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Abstract: In computations of unsteady flow problems by the arbitrary Lagrangian–Eulerian (ALE)
method, the introduction of the grid velocity in the transport terms of the governing equations is
not a sufficient condition for conservativeness if topology changes in the dynamic mesh are present
and the number of mesh cells changes. We discuss an extension to second-order time differencing
schemes (Implicit Euler and Crank–Nicolson) in the finite volume framework, to achieve second-
order time-accuracy of the solution. Numerical experiments are given to illustrate the effectiveness of
the presented method.
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1. Introduction

Many interesting scientific and engineering problems in computational fluid dynamics
(CFD) involve the coupling of high-speed fluid flows with body-fitted meshes with moving
and possibly deforming boundaries [1–4]. With large displacements, the flow problem is
often formulated in an arbitrary Lagrangian–Eulerian (ALE) scheme [5–8] and is discretized
on a moving grid. An ALE integrator is constructed by combining the same time integrator
adopted in static grids together with a procedure to include the velocity of the moving grid
points. In finite volume (FV) Eulerian solvers based on the co-located grid arrangement,
the transposition in time-varying coordinates of the conservation equations is achieved by
substituting all advection velocities by their relative (to grid movement) counterparts [9].
Despite that the ALE method is applied to problems with prescribed boundary motion
and large deformations [10–13], it is well known that it does not necessarily preserve the
order of time-accuracy of its fixed counterpart. To make the rezone calculation conservative
of mass, momentum, and energy, the ALE method requires that an additional constraint
is fulfilled, namely the geometric conservation law (GCL). This was first discovered by
Trulio [5,6], who applied it to solve one-dimensional problems by a finite difference method.
In [14], the GCL was applied to the finite volume (FV) method, while its application
in arbitrarily moving geometries was presented in [15]. A mathematical analysis has
demonstrated the role of the GCL for its time–space accuracy order [16,17], while in [18],
it is proved that the discrete GCL (DGCL) is a sufficient condition for some schemes to
satisfy the maximum principle for passive species. The failure to satisfy the discretized
geometric conservation Law (DGCL) on moving meshes introduces errors in the form
of artificial mass sources [14]. In [19,20], it is shown that satisfaction of the DGCL is a
necessary condition for any temporal discretization scheme to preserve on moving grids
the non-linear stability properties of its fixed-grid counterpart but also that satisfaction of
the DGCL is not a sufficient condition for a temporal discretization scheme to preserve its
order of time-accuracy on moving grids, as established on fixed grids [21]. When mesh
topology modifications are combined with ALE schemes, the fulfillment of the GCL is

Fluids 2023, 8, 177. https://doi.org/10.3390/fluids8060177 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids8060177
https://doi.org/10.3390/fluids8060177
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0002-5017-1727
https://orcid.org/0000-0002-3888-1451
https://doi.org/10.3390/fluids8060177
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids8060177?type=check_update&version=2


Fluids 2023, 8, 177 2 of 23

not trivial: grid points are added or removed, and the mesh resolution and connectivity
dynamically change to accommodate large prescribed boundary deformations (re-zone
phase). Additionally, the solution interpolation (remap) must be conservative and accurate
and must preserve the monotonicity of the solution. Topology changes may involve the
addition/deletion of cell faces without affecting the number of the control volumes (CV)
(as it happens when different mesh regions are attached/detached through non-conformal
interfaces [22]), or it can also modify the number of CVs, as in adaptive methods, namely
dynamic cell layering [13,23], adaptive mesh refinement (AMR) and remeshing. In a broad
sense, the simplest example of topology change is remeshing [24], which consists of a remap
of the fluid-dynamic solution onto a different mesh at prescribed times, when the mesh
quality is assumed to become critical. This approach is simple to perform, because the
solver solution is decoupled by the mesh generation, which is usually carried out during
the pre-processing; it may become quite inconvenient if several grids must be generated
to prevent invalid elements from appearing, because it can be very costly. In general, any
local re-meshing or error-driven adaptive refinement may be considered as an example of
topological change, which implies recomputing the mesh connectivity. The overhead due
to topology changes is strictly implementation-dependent and it is never negligible. When
adaptive methods are applied on deforming grids, the solution transfer between meshes
with different topologies may be non-trivial.

The extension of ALE schemes to variable topology grids was investigated in [25,26],
where the edge-swapping techniques were exploited to modify the grid without changing
the number of grid nodes. In [3,27,28], methods based on explicit interpolation of the solu-
tion from the old to the new grid are proposed for ALE schemes used with grid connectivity
changes. This may originate problems in enforcing conservativeness and monotonicity
and in complicating the implementation of multi-step time integration algorithms [29].
An alternative strategy consists of interpreting the insertion or deletion of a new element
as a series of fictitious continuous deformations of the finite volumes associated with the
nodes involved in the modification. When applied to three-dimensional problems in the
Finite Volume framework, this approach was often labeled as inflation layer meshing, as
in [10,12]. This is possible to achieve by a repair step after the re-zone phase where mass
is re-distributed between neighboring cells to ensure local bound preservation [30,31] or,
if first order time-accurate methods are used, by considering the velocity from the newly
added faces to sweep new volumes during the re-zone phase [31–34]. No studies are avail-
able about the fulfillment of the DGCL with the ALE scheme when second time-accurate
implicit discretization methods are applied with topology changes that involve a variation
in the number of cells in the dynamic grid [35].

1.1. Motivation of This Research

The research described in this paper is motivated by the need to improve the temporal
accuracy of the solution in simulations where moving meshes are combined with dynamic
addition or deletion of cell volumes, as it happens when adaptive mesh refinement (AMR)
or dynamic cell layering [13] are triggered. Examples of applications to CFD cases are
the calculation of the aerodynamics of moving wings, the calculation of moving pistons
in rapid compressing machines, or the simulation of hull hydrodynamics. Increasing the
temporal accuracy is extremely important in cases where mixing is present, as small errors
in the solution will propagate during the simulation.

1.2. Goals and Highlights

The goal of the present work is to develop an efficient methodology to achieve second-
order time accuracy when new volumes are added or deleted into a dynamic grid. In
particular, the second-order backward Euler (SOBE) and the Crank–Nicolson (CN) schemes
were considered. Numerical analysis was performed on one-dimensional cases, namely:
(a) the uniformly accelerated piston, for which an analytical solution is available [36] and
(b) a three-dimensional cavity case. Comparisons of the proposed work with other mesh
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moving techniques that do not involve topology changes were performed to illustrate
the accuracy and conservativeness of the methodology. The verification of the method is
demonstrated on a one-dimensional test case for which the analytical solution is available
and on a three-dimensional test case where the addition and the removal of cell layers is
performed over one preferred direction in confined regions of the mesh. The polyhedral
mesh support makes topological changes easier to handle, because the solver is always
presented with a valid mesh [13]. The code was implemented as an open-source C++ code
in the OpenFOAM® technology.

1.3. Paper Structure

The remainder of this paper is organized as follows. In Section 2, the formulation
of the governing equations in a dynamic grid is reviewed, followed by an explanation of
their spatial discretization in Section 3. In Section 4, the handling of topology changes in
dynamics grids for ALE schemes is explained, followed by the discretization of the temporal
derivatives in Section 5. The focus is put on topology changes that involve a change in the
total number of cells in the grid, following a two-step procedure to decouple the topology
change from the mesh movement. In order to use second-order temporal schemes in the
presence of topology changes, an equivalent ghost state is introduced in Section 6, applying
it to the SOBE and CN schemes in Sections 6.1 and 6.2, respectively. Some clarifications
regarding its application to adaptive mesh refinement (AMR) are introduced in Section 6.3.
To validate the proposed methodology, two numerical experiments are computed. First,
a one-dimensional uniformly accelerated piston case is presented in Section 7, where the
solutions are compared to the analytical solution and to a different mesh motion strategy
without topology changes. Then, a three-dimensional cavity case is presented in Section 8,
where a region of the mesh was moved periodically inside the domain. Conclusions are
finally drawn in Section 9. The numerical tool employed in the tests is included in a set of
dynamic C++ libraries that were used in combination with the OpenFOAM® FV code as
released by the OpenFOAM Foundation in the development version (commit 9ea6e2) [37].

2. Governing Equations for Fluid Transport in Time-Varying Domains

In the ALE framework, the conservation equation in integral form for a generic variable
φ over a time-changing domain Ω̃(t) ⊂ R3 reads:

∂

∂t

∫
Ω̃(t)

ρφ dV +
∫

∂Ω̃(t)
ρ[(U −Ub) · n]φ dS−

∫
∂Ω̃(t)

Γφ∇φ · n dS =
∫

Ω̃(t)
sφ dV (1)

where ρ is the density, U is the flow velocity, Ub is the velocity of the cell faces, Γφ is
the diffusion coefficient and sφ is any source/sink term of φ. From (1), continuity and
momentum equations of a compressible flow can be obtained by replacing φ = 1 and
φ = U, respectively:

∂

∂t

∫
Ω̃(t)

ρ dV +
∫

∂Ω̃(t)
ρ(U −Ub) · n dS = 0 (2)

∂

∂t

∫
Ω̃(t)

ρU dV +
∫

∂Ω̃(t)
ρU[(U −Ub) · n]dS−

∫
Ω̃(t)
∇ · ødV = −

∫
Ω̃(t)
∇p dV +

∫
Ω̃(t)

F dV (3)

with p = ρ/RT as the thermodynamic pressure, ø as the resultant surface stress tensor and
F as the resultant external volumetric forces. System closure is achieved by the so-called
constitutive laws, whose formulation depends on the properties of the continuous medium,
and, for compressible flows, by the energy equation.
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3. Variable Positioning and Spatial Discretization

In this work, the finite volume method (FVM) is used, calculating the value of the
intensive variables in the center of the cells with a collocated variable arrangement. Spatial
discretization of the primary variables was computed as in the following:

- Diffusive term (Laplacian) of a quantity Ψ, e.g., ∇ · (Γ∇Ψ):∫
V
∇ · (Γ∇Ψ) dV =

∫
S
(Γ∇Ψ) f · ndS '∑

f
Γ f S f · (∇Ψ) f = ∑

f
Γ f |S f |∇nΨ f (4)

where ∇nΨ f is the surface normal gradient of Ψ. The subscript f in (4) indicates the
cell-to-face interpolated quantities. Linear cell-to-face interpolation was applied: for
irregular polyhedral meshes, interpolation is generalized by defining a weight w for
each face:

Ψ f = wΨP + (1− w)ΨN (5)

where Ψ f is the face-interpolated quantity. Subscripts P and N indicate values at the
centers of two neighboring cells. The surface gradient of a quantity Ψ is decomposed
into an orthogonal part and a (non-orthogonal) correction:

∇nΨn
f = α(Ψn

P −Ψn
N)︸ ︷︷ ︸

implicit

+ (n f − αd) · (∇nΨ)n−1
f︸ ︷︷ ︸

correction (explicit)

(6)

where α = 1
n f ·d and∇nΨ f are the uncorrected normal gradient from the two values of

the two cells sharing the face. The explicit part is computed from (5) as:

∇Ψn−1
f = w∇Ψn−1

P + (1− w)Ψn−1
N (7)

where w = 0.5 in this work; the normal gradient is computed as:

(∇nΨ)n−1
f = ∇Ψn−1

f · nn−1
f . (8)

- Gradient terms: these were discretized by the Green–Gauss theorem:

∇ΨP =
1

VP
∑

f
Ψ f S f (9)

where VP is the volume of the polyhedral cell P, and S f is the surface vector of the f-th
face of the cell.

- Non-linear terms (convective terms): the convective term in the momentum balance
is linearized with the Picard approach: the mass flux φ is treated explicitly, and the
non-linear term is approximated by:

φuj,rel ' φn−1un
j − ϕn−1

M,moving (10)

the index n− 1 in (10) denotes that the values are taken from the result of the previous
time step. A technique for momentum-based interpolation of mass fluxes on cell
faces [38] is used to mimic staggered-grid discretization to prevent checkerboard
effects. Using the divergence theorem, the convective terms are rewritten as:∫

V
∇ · (uu) '∑

f
φ f (u f − ub) (11)
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The velocity u f is interpolated with the same approach presented in (5), while a
second-order central differencing scheme is used for the fluxes.

- Conservative remap: in a dynamic grid, the position of the cell centers changes from
one time step to the next. Linear interpolation is used for mapping cell-centered
quantities from the old to the new mesh, to favor the convergence rate of the solver:

φ(xn, tn) = φ(xn−1, tn−1) +∇φ(xn−1, tn−1) · (xn − xn−1) (12)

However, remapping of the fields defined over the faces of the CVs cannot be applied
to extensive quantities, as it strongly influences the conservation (and the convergence
rate) of the p-U algorithm. To ensure conservation, fields in the CV faces are interpo-
lated from the values in the CV centers, and a Helmholtz-like equation is then solved
to ensure that the remapped state is fully conservative.

4. Finite Volume ALE Scheme for Dynamic Meshes with Topology Changes

In a co-located variable arrangement, all the primitive variables are assigned to the
cell centroids, while face-centered variables are obtained by interpolation, denoted by the
operator J·K f . The mass fluxes, surface integrals from (3), are evaluated by either lower- or
higher-order interpolation of velocity components at the CV faces. However, in order to
avoid decoupling of pressure and velocity when using co-located variable arrangement,
the interpolated pressure contribution to the cell face velocity is corrected [38]:

∂

∂t
ρ φV + ∑

f
ρ f φ f

(
ϕ f − ϕM, f

)
−∑

f
Γφ∇φ f = sφV (13)

having defined the cell face flux ϕ f :

ϕ f = JUK f · n f S f (14)

where S f is the face area and n f its normal unity vector. ϕM, f is the corresponding mesh
flux due to point motion (see [9]), and it is expressed as:

ϕM, f = Ub, f · n f S f (15)

This represents the flux induced by the movement of the CV faces. If a face moves with
the same velocity than the fluid, the mass flux through the CV face will be zero. If this is
true for all the CV faces, the same fluid remains inside the CV, and it becomes a control
mass: a Lagrangian description of fluid motion is achieved. On the other hand, if a CV
face does not move, its mesh flux will be zero, and (1) simplifies to the traditional equation
for static domains. Solving the Navier–Stokes equations in moving boundary problems is
not sufficient to ensure the correct solution of the problem. If the mesh changes with time,
an additional equation has to be solved to ensure that the numerical procedure followed
to account for the movement of the mesh does not introduce any error, typically in the
form of spurious mass sources. This equation is called the geometric conservation law
(GCL) and establishes a relationship between the time derivative of the cell volumes and
the calculation of the fluxes due to CV face motion:

d
dt

∫
Ω̃(t)

dV −
∫

S
Ub · dS = 0 (16)
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The GCL equation can be seen as a conservation equation for the cell volume, stating
that the variation in the volume of a cell must be equal to the sum of the volume swept by
each CV face. It is equivalent to a conservation law of a fluid with uniform velocity and, in
continuous form, does not add any constrain to the problem as it is implicitly satisfied. If
the semi-discrete counterpart (DGCL) of (16) is considered, it follows:

dV
dt

∣∣∣∣t=n

t=n−1
−∑

f
ϕM, f = 0 (17)

a restriction on the numerical schemes arises. More concretely, the calculation of mesh
fluxes is defined by the temporal discretization. In problems formulated with the arbitrary
Lagrangian–Eulerian framework, the velocity of the mesh points can be imposed inde-
pendently of the fluid velocity. If the displacement of the points becomes too large, the
mesh may quickly become distorted and produce some invalid elements in the mesh. A
possible solution for this case would be to change the grid topology, changing the number
of entities of the grid (points, faces or cells) or the connectivity between them. A discussion
on different topology changes, including connectivity variations, sliding interfaces, element
redefinition, can be found in [13,23,34]. In the FV formulation, the interest falls on how the
topology change affects the calculation of volume integrals and face fluxes. In the present
work, only the topological changes involving a variation in the number of grid cells are
considered, because of their connection to the time discretization. In the following, Ω will
represent the discrete approximation of the domain volume Ω̃(t), i.e., the subdivision of
Ω̃(t) in a finite number of polyhedral, non-overlapping control volumes (CV) or cells Vi
such that {Vi} = Ω. Each polyhedral CV is delimited by an arbitrary number of faces
{ f j} = ∂Vi, so that adjacent cells share the same faces. The shorthand Ωn

k will be used to
identify the discretization Ω, whose topology is k, at time tn. The value of a quantity φ in
the cell i belonging to the discretization Ωn

k will be expressed as φn
i,k. If the topology change

involves a variation in the number of grid cells, a remapping has to be made before solving
the governing equations in the updated mesh. In a co-located variable arrangement, the
commonly applied mesh-to-mesh mapping of intensive variables between Ωn

k−1 and Ωn
k is

no longer trivial, as the one-to-one correspondence of cells is missing.
To perform a topology change in a dynamic grid, a two-step procedure was followed,

decoupling the topology change from the mesh motion. First, the topology change is
performed on a static grid (Ωn−1

k−1 → Ωn−1
k ), mapping the solution from the cell centers of

the initial topology to the new ones (φn−1
i,k−1 → φn−1

j,k ). Then, the value of the fluxes in the
faces are computed by interpolation of the values in the cell centers, and conservativeness
is restored by solving a Helmholtz-like equation. Similarly, an equivalent state is obtained:
all the physical fields at tn−1 are now expressed in a grid with a different topology. From
this equivalent state, the mesh can be moved following the traditional procedure, as no
topology change is involved (Ωn−1

k → Ωn
k ):

Ωn−1
k−1 → Ωn

k = (Ωn−1
k−1 → Ωn−1

k )︸ ︷︷ ︸
topology change

+ (Ωn−1
k → Ωn

k )︸ ︷︷ ︸
mesh motion

(18)

This procedure is illustrated in Figure 1 for the particular case of dynamic cell layering,
even though the methodology applies to any cell shape, mesh motion or topology change.
In Figure 1a, cell volumes are removed while the mesh is moved; in Figure 1b, cell volumes
are added during motion in the time interval ∆t = tn − tn−1.
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(a) Volume removal

(b) Volume addition
Figure 1. Two-step execution of dynamic cell layering: (a) cell compression is applied by the upper
moving boundary, and removal of cell layers is triggered at tn−1 → tn; (b) the upper boundary
expands the neighboring cell, and the layer addition at tn−1 → tn is triggered. Ωn

k is the FV
discretization of the domain, n is the global temporal index and k the index referring to the mesh
topology.

5. Temporal Discretization with Topology Changes

The procedure described in Section 4 is well established in CFD solvers supporting
mesh motion and topology changes [10,13,35,37], when the first-order implicit Euler scheme
is applied for time differencing in a generic flow transport equation:

∂

∂t

∫
Ṽ

φ dV ≈
Vn

k φn
k −Vn−1

k−1 φn−1
k−1

∆t
(19)

The transported variables φn−1
k−1 across the topology change must be computed to

ensure conservation with the ALE scheme. This requires particular attention as new
volumes to the mesh are added (transition Ωn−1

k−1 → Ωn−1
k in Figure 1b). This can be

achieved in two ways:

- With cell inflation: it is assumed that the cell faces at tn−1 are duplicated to generate
new zero-volume cells, which are then inflated to form the new cells at Ωn−1

k :

Vn−1
k = 0 (20)

and the local topology change (volume addition and mesh motion) is accounted for
by the mesh fluxes of the newly added faces from position Ωn−1

k → Ωn
k , which are

computed as:

∑
f

ϕM, fi
=

∆x fi
· S f

∆t
(21)

where ∆x fi
is the mesh flux corresponding to the volume swept by each face from

state Ωn−1
k to state Ωn

k .
- Without cell inflation: if the newly added faces are assumed to be inserted into their

final positions at state Ωn−1
k , their mesh fluxes will be zero:

ϕM, fi
= 0 (22)

and the local topology change will be accounted for in the equation by a conservative
remapping of the cell quantities between two different grids. The same reasoning can
be applied if a static face is being removed.
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After this step, mesh fluxes are computed between Ωn−1
k → Ωn

k , as in any deforming
mesh. Once the mesh fluxes are updated, direct mapping of the primary variables is applied
onto the updated topology, while fluxes are adjusted to ensure conservativeness. With
first-order temporal schemes, the described steps ensure the fulfillment of the DGCL during
mesh motion with topology changes. On the other hand, if second-order accurate temporal
schemes are used, primary variables and volumes at the old–old time tn−2 are required
(φn−2

k ). However, transported variables φn−2
i,k−1 are only available at tn−2 on the old topology

Ωn−2
k−1 : a way of handling φn−2

k−1 → φn−2
k is required.

6. Second-Order Temporal Discretization with Dynamic Mesh Refinement

With second-order time schemes and in the presence of topology changes involving
the addition of control volumes (namely adaptive mesh refinement and dynamic addition
of cell layers [13]), all the primary variables and the cell volumes at time tn−2 must be
estimated on the updated mesh topology k: φn−2

k (see Figure 1b). In the following, this
state will be referred to as the equivalent ghost state Ωn−2

k . This equivalent ghost state is only
needed for the cells being added or deleted and their neighboring ones. The rest of the mesh
does not become influenced by the local topology change, which reduces the computational
time, as very few operations have to be performed in a very limited number of cells. While
adaptive mesh refinement and the dynamic addition of cell layers are different techniques,
the same theory applies to ensure that the DGCL is properly conserved with second-order
time differencing schemes. In the following, it will be discussed how to apply second-order
backward Euler (SOBE) and the Crank–Nicolson (CN) differencing schemes to discretize
the temporal derivatives in the presence of dynamic, topologically changing grids.

6.1. Second-Order Backward Euler Scheme (SOBE)

The second-order backward Euler is a two-step Adams–Moulton method [39,40],
where a linear combination of the current-time and the old-time derivatives is used in the
LHS:

3
2

Vnφn −Vn−1φn−1

∆t
− 1

2
Vn−1φn−1 −Vn−2φn−2

∆t
= VnF (φn) (23)

That yields the following expression for the transient term:

∂

∂t

∫
Ω̃(t)

φ dV ≈ 1
∆t

(
3
2

Vnφn − 2Vn−1φn−1 +
1
2

Vn−2φn−2
)

(24)

The SOBE method is formally second-order and unbounded [41]. The DGCL for the SOBE
takes the form:

3
2 Vn

k − 2Vn−1
k + 1

2 Vn−2
k

∆t
=

3
2
(Vn

k −Vn−1
k )

∆t
− 1

2
(Vn−1

k −Vn−2
k )

∆t
= ∑

f
ϕn

M, f (25)

If the static cell volumes are added without inflation, it holds that Vn
k = Vn−1

k = Vn−2
k

and mesh fluxes on the newly added faces are zero. If static cell volumes are deleted
without inflation, the removed faces will have nil mesh flux, and the volumes can be added
to the value of the deforming ones. The DGCL will be naturally satisfied, and no spurious
mass sources will appear in the solution. Despite that a uniform time step was considered
in the equations, the application of the equations to variable time steps does not impact the
validity of the methodology.

6.2. Crank–Nicolson Time-Differencing Scheme (CN)

With dynamic topologically changing grids, the Crank–Nicolson scheme (see
Appendix A) must be reformulated to account for the variation in cell volumes during the
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different time steps. In particular, the transient term of the N-S equations can be therefore
rewritten as:

∂

∂t

∫
Ω̃(t)

φ dV ≈ (1 + θ)

∆t
·
[
Vnφn −Vn−1φn−1

]
− θ

[(
∂φ

∂t

)
V
]n−1

(26)

with the previous time derivative being evaluated as:[(
∂φ

∂t

)
V
]n−1

=
(1 + θ0)

∆t0
·
[
Vn−1φn−1 −Vn−2φn−2

]
− θ0

[(
∂φ

∂t

)
V
]n−2

(27)

where the subscript 0 refers to the value of the coefficients at the previous time step. Simi-
larly to the SOBE, the CN scheme also requires the value of the variables at tn−2; thus, a
similar procedure can be followed: old–old fields must be computed on the updated topol-
ogy (equivalent ghost state, Ωn−2

k ). With the CN scheme, there is also the need to compute
∂φ
∂t

∣∣∣n−2

k
, which expresses the variation in the field φk in the time interval ∆tn−2 = tn−2− tn−3

in the grid with the new topology. This, in turn, requires recursively knowing the values
of the derivatives from previous times until the beginning of the simulation. Therefore,
introduction of a topology change will inevitably create a discontinuity in the solution.
With local mesh refinements, only a limited amount of cells will change their volumes. As
the evaluation of the time derivatives with the Crank–Nicolson scheme depends on the

evolution of the cell volumes, the quantity ∂φ
∂t

∣∣∣n−2

k
also needs to be remapped onto the

currently updated topology. If cell refinement is triggered, the estimation of ∂φ
∂t

∣∣∣n−2

k
is not

trivial: a direct mapping of the field from the old topology does not ensure conservative-
ness, while the calculation of that term would require reconstructing the history of the
field on the recent topology reconstructed from the beginning of the simulation. This is
clearly extremely demanding to carry out in some cases, and it is impossible to carry out

with complex geometries. A possible solution to the problem consists of setting ∂φ
∂t

∣∣∣n−2

k
= 0

in (27) when a topology change is triggered, for the cells that are deforming, right after
remapping. This simplification translates to the DGCL, as follows:

(1 + θ)

∆t
·
[
Vn

k −Vn−1
k

]
− (1 + θ0)

∆t0 ·
[
Vn−1

k −Vn−2
k

]
+ θ0Vn−2

k
�
�
�
��>

0
∂(φ)n−2

k
∂t

= ∑
f

ϕn
M, f = ϕn

M,moving (28)

where ϕn
M,moving corresponds to the mesh flux of the moving face, whose value is not

affected by the topology change. This implies an imbalance between the mesh flux and the
value of Vn−2

k , which provokes that the DGCL is no longer satisfied. However, Vn−2
k was

corrected to fulfill the DGCL with the approximations introduced, such that:

Ṽn−2
k = Vn−1

k − ∆t0

∆t

(
1 + θ

1 + θ0

)
·
[
Vn

k −Vn−1
k

]
+

∆t0

1 + θ0 · ϕ
n
M,moving (29)

The corrected Ṽn−2
k of the cells in the dynamic layer will not fill the entire domain

completely and uniquely. However, as the topology of the equivalent ghost state is not being
updated, this simplification is equivalent to changing just the value of Ṽn−2

k in the cells
belonging to the dynamic layer and will not have any consequences in the following time
steps. In other words, Ṽn−2

k is used to solve the governing equations in the newly added
cells and compensates for the simplification introduced. In this way, all the information
required to calculate the time derivative is available, and the current solution at tn can be
computed.



Fluids 2023, 8, 177 10 of 23

6.3. Adaptive Mesh Refinement

Thus far, the focus was put on topological changes involving the addition or removal
of layers of cells. However, this technique also applies with adaptive mesh refinement
(AMR), where only a single cell may be refined or unrefined according to some user-defined
criteria. In static grids, no additional constraints are required, and the normal procedure can
be used, as there is no need to ensure the geometric conservation Law. Similar reasoning
can be applied if the entire grid moves rigidly, without any cell being deformed.

The focus then is to apply refinement or unrefinement to a deforming cell. The
procedure is similar to the one explained for a layer of cells in Figure 1, if only one face of
the cell moves along one of the logical axes of a structured grid. If all the added or removed
faces during the refinement are static or deform along their own plane, such that their mesh
flux is nil, the same procedure can be applied directly without any further consideration.
The DGCL will be solved, and the equivalent ghost state will again be calculated.

7. One-Dimensional Uniformly Accelerated Piston Test Case

In the following section, the uniformly accelerated piston (UAP) test case [36], for
which the analytical solution is available, was selected as the numerical experiment to
validate the theory proposed in this work. In the experiment, the wave propagation of the
compressible flow inside a cylinder of infinite length is forced by the uniformly accelerated
motion of one of its ends (the piston). A schematic of the problem setup is shown in Figure 2.
When the piston starts moving with constant acceleration, a pressure wave moving with
a velocity c0 over a gas at rest is formed, where c0 represents the undisturbed speed of
sound. If the piston has positive acceleration, a compression wave is formed; otherwise, a
rarefaction wave is observed. The region of the cylinder where x > c0t is at rest, as it has
not been influenced by the pressure wave yet. On the piston surface, the velocity of the gas
is the same as the piston: vp = ± at in x = ± a t2

2 , with x(t = 0) = 0 and vp(t = 0) = 0.

moving wall
fixed wall

Figure 2. Uniformly accelerated piston—numerical experiment. A wall boundary (piston) moves
along an infinite cylinder with uniform acceleration toward a fixed wall. With the reference frame
used, positive acceleration is assumed for compression.

If any effect of the side walls is neglected, gas velocity, pressure and temperature in
the region between the piston and x < c0t can be calculated as:

U(x, t) =

−
1
γ

(
c0 +

γ + 1
2

at
)
+

1
γ

√(
c0 +

γ + 1
2

at
)2
− 2aγ(c0t− x) if x ≤ c0t

0 if x > c0t

(30)

p(x, t) =

p0

(
1± γ− 1

2
U
c0

) 2γ
γ−1

if x ≤ c0t

p0 if x > c0t

(31)

T(x, t) =

T0

(
1± γ− 1

2
U
c0

)2

if x ≤ c0t

T0 if x > c0t

(32)
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where γ is the ratio of specific heats. In a similar way, the density and speed of sound
can be calculated using the ideal gas model. In Figure 3, analytical velocity and pressure
profiles across the wave front in the axis of the cylinder are plotted for positive and negative
acceleration, where its linear evolution is shown.
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]

(a)
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0.925

0.950
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1.000
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p
/p

0
[−

]

a > 0

a < 0

(b)
Figure 3. Analytical solution of velocity (a) and pressure (b) profiles along the axis of the uniformly
accelerated piston. The moving boundary is located at x = 0.

In both cases, the duration of the experiment is limited to a time interval [0, tlim] to
avoid the formation of a shock wave during compression or a void region during expansion.
tlim can be expressed as:

tlim =


2c0

(γ + 1)|a| if a > 0

2c0

(γ− 1)|a| if a < 0
(33)

Without any loss of generality, Equations (30)–(32) can be applied to a cylinder of finite
length L: in this case the aforementioned solution will be valid either until the end of the
cylinder is reached or until a shock wave is formed. Therefore, it can be written:

tlim =


min

[
L
c0

,
2c0

(γ + 1)|a|

]
if a > 0

min
[

L
c0

,
2c0

(γ− 1)|a|

]
if a < 0

(34)

This analytical solution will be used as a benchmark of the numerical simulations to
account for the error introduced by the calculations with specific focus on velocity, pressure
and temperature, as it is related to the mass conservation of the problem.

7.1. Case Setup and Simulation Strategy

A one-dimensional FV mesh was used to discretize the UAP geometry of Figure 2. Grid
refinement is applied toward the moving wall with a ratio ∆xmax/∆xmin = 10. The moving
wall physically translates with velocity u = at i, with i as the unit vector aligned with the
piston axis; the same velocity is set on the moving face to enforce the non-permeability
constraint. A free-slip boundary condition is applied on the side walls, while a no-slip
boundary condition is applied to the upper wall. The total simulation time is set to avoid the
pressure wave from reaching the fixed wall. Zero-diffusion on all boundaries is applied for
pressure and temperature. The flow is assumed to be laminar. Pressure–velocity coupling
is achieved by a transient compressible solver [13]. Two different strategies for mesh
motion are compared (Figure 4), namely: (a) mesh motion based on cell stretching—the
displacement of each mesh point is inversely proportional to its distance from the moving
wall; thus, all cells undergo a deformation and change their size, while the topology of
the mesh does not change; (b) rigid motion of a cell zone with dynamic layering [13] (see
Figure 5)—only one cell is deforming, while dynamic addition/removal of cells is applied
on the cells located at x/L ≈ 0.03 when t = 0. This distance was chosen to be far enough
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from the piston and to avoid any influence of the boundary, but to allow the cells to be
crossed by the evolving wave. Cell layers are dynamically added or removed when the
deformation of the cell involves more than 25% of its thickness. The cell count was 10,000
using the aforementioned 1:10 size ratio between domain ends. Adaptive time stepping
was disabled in this set of simulations, to favor a more accurate comparison among results
obtained by different dynamic mesh handlings. In simulations with topology changes, cell
addition (during expansion) and cell removal (during compression) were triggered at any
time step; in this way, the effect of the numerics used to handle topology changes could be
accounted for in the quantification of either the time step and the global error. During the
simulations, the size of the cell added during mesh refinement ensures keeping the mesh
as uniform as possible, to minimize the non-uniformity error. A table containing the most
important parameters of the setup can be found in Table 1.

pointStretching layerAdditionRemoval

Figure 4. Uniformly accelerated piston (UAP) comparison between different dynamic mesh handling
strategies. (Left) discretized domain; (center) cell stretching; (right) cell layering.

1 
 

 

Figure 5. Basic principles of the dynamic addition/removal of cell layers.

For each configuration tested, the point-wise error was computed as:

e(x, t) =
f (x, t)− f̃ (x, t)

f̃ (x, t)
(35)

where f (x, t) is one of {U(x, t), p(x, t), T(x, t)} computed by the CFD solver, and f̃ (x, t)
is the same function evaluated using the analytical formula. The order of accuracy was
computed with the normwise error ‖e‖1(t):

‖e‖1(t) = ‖ f (x, t)− f̃ (x, t)‖1 (36)

All quantities were calculated at the first time step after the first topology change is
triggered. This choice was made in regard to quantifying as accurately as possible the
properties of the topological change and avoiding any correction of the error that may be
performed by later iterations. In addition, a longer simulation was carried out in order
to check if the total mass is conserved after the addition/removal of a large number of
cells. The results from simulations based on dynamic mesh handling with topological
changes were compared with the analytical solution and with the results provided by
simulations based on a cell-stretching strategy. As outlined in Figure 4, the use of cell
layering in dynamic mesh handling helps to preserve the same discretization independently
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on the position of the moving boundary. This helps to maintain the initial mesh quality
(uniformity, resolution, non-orthogonality) constant during the whole simulation.

Table 1. Summary of the setup parameters for the numerical experiments.

Variable Values

Cell motion strategy Cell stretching, layer A/R
Time scheme Euler, SOBE, CN
Ncells 10,000
∆t (µs) 0.125, 0.25, 0.5, 1, 2

7.2. Code Verification

If the piston moves with positive acceleration (boundary moving inward, Figure 5
bottom), domain cells undergo a compression; this compression is distributed throughout
the mesh if cell stretching is applied (deformed by a rate that is inversely proportional
to their distance from the moving end), or it is concentrated in the volume between the
translating and the fixed regions, where a removal of cells is eventually triggered, in case
of mesh motion based on topology changes. With negative acceleration (boundary moving
outward, Figure 5 top), cells expand throughout the mesh (cell stretching) or a refinement
is applied to the few cells that are deforming. If cell layers are added or removed, the cell
count globally changes.

In Figures 6 and 7, the velocity, pressure and temperature profiles along the domain,
together with their relative error, are plotted for the compressing and expanding piston. In
the graphs, the top row includes the results obtained by cell stretching, while the results
obtained with layer addition or removal (A/R) are reported on the bottom. Curves for
different values of the time step integration are compared against the analytical solution [36].
The vertical dotted line represents the x-coordinate where layer A/R is triggered at the time
that the data are sampled. The results from the simulations are in good agreement with the
analytical solution. Small discrepancies are observed at the wave front (x/(c0t) = 1). With
this effect being present either with cell stretching or with cell layering, it is clearly not due
to the mesh handling strategy used; it is rather a consequence of the non-conservative form
of the governing equations that are solved in a segregated fashion for velocity U and h
instead of (ρU) and (ρh). A table summarizing the maximum value of error introduced by
the topology change in all the schemes for each time step can be found in Table 2, showing
how the absolute value of this error is very small in all the cases. Finally, the formulations
of the proposed temporal differencing schemes provide an error with cell layering that is
comparable to the error produced by the cell stretching strategy; the relative error is lower
than 10−6% for all the tested cases. This confirms once more the proper operation of the
methodology proposed in this work.

In the case of the Crank–Nicolson (CN) scheme, the results for the velocity, pressure
and velocity fields for dynamic layering and cell stretching are shown in Figures 6c and 7c.
In all the cases, the main error is again located in the front wave, and no error created by
the topology change can be seen. The error with respect to the cell stretching strategy is
around 1× 10−2% for the velocity field in the compressing piston, which is two orders of
magnitude bigger than for the SOBE scheme. This is expected, as some simplifications
were performed to create the equivalent state. However, this value is still very small
and negligible with respect to other sources of error. In addition, it can be seen that the
error for the compressing piston is bigger than for the expanding one. This may seem
counterintuitive because in layer addition, an approximation was performed in two layers
of cells. However, the volume that these cells occupy is smaller than the volume occupied
in the equivalent state when performing layer removal, thus reducing the total error of the
solution.



Fluids 2023, 8, 177 14 of 23

Table 2. Maximum relative error introduced in the velocity field by the topology change during cell
removal (left) and cell addition (right).

Layer Removal Layer Addition

∆t Euler SOBE CN Euler SOBE CN

1.25× 10−7 3.19× 10−4 3.75× 10−4 2.10× 10−4 2.27× 10−4 3.76× 10−4 4.49× 10−4

2.50× 10−7 5.07× 10−4 7.37× 10−5 3.12× 10−4 8.81× 10−4 7.70× 10−5 3.18× 10−4

5.00× 10−7 8.16× 10−4 3.50× 10−5 3.24× 10−3 2.24× 10−4 4.26× 10−5 6.03× 10−4

1.00× 10−6 2.35× 10−3 6.55× 10−5 8.85× 10−4 8.88× 10−4 6.85× 10−5 8.21× 10−4

2.00× 10−6 1.15× 10−3 6.22× 10−4 3.11× 10−3 2.34× 10−3 7.56× 10−4 1.60× 10−3

Compressing piston
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(a) First-order Euler
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(b) SOBE
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(c) Crank–Nicolson

Figure 6. Solution and relative error (%) with cell stretching (upper row) and dynamic layering
(bottom row) with different time steps: 2 µs, 0.5 µs and 0.125 µs; for the Euler, SOBE
and CN time schemes. represents the position of the dynamic layer. For each subfigure, from
left to right, errors in velocity, pressure and temperature fields, respectively.
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Expanding piston
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(a) First-order Euler
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(b) SOBE
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Figure 7. Solution and relative error (%) with cell stretching (upper row) and dynamic layering
(bottom row) with different time steps: 2 µs, 0.5 µs and 0.125 µs; for the Euler, SOBE
and CN time schemes. represents the position of the dynamic layer. For each subfigure, from
left to right, errors in velocity, pressure and temperature fields, respectively.

7.3. Mass Conservation

The global conservation error can be estimated by computing the mass imbalance
between the start and end of the simulation:

Emass =

∣∣∣∣∣
∫

Ω ρ dV
∣∣
t=tN
−
∫

Ω ρ dV
∣∣
t=t0∫

Ω ρ dV
∣∣
t=t0

∣∣∣∣∣ (37)
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and it is reported in Figure 8a,b for the compressing and expanding pistons, respectively.
To compute this value, longer simulations were performed where the number of cells in the
mesh changed by at least 100, both in compression and expansion. In all cases, the mass
conservation error is very low, always with a relative error below 1× 10−3%. For the Euler
scheme, the error decreases linearly, whereas it is always very small for the SOBE and CN
schemes, both with layer A/R and with cell stretching (in the order of 1× 10−9). These
results confirm that the proposed methodology does not create any spurious mass sources.
This result was expected for Euler and SOBE due to the fact that the DGCL was satisfied
explicitly, ensuring that the geometry is always conserved. However, the simplifications
made with the CN scheme are very small and do not introduce any spurious mass source
in the solution. In addition, these results indicate that the proposed methodology for
conservative mapping is able to ensure mass conservation across topology changes both
with first- and second-order temporal schemes.
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Figure 8. Relative mass error. (a) Mass conservation with compressing piston. (b) Mass conservation
with expanding piston.

7.4. Temporal Order of Accuracy

Thus far, it has been shown that the error introduced in the solution when performing
topological changes is very small. In addition, the effect of the methodology in the temporal
order of accuracy was also checked. In Figure 9, the order of accuracy of the three numerical
schemes with dynamic layering and cell stretching strategies is shown for the velocity,
pressure and temperature fields, with the piston both compressing and expanding. First,
in all the studied cases, both strategies of mesh motion (dynamic cell layering and mesh
stretching) achieved the same order of accuracy. This probes that the error introduced by
the topological change does not modify the convergence rate of the solver. For the Euler
scheme, an order of 0.99 is recovered for the velocity, pressure and temperature fields,
while an order of 1.28 is achieved for both of the second-order schemes. The observed
convergence is determined by the relative importance of three error sources: the intrinsic
truncation error in the time derivatives ∂

∂t , the error introduced if the DGCL is unfulfilled,
and the error due to a lack of momentum conservation. The latter, as in the previous case,
is not reduced by a smaller ∆t, thus impairing the global accuracy order that is well below
the value of 2 on all test cases.
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Figure 9. Temporal order of accuracy for Euler, SOBE and CN schemes. (a) Compressing piston.
(b) Expanding piston.

8. Lid-Driven Cavity Test Case

A three-dimensional lid driven cavity case at Re = 5000 and an orthogonal uniform
mesh serve as a test to check the proposed method. No turbulence is present in the case
tested [42], and the 200 × 200 × 200 mesh is uniform and perfectly orthogonal; thus, no
other effect could have an influence on the final solution. At t = 10 s, the stationary state is
fully reached. A region of the grid made of six horizontal layers of cells located next to the
upper part of the domain (Figure 10a) oscillates periodically with a sinusoidal displacement
of amplitude 0.045 m and frequency 0.05 Hz, spanning all domains. The neighboring layer
of cells, both above and below this region, will deform to accommodate the movement of
the cells (Figure 10a). When a threshold value of the cell volume is reached, all dynamic
cell layering is applied. For the mesh flux, a first-order upwind scheme was chosen, as it
provides the exact solution. The case was chosen because its solution tends to steady state.
If the internal grid moves after the steady state is reached, any “unsteady effect” eventually
observed is due to the numerics related to the grid motion (e.g., GCL). For this reason, this
is a perfect case for validation.

(a) Test geometry
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(b) Relative error

Figure 10. Three-dimensional lid-driven cavity: simulation setup. The dark region of cells oscillates
periodically with a sinusoidal displacement of amplitude 0.045 m and frequency 0.05 Hz over the
z-axis of the global reference frame. Normalized velocity profiles are computed over two center-
lines over the x (Ux, blue) and the z direction (Uz, red). (a) Representative computational grid: the
number of cells was coarsened to improve clarity in the visualization; (b) percent error computed by
Equation (38).
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Normalized velocity profiles were computed over two center-lines along the x (Ux,
blue) and the z directions (Uz, red). Comparisons between reference solutions on a static
grid using a second-order implicit backward differencing scheme were performed against
dynamic simulations (Figure 11a,b). As apparent, the error introduced by the mesh motion
in the flow field is negligible.
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(b)
Figure 11. Lid-driven cavity test case. Normalized velocity profiles computed over two center-lines
over the x and the z directions (see Figure 10a). (a) Ux(y)/Ulid on the vertical line. (b) Uy(x)/Ulid on
the horizontal line.

To quantify the error introduced by the topological changes, the following (percent)
relative error was computed:

Ex(t) =
|Udynamic

x (ẑ, t)−Ustatic
x (z, t)|

Ustatic
x (z, t)

· 100 (38)

In Equation (38), the superscript dynamic shows that quantities are computed that
account for the oscillating region (Figure 10a). The percent relative error is shown in
Figure 10b. The results in the dynamic grid were evaluated at ˆz(t), whose distribution
changes with time following the mesh motion. In order to compare the results, the fields
were interpolated over the original positions of the grid, where the static solution is
computed. The error of the different temporal schemes is reported in Figure 10b. The
evolution of the velocity magnitude field at times 1, 2, 3, 4 and 5 s is shown in Figure 12 for
the temporal schemes tested (Euler, SOBE and CN). In the figures, graphs on the upper rows
refer to simulations on a static grid, while calculations on the dynamic grid are reported
in the bottom row. The grid points representing the cell centers are superimposed to the
velocity flow field and differ in number and positions between the static and the dynamic
grid. For all three schemes tested, results on the static and the dynamic grid are in very
good agreement, proving that the proposed methodology does not introduce any error
in the solution. The generation and evolution of the vortex is correctly captured in the
whole domain and, once it is formed, the mesh motion does not distort it. Both the location
and intensity of the vortex are also maintained across the topology changes. Finally, mass
conservation was also examined for this test case. The relative mass error was computed
using Equation (37) for the three temporal schemes. The results show that the SOBE and
CN schemes introduce more error in the solution than the Euler scheme. However, the
value of this error is below 2.5× 10−3% for all the schemes tested.
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Figure 12. Lid-driven cavity test case. Comparison between the evolution of the velocity flow field
in time over a central cutting plane at t = 1, 2, 3, 4, 5 s. Points representing the cell centers are
superimposed to the velocity flow field and differ in number and positions between the static and the
dynamic grid.
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9. Conclusions

This study introduces a novel methodology to maintain second-order temporal ac-
curacy when a mesh undergoes a topology change that alters the number of cells. The
lack of available fields from two previous time steps in the new topology prevents direct
remapping. To overcome this challenge, the methodology presented in this work employs
the geometric conservation law (GCL) to reconstruct the old–old time fields in the new
topology, which are necessary to advance the solution in time using second-order time
schemes such as the second-order backward Euler (SOBE) and the Crank–Nicolson (CN).
Verification on the uniformly accelerated piston one-dimensional test case, for which an
analytical solution exists, was proposed. The results demonstrated that the introduced
error due to the topology changes was negligible and comparable to the error of moving
mesh techniques preserving the grid topology. This was also confirmed by the validation
on a three-dimensional lid-driven cavity test case where the generation and convection of
a vortex was properly captured. It was finally demonstrated that the proposed method
preserves the temporal order of accuracy with topology changes.
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Appendix A. Crank–Nicolson Time-Differencing Scheme (CN)

The Crank–Nicolson (CN) [43] temporal scheme is a second-order accurate and
bounded scheme. However, it may present oscillatory behavior, which is the reason
why it is usually weighted with the first-order Euler scheme. Let us consider the case of a
traditional transport equation:

∂φ

∂t
= F (φ) (A1)

where F (φ) represents the spatial operator. One could divide the time step into two halves
and use the implicit Euler scheme to solve the first half:

φn− 1
2 − φn−1

∆t
2

= F (φn− 1
2 ) (A2)

and the explicit Euler scheme to solve the second one:

φn − φn− 1
2

∆t
2

= F (φn− 1
2 ) (A3)

Both schemes provide only first-order accuracy. However, if they are added, one can obtain:

φn − φn−1

∆t
= F (φn− 1

2 ) =
1
2

[
F (φn) +F (φn−1)

]
(A4)
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The temporal term is treated as the implicit Euler scheme, whereas the spatial term F (φ) is
treated in a semi-implicit manner. However, if Equation (A1) evaluated at tn−1 is substituted
in Equation (A4), one can obtain:

φn − φn−1

∆t
=

1
2

[
F (φn) +

∂φn−1

∂t

]
(A5)

where ∂φn−1

∂t is known from the previous time step and corresponds to the evolution of φ

between tn−2 and tn−1. Re-arranging the equation, one can write:

2 · φn − φn−1

∆t
− ∂φn−1

∂t
= F (φn) (A6)

This formulation requires computing ∂φn−1

∂t instead of F (φn−1). The time derivative at

the previous time step ∂φn−1

∂t is not readily available, but it can be easily calculated with the
values of φn−2 as:

∂φn−1

∂t
= 2 · φn−1 − φn−2

∆tn−1 − ∂φn−2

∂t
(A7)

where the values of ∂φn−2

∂t are stored in memory of the previous time step using this same
equation.

In order to increase the stability of the scheme, the method is usually blended with
an implicit Euler scheme. This weighting/blending coefficient is called the “off-centering
coefficient” θ ∈ [0; 1]. Introducing θ into the previous equations, it follows:

(1 + θ) · φn − φn−1

∆t
− θ

∂φn−1

∂t
= F (φn) (A8)

where θ = 1 recovers the original CN, while the Euler scheme applies with θ = 0. The
value of the off-centering coefficient is defined by the user.
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