors have been consid-

ered as probabilistic input parameters with their pdfs and their impact on the output var-

iable (bypass mass flow rate) has been analyzed. 

The analysis has been divided into two steps: a uniform pdf for the input variables 

in the first and a normal distribution centered in the intervals mean values in the second. 

6.1. Uniform Distribution 

The two mass flow rates can be considered with a uniform probability distribution 

within the range 110–150 [m3/h] for ṁpros and 20–60 [m3/h] for ṁcons. A significant number 

of samples are obtained using the LHS method directly on the surrogate model. In this 

case 1000 samples were considered. The result of the probability distribution of the bypass 

flow rate (output variable) is represented by the histograms in Figure 9. 

 

Figure 9. Histogram of the output PDF considering a uniform distribution for input variables. 

It can be noticed that the distribution of the uncertainty of the bypass mass flow rate 

is different from the uniform distribution of the two input variables. In fact, there is a 

higher probability for the central values of the variation range, showing a limited range 

of possible values subjected to uncertainty. 

6.2. Normal Distribution 

The input variables uncertainty is modelled with a normal distribution as depicted 

in Figure 10, with mean and standard deviations defined in Table 3. The resulting output 

distribution for the bypass mass flow rate is represented by the histograms in Figure 11. 

It can be noticed that the distribution almost fits the corresponding normal pdf (rep-

resented by the red curve). However, the uncertainty associated to the system response is 

very low if compared to the standard deviation σ associated to input variables (see Table 

4). 
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It can be noticed that the distribution of the uncertainty of the bypass mass flow rate is
different from the uniform distribution of the two input variables. In fact, there is a higher
probability for the central values of the variation range, showing a limited range of possible
values subjected to uncertainty.

6.2. Normal Distribution

The input variables uncertainty is modelled with a normal distribution as depicted
in Figure 10, with mean and standard deviations defined in Table 3. The resulting output
distribution for the bypass mass flow rate is represented by the histograms in Figure 11.
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Figure 10. Pros and cons mass flow rate uncertainty distributions—input variables.

Table 3. Statistical moments of the input normal distributions for the pros and cons mass flow rate.

Geometrical Parameters ṁpros [m3/h] ṁcons [m3/h]

Mean 130 40
Standard Deviation 5 5

Standard Deviation/Mean 3.8% 12.5%

It can be noticed that the distribution almost fits the corresponding normal pdf (repre-
sented by the red curve). However, the uncertainty associated to the system response is
very low if compared to the standard deviation σ associated to input variables (see Table 4).



Fluids 2023, 8, 76 11 of 18

Fluids 2023, 8, x  11 of 18 
 

 

Figure 10. Pros and cons mass flow rate uncertainty distributions—input variables. 

Table 3. Statistical moments of the input normal distributions for the pros and cons mass flow 

rate. 

Geometrical Parameters ṁpros [m3/h] ṁcons [m3/h] 

Mean 130 40 

Standard Deviation 5 5 

Standard Deviation/Mean 3.8% 12.5% 

 

Figure 11. Histogram of the output PDF considering a normal distribution for the input variables. 

Table 4. Statistical moments of the input normal distributions for the bypass mass flow rate. 

Geometrical Parameters ṁbypass [m3/h] 

Mean 1279 

Standard Deviation 30.2 

Standard Deviation/Mean 2.4% 

An alternative method to create a surrogate model to perform the UQ analysis in-

volves the use of Polynomial Chaos Expansions (PCE): it is based on the approximation 

of the response through a base of orthogonal polynomials, known as the Wiener-Askey 

scheme, which determines an optimal basis for multiple continuous probability distribu-

tions [41]. In general, the PCE method is advantageous when the number of variables is 

limited because the same results can be obtained with much less simulations from the 

high-fidelity case (fully 3D CFD). Only 16 CFD simulations were considered (half of those 

used for the GP), to set up the PCE and the UQ analysis was carried out on the surrogate 

model obtained with a series of 1000 samples. The results obtained for the uniform and 

Figure 11. Histogram of the output PDF considering a normal distribution for the input variables.

Table 4. Statistical moments of the input normal distributions for the bypass mass flow rate.

Geometrical Parameters ṁbypass [m3/h]

Mean 1279
Standard Deviation 30.2

Standard Deviation/Mean 2.4%

An alternative method to create a surrogate model to perform the UQ analysis involves
the use of Polynomial Chaos Expansions (PCE): it is based on the approximation of the
response through a base of orthogonal polynomials, known as the Wiener-Askey scheme,
which determines an optimal basis for multiple continuous probability distributions [41]. In
general, the PCE method is advantageous when the number of variables is limited because
the same results can be obtained with much less simulations from the high-fidelity case
(fully 3D CFD). Only 16 CFD simulations were considered (half of those used for the GP), to
set up the PCE and the UQ analysis was carried out on the surrogate model obtained with
a series of 1000 samples. The results obtained for the uniform and normal distribution of
the two input variables are presented in Figures 12 and 13 and compared with the previous
results. The results are essentially identical in both cases confirming the higher efficiency of
the PCE approach with respect to standard response surfaces (kriging) generated from a
rich (time consuming) DoE.
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From the UQ analysis emerged that the uncertainty on the mass flow rates of the air
injectors, which represent the inputs of the CFD simulations, marginally affects the mass
flow rate in the bypass duct. In fact, from the probability distributions it can be seen that,
especially in the case of input normal distribution, the percentage of uncertainty on the
ṁbypass is very limited, making the most probable values limited to a narrow range. The
Polynomial Chaos method gave the same results in terms of probability distribution but
with a number of CFD simulations necessary much lower.

7. Optimization Process to Support System Operation Management

When evaluating the performance of the air staging system, it is also necessary to
consider the effect that it has on the flow distribution at the inlet section of the stacks.
It is important to evaluate the uniformity of the flow and chemical composition. To
quantify the above aspect a uniformity index γ has been introduced as suggested by Om
Ariara Guhan C.P. et al. [46]. In the above work the index is defined with the aim of
evaluating the uniformity of the flow within an exhaust gas after-treatment system of an
internal combustion engine. The equation used at a discrete level to calculate the index is
represented in Equation (6):

γ = 1− 1
2 ∑

i

∣∣Ui −Uavg
∣∣Ai

A0Uavg
(6)

In the above reference case, the flow velocity is considered, in our case it is readjusted
using the oxygen concentration values on the inlet discretized section of the stacks. The
formulation is then adjusted as in Equation (7).

γO2 = 1− 1
2 ∑

i

∣∣O2 i −O2 avg
∣∣Ai

A0O2 avg
(7)

where: O2i is the concentration of O2 on the i-th discretization surface, O2avg is the average
concentration over the entire stack entrance surface, Ai is the i-th surface into which the
control surface has been divided and A0 is the total stacking entrance area. The checkers
inlet zone has been discretized as previously shown in Scheme 1.

An optimization strategy has been developed to support the optimal operation setting
of the system in terms of injected mass flow rates. The final goal is to minimize the total
injected air mass flow (minimize the energy consumption and thermal problems) and
to maximize the flow uniformity (oxygen distribution) at the checkers inlet section, in
order to reach the best performance for the pollution reduction system. First, a multi-
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objective optimization was carried out using the response surfaces obtained for the bypass
mass flow rate and the γO2 coefficient. The algorithm used for optimization is a standard
multi-objective genetic algorithm available in the Dakota platform.

The resulting Pareto sets for the optimal values of the two goals are reported on
the respective response surfaces in Figures 14 and 15 with red cross symbols, while in
Figure 16 are reported the populations obtained from optimization and Pareto Front. The
optimal conditions are reached towards the boundaries of the surfaces for high values of
the flow rate of the pros injector (always around the maximum value of 160 [m3/h]) and
medium-low values of the flow rate against the main stream.
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Multi-objective optimization allows us to evaluate the best performance of the system
by considering the two combined contributions of the uniformity index and the bypass
flow rate. It is clear that the air staging system works in optimal conditions for high values
of the flow rate of the pros injector and at the same time medium-low values for the cons.
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The optimization carried out led to the use of the maximum mass flow rate of the
injector in favor of the flow. However, this scenario can be costly, since the

.
mpro involves

the highest external compressed air contribution, which in fact is one of the most important
system life management costs. To take also this aspect into account, a cost function has been
introduced that this time (unlike ṁbypass and γO2) must be minimized. The expression of
the cost function is represented in Equation (8) and considers the flow rates of the injectors
weighted with a coefficient (higher for the pros injector):

Fcost =
(

ϕ1
.

mpro + ϕ2
.

mcons
)

(8)

where ϕ1 and ϕ2 are, respectively, 1.0 and 0.5, because the pros injector is more important
because it drives the flow into the bypass duct.

A multi objective optimization process with three distinct objectives is difficult to
tackle and it is particularly cumbersome to interpret and understand the results and to
select the optimum on the resulting Pareto set. Therefore, a single objective optimization
has been performed after the definition of the appropriate objective function obtained as a
linear combination of the three concurring goals, Fobjective in Equation (9). The weights in
the linear combination are set by the user to give more space to a selected goal if required.
In particular, ξ1 = 0.9, ξ2 = 0.2 and ξ3 = 0.6; the oxygen uniformity index is more important
for its influence in the regenerator to mix the exhaust gases for the pollutant reduction. The
cost function is introduced because of the injectors mass flow rate to control the flow in the
bypass duct. In this case, a genetic algorithm was used. After the generation of 58 starting
populations (Figure 17) the optimization converged to the optimal result represented in
Figure 18 and Table 5. The result is presented in a dimensionless form and corresponds to
the values of the objective functions of γO2 = 0.9446 and ṁbypass = 1374 [m3/h].

Table 5. Optimal point obtained with the optimization of the sum objective function.

Pros Mass Flow Rate
Non-Dimensional/Dimensional

Cons Mass Flow Rate
Non-Dimensional/Dimensional Objective Function

0.9036/155.05 [m3/h] 0.3999/36.90 [m3/h] 0.1618

The optimal point is again positioned toward high flow rates for the pros and for
medium-low flow rates for the cons.

Fobjective = (ξ1 (1/γO2) + ξ2

(
1/

.
mby−pass

)
+ ξ3Fcost) (9)
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8. Conclusions

A hybrid air staging system in a regenerative glass production plant has been designed
to reduce NOx emissions. The CFD simulations are used to understand the flow structure
and the performance of the baseline case. The paper has demonstrated the use of response
surfaces as a valuable approach to support the design and operation of the system to
optimize performance and minimize costs. The use of the surrogate models to predict the
mass flow rates through the air staging system or to identify the optimal operating condition
for the pros and cons air streams, can be considered an Artificial Intelligence tool that could
be embedded into a software module to support the decision-making process. A surrogated
model has been created to perform sensitivity analysis for the uncertainty quantification
and to develop an optimization process to support operation at minimum costs. The UQ
analysis has highlighted that the uncertainty related to the injected mass flow rates of the
air, marginally affects the final bypass duct mass flow rate. The optimization procedure
has identified the conditions for which the bypass mass flow rate and the uniformity of
the oxygen concentration are optimized and the operating cost (total air mass flow rate)
is minimized. This procedure has confirmed that the optimal conditions are reached for
high values of the pros injector mass flow rate (always around the maximum value of
160 [m3/h]) and medium-low values of cons injector mass flow rate, revealing that a high
level of external air contribution is necessary to exploit the air staging system. The use of the
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proposed approach in addition to the CFD reference modeling is very promising to support
not only the design phase, but also the operation of the system for high performance and
low energy (cost) consumption.
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Nomenclature

A Surface area
AR Aspect ratio: Length × height
k Turbulent kinetic energy
ṁ Mass flow rate
P Static pressure
t Time
T Temperature
u Velocity
y+ Non dimensional boundary layer distance from wall
γ Uniform index
ε Rate of dissipation of turbulent kinetic energy
ρ Density
τ Tensor of tangential and normal stress
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