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Abstract: Verification problems and numeric simulation of cavitation processes with the help of
LOGOS computational fluid dynamics software are presented in this article. The Volume of Fluid
method realized within LOGOS allowing numerical simulation of double-phase problems with a
free surface is used for numeric simulation. Cavitation is resolved by updating the method with the
account for interphase mass exchange; its condensation and evaporation parameters are calculated
with the use of the Schnerr–Sauer and Zwart–Gerber–Belamri cavitation models. Numerical sim-
ulation results of most actual test problems considering turbulence and having reliable numerical
data are presented, including simulations of flow around cylinders with flat and hemispherical end
surfaces for various cavitation numbers. Numerical simulation results are presented for the process
of rotation of a VP1304 screw propeller in the cavitational mode. Numerical experiments prove the
operability of the implemented method.

Keywords: cavitation; VOF method; LOGOS software package; multiple phases; cavitation bubble;
propeller; Schnerr–Sauer model; Zwart–Gerber–Belamri model

1. Introduction

One of the most important problems in liquid and gas mechanics is to determine the
medium non-equilibrium state and continuity resulting in a phenomenon called cavitation.
We face the problem of incipient cavitation and its further development, while considering
a wide range of issues for fluid flows. This is a critical problem in designing sub-water
and surface means of transportation, pumps, turbines, and walls of operating sections for
hydrodynamic tunnels. One of the important lines in designing hydraulic systems is to
meet the safety requirements and provide the effective performance of such systems. The
cavitation phenomena in hydraulic systems may be accompanied by a number of negative
effects, such as a shorter life of equipment due to erosion in separate components and in the
whole system, noise and vibration, an increasing loss of energy, and a decreasing efficiency
factor [1].

Cavitating flows are widely different in their nature. Researchers distinguish among
bubble cavitation, sheet cavitation, cavitation in tip eddy, etc. and, therefore, different
approaches and methods are required to study these phenomena. Moreover, cavitation
processes are characterized by a high speed, small dimensions, and a short duration of
cavity [2,3] and because of this it is a nontrivial task to predict them. Mathematical modeling
is a promising approach to studying the cavitation process specifics [4,5].

The modern methods for the simulation of flows with regard to cavitation are based
on solving the Navier–Stokes equations in combination with the use of the Volume of
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Fluid (VOF) method [6]. A key point of such approaches is cavitation simulation by
approximating a two-phase water–vapor system and solution of the transport equation for
one of the phases.

To take into account the turbulent behavior of a cavitating flow, the Reynolds-averaged
Navier–Stokes (RANS) equations are used [7]. The RANS approach is a common approach
for the numerical simulation of cavitation on screw propellers and it allows gaining an
acceptable accuracy of the solution [8]. To improve the accuracy of simulating propellers,
the laminar–turbulent transition model can be used [9,10]. The commonly used methods
include the cavitation models proposed by groups of researchers and based on account-
ing for the interphase interaction rate, such as the Schnerr–Sauer [2] and Zwart–Gerber–
Belamri [11] models. These models allow accounting for the transport processes, vapor
generation, and condensation processes, in which the two-phase system state is thermo-
dynamically non-equilibrium. This paper describes the application of the VOF method
implemented in the LOGOS software package, version 5 [12] in combination with the
Schnerr–Sauer (SS) and Zwart–Gerber–Belamri (ZGB) models of cavitation.

This paper presents the numerical simulation results for a turbulent flow around a
cylinder with a plane/semispherical end, which were obtained with different cavitation
numbers. The numerical simulation results for the propeller VP1304 under the cavitation
conditions are given.

2. A Computational Method for Cavitation Problems

Computations for a two-phase turbulent flow with cavitation are carried out by
solving the system of equations governing the motion of a quasi-homogeneous water–
vapor mixture with the VOF method. The cavitation model in such a case is a number of
equations describing the relationship between the interphase mass exchange parameters
and the flow parameters.

To describe a turbulent flow of a viscous liquid and gas, the Reynolds-averaged
Navier–Stokes equation system is used, which is supplemented within the VOF approach
with the transport equation for the volume fraction of one of the two phases (for example,
a vapor phase); the averaging symbols are omitted here [13]:

∂ρ
∂t + ∂

∂xi
(ρui) = 0,

∂ρui
∂t + ∂

∂xi

(
ρuiuj

)
= − ∂p

∂xi
+ ∂

∂xj

(
τij + τ

t
ij
)
+ ρgi,

∂ρvαv
∂t + ∂

∂xi
(ρvαvui) = Re − Rc,

(1)

where t is time; I and j are subscripts for the vector components in Cartesian coordinates, i,
j = {x, y, z}; ui is the velocity vector component, i = {x, y, z}; xi is the Cartesian coordinate
vector component, i = {x, y, z}; τij is the viscous stress tensor; τt

ij is the Reynolds stress
tensor; gi is the gravity acceleration vector component; p is the pressure; ρ is the resultant
density in the given case, which is an averaged density for the two phases: ρ = ρlαl + ρvαv;
α is a volume fraction (the subscript v stands for the vapor phase; the subscript l stands
for the liquid phase); and Re and Rc are the mass sources describing the generation and
breakdown of vapor inclusions.

The viscous stress tensor components are calculated according to the rheological
Newton law [13]:

τij = µ

(
∂ui
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+
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+

2
3

∂uk
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)
, (2)

where µ is dynamic viscosity and δij is Kronecker symbol.
The linear differential models of turbulence use the empirical relations for the turbulent

viscosity coefficient µt and the Boussinesq hypothesis for the stress tensor calculation:
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where k is kinetic energy of turbulence.
The system of Equation (1) is closed by the model of turbulence. In this paper the k—ω

SST model by Menter [7] is used. This is a well-behaved model for a wide class of problems,
including the study of cavitating flows. For the simulation of rotating propellers, the model
of turbulence is supplemented with the laminar–turbulent transition model (Gamma Re
Theta) [9] used to improve the numerical simulation accuracy for such problems [10].

One or another model is used to find the condensation and vaporization parameters
in the cavitation area transport. Among the most popular are the models based on the
simplified Rayleigh–Plesset equation, which describes the dynamics of a single bubble [14]:

dRB
dt

=

√
3
2

(
PB − P
ρl

)
(4)

where RB is the radius of a bubble, PB is the pressure on the bubble surface, and P is the
pressure at a distance to the bubble surface.

One of the most popular cavitation models is the SS model [2]. To determine the
evaporation and condensation parameters, Re and Rc, the Schnerr–Sauer model uses the
ratio between the volume fraction of vapor and the number of bubbles per unit volume:

αv =
n 4

3 πR3
B

1 + n 4
3 πR3

B
, (5)

where n is the number of bubbles per unit volume of vapor.
It is assumed that the volume fraction of vapor varies with time only due to a varying

bubble radius and, hence, we have

dαv

dt
= − d

dt
(1− αv) =

n4πR2
B(

1 + n 4
3 πR3

B

)2
dRB
dt

=
3

RB
αv(1− αv)

dRB
dt

. (6)

If the pressure p in the liquid surrounding a given bubble is higher than the pressure pB
of saturated vapors, the evaporation process goes and bubble radii RB increase; otherwise,
the condensation process takes place with a decreasing radius of bubbles. According to the
simplified Rayleigh–Plesset equation, the RB growth rate varies as

drB
dt

=


√

2
3 (

pB−p
ρl

), p ≤ pB

−
√

2
3 (

p−pB
ρl

), p > pB
. (7)

In accordance with Equations (6) and (7) we can write the transport equation for the
volume fraction of vapor:

∂αv

∂t
+ ui

∂αv

∂xi
=

ρ

ρlρv
(Re − Rc). (8)

Here, the following expressions are used for Re and Rc:

Re =
ρvρl
ρ

αv(1− αv)
3

RB

√
2
3
(

psat − p
ρl

), p < pB, (9)

Rc =
ρvρl
ρ

αv(1− αv)
3

RB

√
2
3
(

psat − p
ρl

), p > pB, (10)

where ρv and ρl are the vapor and liquid phase densities, respectively, which are taken as
constant.
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The bubble radius is calculated according to the formula

RB = 3

√
3

4πn
α

1− α
, (11)

One more well-known model of cavitation based on the simplified Rayleigh–Plesset
equation is the ZGB model [11].

The authors consider a varying volume of a vapor bubble. For n bubbles the vapor
volume fraction per unit volume is α = nVB = n 4

3πR3
B, and the full gaseous phase mass

variation in a unit volume corresponding to the interface mass transport describes the
evaporation and condensation in the following way:

Re = nρv
dVB
dt

=
3αρv
RB

√
2
3
(

pB − p
ρl

), p < pB, (12)

Rc = nρv
dVB
dt

=
3αρv
RB

√
2
3
(

p− pB
ρl

), p > pB. (13)

The authors suggest a modification to the model accounting for the volume fraction of
vaporization nuclei and introducing the empirical coefficients Fvap and Fcond. As a result,
expressions for the evaporation and condensation sources take the form

Re = Fvap
3αnuc(1− α)ρv

RB

√
2
3
(

pB − p
ρl

), p < pB, (14)

Rc = Fcond
3αρv
RB

√
2
3
(

p− pB
ρl

), p > pB. (15)

The following empirical constants are proposed within the model presented: the
coefficient responsible for vaporization and condensation, Fvap = 50, Fcond = 0.01, bubble
radius, and volume fraction of vaporization nuclei [11].

To account for gravitational forces, an algorithm based on the correction to bulk forces
is used [12]. It provides the absence of oscillations caused by the non-collocated location of
unknown values on any type of meshes.

The mathematical model is supplemented by boundary conditions. The following
boundary conditions are used: an incoming flow boundary:

→
u =

→
u inl ,

→
α =

→
α inl , ∂P

∂n = 0; a

constant pressure at the output: P = Ppres, ∂
→
u

∂n = 0, ∂
→
α

∂n = 0; a plane of symmetry: ∂P
∂n = 0,

∂
→
u

∂n = 0, ∂
→
α

∂n = 0; the no-slip condition applied on the wall:
→
u = 0,

→
α = 0, ∂P

∂n = 0.
A rotating body is simulated using the method of explicit rotation due to the compu-

tational mesh motion together with the propeller boundaries. In such an approach, the
region near the propeller, where the rotation takes place, is selected, while the remaining
region remains immobile. In the region of rotation, the mesh motion is accounted for using
the following relation:

d∗ϕ
dt

=
∂ϕ

∂t
+ νi

∂ϕ

∂xi
(16)

where d∗ϕ
dt is the substantial derivative of portable scalar ϕ relative to a moving system of

coordinates; νi is the mesh motion velocity vector. The GGI method [15] is used for making
consistent the solutions on the adjacent boundaries of the arbitrary unstructured meshes
of the two regions; the method is based on the conservation interpolation of flows across
the inconsistent mesh interface. The algorithm takes into account the relationship of cells
on the adjacent boundaries of regions without modifications to the original mesh via the
set of generated virtual faces by creating additional terms in the system of linear algebraic
equations (SLAEs) in each computation step.
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The discretization of Equation (1) is performed using the method of finite volumes
on an unstructured computational mesh. The SIMPLE algorithm [12,13,16] is used for the
numerical solution of Equation (1): the velocity and pressure fields are found using the
predictor–corrector scheme with the formulation of SLAEs. The methods described above
have been implemented in the LOGOS software package [17–19], which is a Russian CAE
system for the simulation of coupled 3D problems of convective heat-and-mass transport,
aerodynamics, hydrodynamics, and strength analysis on parallel supercomputers.

3. Simulation of a Flow around a Cylindrical Body with a Plane/Semispherical End

The problems of turbulent liquid flows around cylinders having a plane or a semi-
spherical end are considered. These problems are commonly used to study the cavitation
phenomenon.

Many researchers study the cavitation development in flows around the bodies of
such a shape (see, for example, [20–22]). A cavity develops in the rarefaction area behind
the cylinder and finding the cavity length, position, and parameters is a difficult tasks.

In the present study, the turbulent flow conditions with Reynolds number Re = 136,000
around a cylinder of diameter d = 0.02 m both for the plane and semispherical ends of the
cylinder is considered. The characteristic features of turbulence are resolved using the SST
model of linear eddy viscosity, and the SS and ZGB models of cavitation are used.

Owing to the flow symmetry, the computational domain is a sector with a 3◦ angle of
rotation. The computational domain size excludes a strong effect of the external boundary
conditions and is not less than five diameters of the cylinder in all directions beginning
from the origin of coordinates.

Block-type mesh models with the mesh refinement near the body were constructed.
Their general view is shown in Figure 1.
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Figure 1. A mesh model: (a) a cylinder with a plane end; (b) a cylinder with a semispherical end.

Gradually refined meshes were built to study the mesh convergence of the solution
and select optimal mesh models according to Table 1 below.

Boundary conditions are selected in the following way: the symmetry conditions are
imposed on the lateral boundaries, the input velocity of a homogeneous flow directed
along the body axis is given at the input, and the pressure corresponding to the cavitation
number of interest is given at the output. The symmetry condition is imposed on the upper
boundary, and the cylinder surface is a no-slip rigid wall.



Fluids 2023, 8, 104 6 of 13

Table 1. The mesh model parameters.

Meshes with Plane End: Nx Ny Nz

mesh 1 300 200 2
mesh 2 450 350 4
mesh 3 600 450 6

Meshes with semispherical end:

mesh 1 100 60 2
mesh 2 200 120 4
mesh 3 400 240 6

The commonly used physical properties of water and vapor are taken. The dynamic
viscosity and density values were µ = 1.0 × 10−3 Pa·s, ρ = 998.2 kg/m3 for water and
µ = 1.34 × 10−5 Pa·s, ρ = 0.5542 kg/m3 for vapor. The cavitation number served as an
additional parameter for cavitating flows. In the problems of the flow around a body of a
finite thickness, the cavitation number, σ, is defined as

σ =
(P− Psat)

ρlU2
in/2

, (17)

where P is the medium pressure; Psat is the saturation pressure; ρ is the medium density;
Uin is the inflow rate, l is a typical size. For the mesh convergence assessment problems,
the cavitation number was σ = 0.3 with P = 9864 Pa and Psat = 2736 Pa.

Figure 2 illustrates the results of studying the mesh convergence. The curves of the
pressure coefficient vs dimensionless distance x/d are shown.
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Figure 2. The pressure coefficient distribution over the cylinder length: (a) A cylinder with a plane
end; (b) A cylinder with a semispherical end.

One can see from the plots above that the mesh refinement provides the solution
convergence to the solution obtained on a finer mesh, while the pressure coefficient value
decreases and the difference becomes noticeable in the case of the flow around the cylinder
with plane end. The difference in pressure maxima between the computations on meshes 2
and 3 does not exceed 2%. In the further study, mesh 2 was used for cylinders with plane
and spherical ends.

In order to estimate the cavitation area size with various cavitation numbers for flows
around cylindrical bodies the SS and ZGB models of cavitation were used in computations.
The following parameters were taken for the cavitation models: the number of bubbles
equal to n = 10× 1013 and radius of bubbles R = 10× 10−6 m. The cavitation numbers were
0.3 and 0.5 in flows around the cylinder with plane end and 0.4 and 0.5 in flows around the
cylinder with semispherical end.



Fluids 2023, 8, 104 7 of 13

Figure 3 shows the vapor volume fraction distribution for cylindrical bodies, the
cavitation number is σ = 0.3.
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Figure 3. The vapor volume fraction distribution: (a) a cylinder with a plane end; (b) a cylinder with
a semispherical end.

The cavitation cavity shapes, sizes, and lengths in flows around cylindrical bodies
with various ends are very much different. For cylinders with semispherical ends the cavity
size is significantly less than that for the cylinder with plane end and the flow recirculation
area is observed behind the cavitation cavity. Therefore, in the case of a bluff-shaped end
of the cylindrical body, the cavitating flows around such bodies have a noticeably larger
cavitation area.

Moreover, of a particular interest is the issue of the discretization scheme effect on
the pressure distribution and, consequently, the cavitation area dimensions. The figures
below show the pressure coefficient distribution with different cavitation numbers for a
cylinder with a semispherical end (Figure 4) and a plane end (Figure 5) in comparison with
the available data of experiments. The results of using the first-order upwind scheme UD
(Upwind Differences) and the second-order scheme LUD (Linear Upwind Differences) with
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linear interpolation [23] are compared and, also, the cavitation model effect on the pressure
coefficient distribution is shown.

Fluids 2023, 8, x FOR PEER REVIEW 9 of 14 
 

 
Figure 4. The pressure coefficient distribution over the length of the cylinder with semispherical 
end. 

 
Figure 5. The pressure coefficient distribution over the length of the cylinder with plane end. 

4. Simulation of a Rotating Propeller VP 1304 
To study the cavitation phenomenon, a series of cavitation tests with a VP1304 

propeller in a cavitation tunnel were performed [8,24]. During these experimental inves-
tigations the cavitating flow patterns and the cavitation area positions on the blades were 
recorded and the propeller performance characteristics (forces, moments, and the effi-
ciency coefficient) were found. 

Figure 4. The pressure coefficient distribution over the length of the cylinder with semispherical end.

Fluids 2023, 8, x FOR PEER REVIEW 9 of 14 
 

 

Figure 4. The pressure coefficient distribution over the length of the cylinder with semispherical 

end. 

 

Figure 5. The pressure coefficient distribution over the length of the cylinder with plane end. 

4. Simulation of a Rotating Propeller VP 1304 

To study the cavitation phenomenon, a series of cavitation tests with a VP1304 

propeller in a cavitation tunnel were performed [8,24]. During these experimental 

investigations the cavitating flow patterns and the cavitation area positions on the blades 

were recorded and the propeller performance characteristics (forces, moments, and the 

efficiency coefficient) were found. 

Figure 5. The pressure coefficient distribution over the length of the cylinder with plane end.

In the case of the flow around the cylinder with a semispherical end, the effect of both
the convective flow discretization scheme and the applied cavitation model is clearly seen:
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the ZGB model of cavitation overestimates the pressure coefficient value with the use of the
upwind scheme, while a higher order of accuracy decreases its value and, ultimately, leads
to the corresponding experimental value. In the flow around the cylinder with a plane end,
the significant effect of the convective flow discretization scheme is observed; as for the
cylinder with a semispherical end, the LUD scheme application leads to a lower maximum
of the pressure coefficient, and the results obtained with various models of cavitation are in
good agreement. The simulation of flows around cylinders demonstrates the displacement
of the calculated pressure coefficient profiles relative to the experimental data and, thereby,
shows the underestimated dimensions of the cavitation area. The cavitation number effect
is observed in the simulation of flows around cylinders with different ends. A lower
cavitation number leads to a significantly larger cavitation area and this result is confirmed
both numerically and experimentally.

4. Simulation of a Rotating Propeller VP 1304

To study the cavitation phenomenon, a series of cavitation tests with a VP1304 pro-
peller in a cavitation tunnel were performed [8,24]. During these experimental investi-
gations the cavitating flow patterns and the cavitation area positions on the blades were
recorded and the propeller performance characteristics (forces, moments, and the efficiency
coefficient) were found.

The problem of a steady-state uniform liquid flow around a rotating propeller VP1304
with five blades is considered. A model propeller of 0.25 m in diameter is fixed at the end
of the propeller shaft.

A computational mesh is generated with the cutoff method with detailing the mesh
cells near the propeller blades, along the swirling flow motion direction, and in the bound-
ary layer. The mesh model consists of two meshes generated independently of each other.
The first of them is a cylindrical region around the propeller; the second mesh is a cylindrical
region with the shaft on the central axis. The cell size in the rotating region is 4 × 10−3 m.
Figure 6 shows the mesh model cross-section. The mesh includes 2.8 mln cells in total.
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Figure 6. A mesh model near blades of VP1304 propeller.

The propeller rotation is simulated using the interface between rotating and static
regions of the computational domain. A rotating region that surrounds the propeller has
the form of a cylindrical surface with the shaft as its central axis.

An incoming flow velocity is given on the input boundary and a pressure is given
on the output boundary. The boundaries of the propeller are no-slip rigid walls. The
symmetry condition is imposed on the lateral boundaries of the external region. The
boundary condition “Interface” is imposed on the joining boundaries of the rotating and
static regions.
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To calculate the propeller performance curves, a series of parametric computations
was carried out with the propeller rotation frequency n = 25 rev/s. The advance coefficient,
J, in these computations varied within the range from 1.09 to 1.408 and was used to calculate
the inflow velocity:

Vm = J·n·Dm. (18)

The following physical properties of water and vapor were taken for these com-
putations: dynamic viscosity µ = 0.00114 Pa·s and density ρ = 1000 kg/m3 for water;
µ = 1.2676 × 10−5 Pa·s and ρ = 0.5953 kg/m3 for vapor.

For cavitating flows, the cavitation number was used as an additional governing
parameter. The cavitation number, σ, is defined as (17).

The k-ω SST model of turbulence along with the laminar–turbulent transition model
(Gamma Re Theta) was used to calculate the turbulent viscosity. The second-order upwind
scheme LUD was used for the discretization of convective terms.

Table 2 presents the parameters used in tests with cavitating flows around the VP1304
propeller. The saturated vapor pressure calculated using the water temperature was equal
to 3540 Pa.

Table 2. The test modes.

Test Mode 1 2 3

Pressure in tunnel 43,071 31,353 42,603
Advance coefficient of propeller 1.09 1.269 1.408

Cavitation number 2.024 1.424 2.0

The propeller thrust and moment values were measured in these experiments and
then used to calculate dimensionless characteristics, such as the thrust constant and
the propeller moment, as well as the efficiency coefficient, i.e., the so called “propeller
performance curves”.

The performance curves are the functions in which the thrust coefficient, moment
coefficient, and efficiency of the propeller are put into correspondence to each value of the
propeller advance. These coefficients are calculated according to the following formulas:

Kt =
t

ρn2D4
P

, Kq =
q

ρn2D5
P

, η0 =
J

2π
· Kt

Kq
, (19)

where Kt is the thrust coefficient, Kq is the moment coefficient, η0 is the propeller efficiency,
ρ is a mean density of flow, n is the number of revolutions, and Dp is the propeller diameter.

Figure 7 shows the plots of the simulation results obtained with the SS and ZGB
models of cavitation. For test mode 1, the discrepancy in the values of coefficients Kq
and Kt is not higher than 1.8% for both cavitation models. For test mode 2, a discrepancy
maximum is observed for Kq: 5.6% for the SS model and 3.5% for the ZGB model. For
test mode 3, discrepancy maxima are observed for the SS model: 5.2% for Kq and 4.4%
for Kt. In the case of the ZGB model of cavitation, a maximum error was 5.3% for the
thrust coefficient (Kt). The calculated Kt values for the advance coefficients close to 1 are
almost the same as in experiments, while with larger values of the advance coefficient
the thrust coefficient values are below the experimental ones. The numerical simulation
results for the propeller VP1304 were obtained by M. Yusvika, A. Fajri, et al. [8]. The error
in the calculated coefficients for the performance curves is below 6.4% with the use of the
Kunz model of cavitation in combination with the SST model of turbulence. A maximum
deviation is observed in the torque coefficient. The maximum deviation in the numerical
simulation with the LOGOS software package does not exceed 5.6% for this coefficient.

Figure 8 shows the shapes of the cavitation areas for each test mode obtained with the
SS and ZGB models of cavitation in comparison with the experimentally observed patterns.
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Figure 8. Volume fractions of cavitation vapor above 50%: (a) Test mode 1; (b) Test mode 2; (c) Test
mode 3.

As we can see in the figures above, in all test modes the cavitation cloud shape agrees
with the experimental pattern. Similarly to the experiment, for the first two modes the
computation predicts the generation of the two cavitation areas: one near the propeller
blade root and another along the front edge of the blade. For the second mode with a
smaller cavitation number the cavitation cloud is more pronounced, both in the experiment
and according to the numerical simulation results. The results of using various cavitation
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models agree in most cases; the cavitation cloud obtained with the ZGB model almost
always has a higher volume. For test mode 3, a difference in the experimental and calculated
fields is observed: when comparing the experimental pattern of cavitation vapor on the
driving face of the blade with the calculated result, there is no detached flow at the blade
end in computations with both the SS and ZGB models.

5. Conclusions

The paper presents a physical and mathematical model and describes the SS and ZGB
models of cavitation implemented in the LOGOS software package on the basis of the VOF
method. The method was validated on the test problems, for which reliable data from
experiments are available. The problems of flows around cylindrical bodies with various
shapes of the cylinder end and the problem of a flow around the model propeller VP1304
rotating under the developed cavitation conditions are considered. The effect of a higher-
order scheme on the numerical simulation results is studied, and the SS and ZGB models
of cavitation are compared. The dynamic characteristics of the propeller obtained with
various models of cavitation are given in comparison with the experimental data, and the
difference in their values does not exceed 5.6%. The numerical simulation with the SS and
ZGB models gives similar results; however, the ZGB model allows us to obtain propeller
characteristics that are in better agreement with the experimental data. The distribution
fields are given for the isosurface of the vapor volume fraction for various flow conditions.
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