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Abstract: This article investigates the applications of wavelet transforms and machine learning
methods in studying turbulent flows. The wavelet-based hierarchical eddy-capturing framework
is built upon first principle physical models. Specifically, the coherent vortex simulation method
is based on the Taylor hypothesis, which suggests that the energy cascade occurs through vortex
stretching. In contrast, the adaptive wavelet collocation method relies on the Richardson hypothesis,
where the self-amplification of the strain field and a hierarchical breakdown of large eddies drive the
energy cascade. Wavelet transforms are computational learning architectures that propagate the input
data across a sequence of linear operators to learn the underlying nonlinearity and coherent structure.
Machine learning offers a wealth of data-driven algorithms that can heavily use statistical concepts to
extract valuable insights into turbulent flows. Supervised machine learning needs “perfect” turbulent
flow data to train data-driven turbulence models. The current advancement of artificial intelligence
in turbulence modeling primarily focuses on accelerating turbulent flow simulations by learning the
underlying coherence over a low-dimensional manifold. Physics-informed neural networks offer a
fertile ground for augmenting first principle physics to automate specific learning tasks, e.g., via
wavelet transforms. Besides machine learning, there is room for developing a common computational
framework to provide a rich cross-fertilization between learning the data coherence and the first
principles of multiscale physics.

Keywords: wavelet transforms; machine learning; large eddy simulation; turbulence

1. Introduction

Turbulence is a multiscale process consisting of localized coherent vortices that coexist
at a wide range of length and time scales [1–3]. Therefore, identifying and capturing
the localized flow features in turbulence are crucial to understanding and controlling
turbulence [4,5]. Recent advances in wavelet methods (e.g., [6–8]) and machine learning
(e.g., [9–11]) aim to address these issues and complement the existing turbulence modeling
approaches [12]. This article reviews the recent progress in applications of machine learning
and wavelet transforms in turbulence modeling. These two approaches have great promise
and potential to become the methodological portfolio of turbulence modeling.

Machine learning and turbulence modeling are two distinct fields offering fertile
ground to the data-driven paradigm [10]. Both fields exploit the coherence property
underlying high-dimensional systems. Machine learning leverages the data coherence to
improve performance on some sets of tasks. It uses optimization algorithms to learn a set
of parameters and gradually enhance its learning accuracy. Machine learning methods
are an essential part of the methodological portfolio of the growing field of data science.
Researchers have recently applied machine learning methods to fluid mechanics ranging
from flow control to turbulence modeling [13–16]. As machine learning continues to
augment traditional methods, the demand for dedicated algorithms for solving the Navier–
Stokes equations has also grown simultaneously.
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The Navier–Stokes equations characterize turbulence at large Reynolds numbers
(Re). Solving these equations at high Re remains daunting. The study of the Navier–
Stokes equations and turbulence plays a significant role in all technologies involving
fluids. Capturing a turbulent flow at typical values of Re ∼ 108 requires millions of
terabytes of data. The growth of turbulence data from experiments, field measurements,
and numerical simulations is remarkable. Moreover, the growth of methods in handling
such fluid data have put the current generation of researchers at the confluence of vast
and increasing volumes of data and algorithms. The wavelet method aims to optimize
such algorithms. Using wavelet-based algorithms in turbulence modeling, our goal is
to optimize first-principle conservation laws by predicting the evolution of the coherent
structures of turbulent fluid flows.

In the early 1990s, Farge [3] reviewed the application of wavelet transforms to study
turbulence, covering a general presentation of both the continuous wavelet transform
and the discrete wavelet transform. In 2010, Schneider and Vasilyev [7] reviewed the
application of wavelet transforms in computational fluid dynamics (CFD). Recently, Mehta
et al. [17] documented the new developments of the adaptive wavelet collocation method
(AWCM) as a technique for solving partial differential equations (PDEs). Brunton et al. [10]
documented the concept of machine learning in fluid dynamics. In this review article,
we outline recent progresses in classical turbulence modeling, focus on the application of
wavelet transform and machine learning in turbulence modeling, and finally, discuss a
potential route to address current turbulence modeling issues by combining the wavelet
method with machine learning.

Outline

Section 2 provides an overview of turbulence modeling in the context of large eddy
simulation (LES). Section 3 summarizes current trends in advancements of machine learning
algorithms in CFD and turbulence modeling. Section 4 summarizes the wavelet-based
turbulence modeling strategy.

2. Turbulence Modeling Background

Direct numerical simulation (DNS) uses a fine grid to capture the entire spectrum of
turbulence eddies. In contrast, the Reynolds-averaged Navier–Stokes simulation (RANS)
uses a coarse grid to represent the full range of turbulence eddies through the closure
approximation scheme. LES is intermediate to DNS and RANS; it resolves a significant
fraction of turbulent eddies and uses a subgrid model for the unresolved eddies. We see
from the following discussion that the primary difference between LES and RANS comes
from the turbulence closure models for the partially unresolved and entirely unresolved
turbulent motions, respectively.

2.1. Filtering

The first step in formulating LES is the convolution of the velocity u(x, t) : [a, b]×
[0, T]→ R with a kernel G(r) such that

ū(x, t) =
∫ ∞

−∞
u(r, t)G(x− r)dr. (1)

In the following, we say that ūi(x, t) is the i-th component of the wavelet-filtered velocity
if G(r) is a wavelet; otherwise, it is called filtered velocity. We use boldfaced symbols
to denote a quantity in the 3D Euclidean space and subscript i (or j and k) to denote
standard tensorial representations considered in fluid dynamics. We remind readers that
the discretization technique serves as an implicit filter G(r) unless an explicit filter is
mentioned. Moreover, the wavelet filter is a special form of the explicit filter.
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2.2. The Filtered Navier–Stokes System

The filtering operator (·) extracts the large-scale energy containing motion. A filtered
nonlinear term, such as uiuj = (ūi + u′i)(ūj + u′j), leads to the subfilter-scale stress:

τs
ij ≡ uiuj − ūiūj = ūiūj − ūiūj + u′i ūj + ūiu′ j + u′iu

′
j

where we search for a subgrid-scale stress τij as an approximation of the subfilter-scale
stress τs

ij. We emphasize that subgrid-scale stresses are not the same as true subfilter-scale
stresses [18,19]. Thus, the temporal evolution of the large-scale dynamics of a fluid system
is given by

∂ūi
∂xi

= 0, (2)

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1
ρ

∂P̄
∂xi

+
∂

∂xj

(
2νSij − τij

)
, (3)

where we have applied Equation (2) on the second term of Equation (3) and used the strain
rate tensor Sij = (1/2)(∂ūi/∂x̄j + ∂ūj/∂x̄i) on the second last term of Equation (3). Most
subgrid-scale models consider an eddy-viscosity, originally proposed by Smagorinsky [20],
such that

τij −
1
3

τkkδij = −2ντSij (4)

and ντ(x, t) = cs∆2
√

2SijSij. Lilly [21] derived an approximate value of cs = 0.182, which
is quite effective if the subgrid dissipation of the filtered motion is identical to the exact
viscous dissipation (see [12]).

2.3. Classical LES

In classical LES, we treat a coarse-grid approximation of the fluid velocity ūi(x, t) as a
filtered representation of the ground truth ui(x, t) and employ a closure scheme to model
the subfilter-scale stress τs

ij [12]. Over the last three decades, there have been promising
progresses in the LES of turbulence. Moser et al. [22] documented various developments of
subgrid-scale models. In general, LES finds an approximation of the subfilter-scale stress
τs

ij as a function of the symmetric part of the velocity gradient tensor and an adjustable
parameter cs(x, t) [8,12,15,23,24], such as

τs
ij ≈ τij ≡ Π(cs,Sij).

Note that

∂ui
∂xj

=

strain, Sij︷ ︸︸ ︷
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
+

1
2

(
∂ui
∂xj
−

∂uj

∂xi

)
︸ ︷︷ ︸

rotation, Rij

.

Clearly, the subgrid model Equation (4) excludes the vorticity, ωi = −(1/2)εijkRij. In
addition, the dynamic evaluation of cs(x, t) has been a major focus in turbulence modeling.
This is one of the most challenging and computationally intensive elements of LES.

A principal open challenge is to represent the eddy viscosity ντ in Equation (4) when
the discretization of Equations (2) and (3) becomes sufficient to capture a significant pro-
portion of large eddies (i.e., about 80% of the kinetic energy [12]). Each of the commonly
used models differs depending on how we calculate cs(x, t) to dynamically adapt the
eddy viscosity ντ to the multiscale nature of the problem. A fine grid sufficient to resolve
most eddies at a particular time in a region may become insufficient at another time. The
range of grid resolution in which turbulence is insufficiently resolved in some parts of
the domain and becomes fully resolved in other regions is called the grey zone of atmo-
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spheric turbulence [25]. For instance, in the atmospheric boundary-layer turbulence, the
energy-containing eddies’ size is locally reduced by both the frictional effects of the earth’s
surface and the thermal stratification. Honnert et al. [26] reviewed the current state of
the art in “grey-zone” turbulence modeling, where neither the LES nor the RANS model
is appropriate [25].

Wall-bounded turbulence exists widely in nature and industry. A major challenge of
wall turbulence is that close to the wall the energy-containing length-scale is O(ν

√
ρ/τw).

Here, ν, ρ, and τw denote kinematic viscosity, density, and wall-shear stress, respectively.
When LES resolves the near-wall eddies, we call it wall-resolved LES. For a turbulent
channel flow, the number of grid points for wall-resolved LES scales likeRe13/7, whereRe
denotes the Reynolds number [27]. For the LES of wall-bounded turbulent flows, special-
ized treatments of the eddy viscosity ντ become essential; this is called wall-modeled LES.
Bose and Park [28] recently reviewed various formulations of the wall-modeled LES. The
computational complexity of wall-modeled LES is O(Re) [29]. Readers interested in other
developments of the eddy viscosity ντ may consider the recent work of Moser et al. [22]. An
interesting open question is whether the existing LES techniques adequately capture several
geometric and statistical phenomena, such as the vorticity alignment concerning the strain
rate eigenvectors, non-Gaussian statistics, and intermittency [24,30,31]. Another question
is whether the dynamic adaption of cs in formulating the eddy viscosity by Equation (4)
would be sufficient for the subgrid-scale production via vortex stretching [31,32].

Recent developments in machine learning and wavelet methods aim to address some
of the above questions. Kurz et al. [33] cover the recent progresses, challenges, and promises
of machine learning methods applied to the large eddy simulation (LES) of turbulence
(see also [34]). Schneider and Vasilyev [7] and De Stefano and Vasilyev [35] have thor-
oughly covered the promise of wavelet methods in addressing the above questions. In the
atmosphere and oceans, turbulence is heterogeneous, anisotropic, and scale dependent.
Scale-aware subgrid models automatically adjust their effects according to the changes of
grid resolution, grid orientation, and fraction of resolved flow.

2.4. Scale-Adaptive LES

Recently, we have developed the scale-adaptive LES methodology to formulate the
eddy viscosity ντ in Equation (4) via the hypothesis that vortex stretching is the basic
mechanism of (3D) turbulence energy cascade. A cumulative understanding of the role of
vortex stretching in viscous energy dissipation [36,37], inertial-range energy cascade [38],
and pressure-drop down a pipe is an active area of research [31,32,39]. However, one of the
best known mathematical results states that the regularity and the uniqueness of the fluid
velocity ui(x, t) are guaranteed up to a finite time Tmax if the enstrophy Z =

∫ 1
2 ωiωidx

of the turbulent flows remains bounded. Mathematically, the enstrophy is the integral of
squared vorticity (ωi) over the flow domain of interest. Menter and Egorov [40] presented
a scale-adaptive simulation, which adapts the RANS model with the LES model. More
specifically, the scale-adaptive simulation method applies the RANS model in a region
where the grid is locally insufficient to capture energetic fluctuations (such as in close
proximity to walls) and otherwise switches off to the LES model. In the atmospheric
boundary layer simulations, such hybrid RANS/LES methods are applied at O(100) m
to O(1000) m horizontal grid spacing. If we achieve the scale adaptivity by blending two
models, the turbulence dissipation from the RANS model may also suppress the generation
of LES content in the RANS/LES interface [41,42].

The scale-adaptive LES may address such a problem by considering that turbulence
consists of vortices in nonlinear interactions. However, we do not have a sufficient knowl-
edge of the vorticity production by nonlinear instabilities (e.g., in boundary layers), due
to the duality between physical localization and spectral localization. To account for the
vorticity dynamics in scale-adaptive LES of atmospheric turbulence over complex terrain,
Bhuiyan and Alam [43] considered the scale-similarity assumption [44], which states that
the subfilter scale stress τs

ij equals the resolved stresses τL
ij = ˜̄uiūj − ˜̄ui ˜̄uj at scales between
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∆ and α∆ (with α ≥ 1) [45,46]. Here, we apply explicit filtering in addition to the implicit
filtering, where ∆ and α∆ refer to the resolved length scales of implicit and explicit LES
filtering, respectively.

Using the Taylor expansion of ui(x, t) surrounding an arbitrary point in the flow, the
Leonard (resolved) stress is analytically equivalent to τL

ij = ∆2GikGkj, where the velocity
gradient tensor is Gij = ∂ui/∂xj [46,47]. That is to say, the second invariant of the Leonard
stress, QL = −(1/2)(τL

ij τL
ij )

2, as it can be expressed in the following form [48]

QL = −1
4

[
SijωjSikωk +

1
3
(GijGij)

2
]

(5)

accounts for vortex stretching SijωjSikωk and the relative significance of the vorticity
over the strain (see chapter 5 of Davidson [4]). Here, Q = −(1/2)(GijGij)

2 is the second
invariant of the velocity gradient tensor Gij, which is known as the Q-criterion for vortex
identification. Further, the energy flux associated with the Leonard stress, τL

ij [46]

−Sijτ
L
ij = ck∆2

[
−SijSjkSki +

1
4

ωiωjSij

]
(6)

indicates that a negative skewness of the strain −SijSjkSki along with a positive value of
the enstrophy production by vorticity stretching ωiωjSij would extract energy by small-
scale vortex stretching when the large-scale strain is enhanced. This observation suggests
the existence of a function of τL

ij , which may be in the form of its second invariant, and
may represent the local rate of dissipation in turbulent flows. Based on the dimensional
reasoning, we form a function that maps the space of the velocity gradient tensor to that of
turbulence kinetic energy, which takes the following form:

ksgs(x, t) =
∆2
(

1
2SijωjSikωk +

1
6 (GijGij)

2
)3

[
(SijSij)5/2 +

(
1
2SijωjSikωk +

1
6 (GijGij)2

)5/4
]2 . (7)

To further extend the aforementioned discussion, we follow Deardorff [49] to form the
following subgrid scale model:

τij −
1
3

τkkδij = −ck∆
√

ksgsSij. (8)

Readers interested in further details of coherent-structure-based subgrid models may
review Fang et al. [50]. In Equation (7), the consideration of vorticity is important from
a dynamical point of view because Helmholtz and Kelvin theorems have set vorticity
as the essential field that triggers the fluctuations of velocity. This view shares that of
Farge [3] and Chorin [51], who advocate for vorticity as the computational element of
turbulent flows.

2.5. Remark

In this section, we show that the turbulence energy cascade occurs through the process
of vortex stretching, but vortex stretching is not the main element of the commonly used
subgrid models in LES. We illustrate one way of incorporating vortex stretching in scale-
adaptive LES. We have considered an explicit form the Leonard stresses to lay a vortex-
stretching-based LES framework. We show in the later section that the wavelet transforms
and the proper orthogonal decomposition (POD) method are two promising and attractive
tools to explicitly compute the Leonard stresses for scale-adaptive LES. Machine learning of
subgrid models provide one possible route to the everlasting problem of turbulence given
the availability of high-resolution training data.
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3. Machine Learning in Computational Fluid Dynamics

Machine learning is a modeling framework for artificial intelligence that has recently
become a core technology in data science [9]. In fluid dynamics, we are interested in adopt-
ing some of the advantages of machine learning to accelerate CFD/DNS calculations [5],
improve subgrid-scale modeling [15], or derive reduced-order models of fluid flows [52].
CFD/DNS calculations are often computationally demanding but highly accurate. In
contrast, machine learning models may run faster than CFD models [10]. For instance,
solving the Poisson equation for pressure is one of the computationally extensive steps of
CFD/DNS, and it can be accelerated by adopting a machine learning algorithm [53]. Thus,
our parsimonious objectives are twofold. First, we want to employ machine learning to
extract a compact latent representation of high-dimensional dynamics, while accounting for
the underlying non-linearity in a low-dimensional manifold [54]. In other words, we need
to learn both the (nonlinear) differential operator underlying the data and the associated
forces (e.g., if the data represent some fluid–structure interactions). Second, we want an
optimal reconstruction/prediction of the high-dimensional data in a low-dimensional man-
ifold. Thus, to accelerate CFD calculations, we look for solutions from a low-dimensional
manifold, while penalizing the size of the solution vector [55].

A machine learning algorithm finds an approximation φ(x, y, w) that assigns an input
x to an output y with respect to a set of parameters w. Given a set of observations y(x), we
look for parameters w to formulate an approximation y(x) ≈ φ(x, y, w). The approximation
is weighted by some probability distribution σ(x, y) that constrains the parameter w with
respect to observations y(x). The expected loss or the residual of such an approximation is
given by

R[w] =
∫

L(y, φ(x, y, w))σ(x, y)dxdy (9)

where L(·) is a measure of some objectives such as accuracy, smoothness, cost, and so on.
The precise form of φ(x, y, w) is found during the learning (also known as training) phase.
In other words, a set of parameters w is determined to minimize the expected loss R[w].
Once the model is learned, it can determine the best match of a new input x for a target
output y. Various algorithms of machine learning are grouped into three main categories.

Unsupervised learning is an algorithm that finds an approximation φ(x, y, w) to rep-
resent the self-organization of input x to groups of output y. Examples of unsupervised
learning in data science include clustering and anomaly detection. In fluid mechanics,
the energy spectrum is a low-dimensional projection of turbulent flows, which clusters
turbulence kinetic energy in spherical shells of wavenumbers. The POD method organizes
the variability of turbulent flow to recognize coherent patterns of turbulence.

Supervised machine learning is the process that comprises some existing observations
of the target output corresponding to the approximate model φ(x, y, w). For instance, neural
networks can approximate the underlying function between observations and targets. The
observations allow one to explicitly define the loss (e.g.,R[w] = ||y− φ(x, y, w)||2), which
may be regularized (e.g., R[w] = ||y− φ(x, y, w)||2 + (λ/2)||w||2). The direct numerical
simulation (DNS) of turbulent flows observes velocity and pressure and minimizes the
loss of mapping the observations to the solution (i.e. target) of Navier–Stokes equations.
The DNS of incompressible flows employs various regularization algorithms to minimize
additional pressure loss. Researchers have extensively utilized the DNS algorithm to learn
fluids and control various machines that operate through fluids. The potential for artificial
intelligence in aerospace and fluid machinery evolved several new numerical optimization
schemes through the developments in CFD in the early 1980s.

Reinforcement learning finds suitable actions to take in a given situation to maximize a
reward. The idea is that a learning algorithm would discover the optimal model for a target
by trial and error. For instance, in the LES of turbulence, each grid point is an agent that
learns the subgrid-scale turbulent environment receiving rewards in the form of dissipation
rates or eddy viscosity.
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The brief discussion above has set the common CFD portfolio in the machine learning
framework. It is necessary to understand the algorithmic framework if we want to de-
velop machine learning techniques in fluid dynamics. Machine learning can undoubtedly
become a critical tool in several other aspects of CFD and flow modeling, which have
not been discussed above. Developing and adapting machine learning algorithms that
accelerate a CFD approach is crucial. Fluid dynamics present additional challenges from
their underlying physics and dynamics, which differ from those in data science. CFD
utilizes centuries-old developments in fluid dynamics, which are based on first principles.
Combining first principles with data-driven algorithms has the potential to impact both
CFD and machine learning.

3.1. Neural Networks and LES

To improve the performance of LES, such as in atmospheric boundary-layer flows, the
SGS quantity cs(x, t) and the wall shear stress τw(x1, x2, 0, t) are computed dynamically
as the calculation progresses. This step of LES is computationally expensive, and strictly
related to the local conditions of the flow [28,56]. The Reynolds number scaling for LES
of such wall-bounded turbulent flows is in the range of Re9/5 to Re13/7. Resolving the
relevant details of the flow phenomena requires trillions of grid points.

Machine learning of cs(x, t) and/or τw(x1, x2, 0, t) can significantly reduce the com-
putational cost of LES. Here, we consider data-driven turbulence closure models based
on supervised machine learning by neural networks (NN) [57,58]. The artificial NNs are a
parameterized class of nonlinear maps, φ(x, y, w). The application of NNs in subgrid-scale
turbulence modeling is a very innovative idea [23]. It is important to note that NNs provide
universal approximations of nonlinear maps, although the same could be achieved by
conventional orthogonal bases. In the following discussion, we consider 9 components of
the velocity gradient tensor and 6 components of the resolved Reynolds stress to define the
subgrid-scale quantity cs(x, t). NNs are trained to learn the following nonlinear map

cs(x, t) = Π

(
∂ui
∂xj

, τij

)
. (10)

Thus, for a subset of grid points, we need to find the best weight vector w of 15 elements
so that the bias between cs and Π is minimized. Sarghini et al. [23] observed that the
LES data for a duration of two eddy turn over time units were sufficient to model cs(x, t)
for turbulent channel flow at Taylor-scale Reynolds number 180. We also highlight the
work of Novati et al. [59] regarding reinforcement learning of cs(x, t) for homogeneous
isotropic turbulence at moderate Reynolds numbers. Several recent investigations have
applied NNs to predict a “perfect” SGS stress tensor that accelerates the LES of turbulent
flows [15,60–63].

Note that reinforcement learning is a type of machine learning framework that em-
ploys artificial intelligence in complex applications, such as self-driving cars, and more.
Bae and Koumoutsakos [11] proposed the multi-agent reinforcement learning method to
approximate the subgrid-scale quantity cs(x, t). To briefly illustrate the NN-based rein-
forcement learning of the near-wall turbulence, we illustrate the conceptual framework in
Figure 1. In this approach, we consider several fluid parcels to act like agents learning the
flow environment at each time step. Each agent performs an action according to a desired
wall-modeled LES (see [28]) and receives a scalar reward to update the wall shear stress. In
order for the reinforcement learning of agents to be universally applicable, the machine
learning algorithm establishes a relationship between the wall friction velocity and the wall
shear stress (see [11]).
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Figure 1. Distribution of agents, where each agent obtains state information at a distance of hm from
the wall, computes the reward at the wall, and executes the policy π to obtain actions for the next
time step. Reproduced with permission from [11].

3.2. Solving PDEs with Neural Networks

The application of NNs to construct numerical solution methods for PDEs dates back
to the early 1990s [64–66]. Recently, physics-informed neural networks (PINN) [67] have
initiated a surge of ensuing research activity in the deep learning of nonlinear PDEs. The
PINN approach employs NNs to solve PDEs in the simultaneous space-time domain. Here,
we illustrate the PINN method for approximating the solution u : [0, T]×Ω → R of the
following evolutionary PDE [68]:

∂u
∂t

+N (u) = 0 (x, t) ∈ Ω× [0, T] (11)

subject to boundary conditions u(x, t) = ub(x, t) for (x, t) ∈ (0, T)× ∂Ω and initial con-
ditions u(x, 0) = u0 : Ω → R. Using the neural network approach, we find the best
parameter w for the approximation uw(x, t) ≈ u(x, t), where the initial condition and
the boundary conditions provide training data. Then, we minimize the residual (or loss)
R[uw] := ∂tuw −N [uw] over a set of scattered grid points in the simultaneous space-time
domain. To construct a solution by a purely data-driven approach, PINN considers a set
of N state–value pairs {(xi, ti, ui)}N

i=1, where ui := u(xi, ti) is unknown. Then, we search
for a neural network approximation uw(xi, ti) and find the best fit parameter w such that
uw(xi, ti) = u(xi, ti) for i = 1, . . . , N. Finally, uw(x, t) : Ω× [0, T] → R denotes a solution
realized by the neural network using the optimal values of the parameter w. Note that the
PINN approach does not require past solutions as training data. Instead of minimizing the
standard error |uw(xi, ti)− u(xi, ti)|, the PINN method takes the PDE as the underlying
physics and minimizes the least square residual ||R[uw]||22 to find the optimal values of the
parameter w. Several publications [69] reviewed the application of the PINN method to
solve the Navier–Stokes equations. For incompressible flows, PINNs form the neural net-
work approximation of each velocity component and pressure by minimizing the residual
of Navier–Stokes equations on a set of space-time collocation points.

3.3. Remark

In this section, we have briefly reviewed machine learning frameworks to accelerate
the LES of turbulent flows. Machine learning of new subgrid models from high-resolution
flow fields is a promising approach, but such artificial intelligence applications have been
prone to instabilities, and their performance on different grid spacings has not been investi-
gated. We illustrate the neural network pathway to turbulence modeling. The universal
approximation theorem implies that neural networks can find appropriate weights w and
minimizes the bias b to represent a wide variety of interesting functions, such that [70]

y = f (x) ≈ wx + b.
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The NN approach is a powerful framework that we can adapt to the computation of various
turbulent quantities.

We show that the PINN approach can directly solve a nonlinear PDE. Nevertheless,
solving the Navier–Stokes equations at very large Reynolds numbers require PINNs to
incorporate a suitable turbulence modeling scheme, which is currently a work in progress.
For solving Equation (11), the PINN approach has the flexibility of incorporating subgrid-
scale terms through supervised or reinforcement learning approaches. Note that a principle
of machine learning is to provide a probability distribution σ(x, y) of input–output pairs,
while minimizing the loss function (9). Thus, we have enough flexibility to "inform”
the underlying “physics” as we construct a universal approximation of fluid flows by
neural networks.

4. Wavelets in Computational Fluid Dynamics
4.1. Background

The wavelet method evolved as a nonlinear approximation of the critical information
in high-dimensional systems. The wavelet-based CFD techniques are efficient algorithms
that map a high-dimensional fluid dynamics phenomena onto a low-dimensional manifold.
Our classical CFD approach is not suitable to deal with the large number of the degrees
of freedom of turbulent flows. The wavelet method projects the turbulent flow onto a
low-dimensional manifold to capture the energy containing motion with a relatively small
number of the wavelet modes (or grid points). The wavelet transform is a convolution
with wavelets, which is translation covariant. It is thus suitable to extract multiscale energy
containing eddies of turbulent motions [6].

In the late 1980s, Farge and Rabreau [71] introduced for the first time the novel idea of
wavelet-based turbulence modeling (see [3,72–74]). Over the last decade, a number of new
developments have been made. The wavelet method in CFD has evolved in two directions.
First, the coherent vortex simulation (CVS) methodology is based on the idea that vortex
stretching drives the energy cascade phenomena in turbulent flows [36,38,75,76]. Since
nonlinear terms of the Navier–Stokes equations represent vortex stretching, the vorticity
is an appealing candidate for turbulence modeling. Farge et al. [72] have discussed more
details in this direction. The second approach is the adaptive wavelet collocation method
(AWCM) that generalizes the classical turbulence modeling toward a new direction of the
wavelet-based CFD techniques. AWCM follows the hypothesis that the energy cascade
occurs through a hierarchical breakdown of eddies in a localized manner [77]. Some of
the recent developments of AWCM include wavelet adaptive DNS (WA-DNS), wavelet
adaptive LES (WA-LES), wavelet adaptive RANS (WA-RANS), wavelet adaptive detached-
eddy simulation (WA-DES), and wavelet adaptive climate model (WAVTRISK) [35,78–81].

Here, we want to highlight the fundamental differences between the CVS and AWCM
in the context of turbulent flows. CVS treats vortex tubes as “sinews” of turbulence [4].
Vortex tubes with diameters between the Kolmogorov micro scale and Taylor micro scale
are usually surrounded by the strain field [4]. When a vortex tube is stretched, its circulation
is conserved, and it exerts a tensile stress onto the surrounding strain, which cascades
energy toward smaller scales. Since the tube-like vortices occupy a relatively small fraction
(∼1%) of the total volume, a relatively small number of grid points is necessary to account
for a much larger fraction (10–20%) of the turbulence energy dissipation. The main strategy
of CVS is thus to employ wavelets for projecting coherent vortices onto a low-dimensional
manifold and to solve the Navier–Stokes equations on a wavelet basis.

The AWCM is based on the assumption that the energy dissipation is confined to
high-wavenumber Fourier modes that are highly localized, whereas the injection of energy
is confined to the low-wavenumber Fourier modes. Thus, AWCM employs wavelets to
dynamically adapt the computational grid to capture the localized energy dissipation
rates. AWCM requires a subgrid-scale model (e.g., WA-LES) unless the smallest resolved
scale is approximately the same as the dissipation scale (e.g., WA-DNS). This approach
is not compatible with the local production of small-scale vorticity in boundary layers
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or shear layers. Nevertheless, simulations of homogeneous isotropic turbulence show
that the Reynolds number scaling of CVS, O(Re3), is slightly higher than that of AWCM
(specifically WA-LES), O(Re2.75). Recently, Mehta et al. [17], Ge et al. [8], and De Stefano
and Vasilyev [35] covered a detailed review of turbulence modeling by the AWCM approach.
Such studies primarily focused on the promise of wavelet compression and grid adaptation.
Below, we provide a technical overview of the above discussion regarding vortex stretching.
Readers interested in more details are referred to (in particular chapter 5 of) Davidson [4].

4.2. Coherent Structure Extraction by the CVS and the AWCM Methods

Considering the velocity u as a diagnostic variable via vorticity ω = ∇× u, three-
dimensional Navier–Stokes equations read as follows:

∂ω

∂t
+ u ·∇ω = ω ·∇u +

1
Re
∇2ω. (12)

Using the wavelet-based solution ω̄ of Equation (12) in ω̄ = ∇× ū, we find a wavelet-
filtered velocity ū, which is an approximation to the solution of the wavelet-filtered Navier–
Stokes equations, Equations (2) and (3).

To extract coherent structures by the CVS approach, we split each snapshot of a turbu-
lent flow into two parts. The wavelet-filtered vorticity ω̄(x) is given by the inverse wavelet
transform applied to wavelet coefficients whose modulus is larger than the threshold
εopt =

√
4Z lnN/3, where Z = (1/2)

∫
|ω|2dx is the total enstrophy. The residual part

ω′ = ω(x)− ω̄(x) represents the incoherent background. It is worth mentioning that the
CVS decomposition follows one of the best known mathematical results, due to Foias and
Temam [82], that the regularity and uniqueness of the velocity are guaranteed up to a finite
time if the enstrophy (Z) of the flow remains bounded. According to Donoho [83], the
optimal wavelet thresholding corresponds to negligible subfilter-scale stresses (via Leonard
decomposition). By the Helmholtz vortex theorem, the vortex-flux through a vortex tube is
conserved as the tube is stretched, and the strength of a stretched vortex increases in direct
proportion to its length [4].

Taylor [84] considered experimental data to analyze the production of enstrophy in
decaying turbulence generated from wind-tunnel measurements of the velocity. Based upon
the equation for enstrophy production, Taylor [84] argued that enstrophy will be created
when the mean rate of vortex stretching is positive and exceeds the mean destruction of
enstrophy by viscosity. In the AWCM approach, we consider the wavelet-filtered velocity
ū to extract coherent vortices ω̄ = ∇ × ū and solve the wavelet-filtered momentum
Equations (2) and (3), instead of directly solving Equation (12). Here, the cumulative effect
of discarding all wavelet modes is associated with the total energy E = (1/2)

∫
|u|2dx

instead of the total enstrophy, Z [80,85]. Note also that AWCM solves the momentum
Equations (2) and (3) considering the subfilter-scale stress terms [8,80], where the effects
of the subfilter-scale stress τs = [uiuj − ūiūj] is not negligible [85,86]. A comparison of the
evolution of enstrophy between the CVS and AWCM approaches is crucial in the context of
enstrophy production by vortex stretching.

Applying the curl operator onto Equation (3), we obtain the vorticity equation associ-
ated with the AWCM approach, which leads to the following form of the wavelet-filtered
enstrophy equation:

∂

∂t

(
1
2
|ω̄|2

)
= ω̄TSω̄− 1

Re
|∇ω̄|2 −

[
∇ ·

(
τs − 1

3
tr τs

)]
· (∇× ω̄)︸ ︷︷ ︸

subgrid enstrophy

. (13)

The first term on the righthand side of Equation (13) represents inertial-range vortex-
stretching. The last term in Equation (13) (denoted by “subgrid enstrophy”) represents the
enstrophy flux to unresolved scales, which is due to the subgrid-scale turbulence modeling
because the AWCM solves Equation (3). Removing the last term from Equation (13)
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provided the enstrophy evolution of the CVS method. Clearly, in Equation (13), the last
term accounts for the enstrophy production associated with the subgrid model (4). In other
words, Equation (13) suggests that a primary role of the subgrid model (in WA-LES) is
to dissipate the subgrid-scale production of enstrophy [82]. Moreover, the CVS method
directly accounts for the conservation of circulations, which is essential to ensure that the
mean rate of positive vortex-stretching causes the forward energy cascade to small scales.

4.2.1. CVS Modes of Near-Wall Dynamics

The CVS method employs a nonlinear approximation that designs a good nonlinear
dictionary, and finds the optimal approximation as a linear combination of N elements
of the dictionary. The main goal is to identify the CVS modes leading to the best N -
term approximation of a turbulent flow. CVS is a two-stage process. First, we identify
the dictionary of wavelets extracting hidden information of the vorticity field. Second,
we extract the CVS modes by finding the best wavelets associated with the dominant
vortical structures.

Here, we briefly illustrate the CVS method for capturing the near-wall vortices from the
DNS data of a turbulent channel flow. The technical details of the channel flow simulation
are given by Sakurai et al. [87]. Applying the CVS method onto the vorticity field, we extract
the coherent flow structure in the near-wall region. It is worth mentioning that standard
techniques, such as the Q-criteria, identify the region where vorticity dominates over the
strain. A region of negative λ2, the second largest eigenvalue of the tensor SikSkj +RikRkj,
captures the vortical flow structures. Standard vortex identification criteria use the velocity
gradient tensor in physical space. In contrast, the CVS modes extract the hidden patterns
of the vorticity field in Fourier space.

Figure 2. Visualization of total vorticity |ω| (green), coherent vorticity |ωc| (red), and incoherent
vorticity ωi (blue). Reproduced with permission from [87].

At the top of Figure 2, we show the total vorticity |ω̄| (green) of the DNS of 256×
256× 2048 (i.e., ≈ 130 million) grid points. Then, wavelet decomposition was applied to
the total vorticity. In the middle of Figure 2, we show the vorticity |ω̄| (red) of the CVS
modes. We observe that these vortices have been captured by about 7× 106 of the CVS
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modes (Figure 2, red). This number of CVS degrees of freedom is only about 0.55% of the
original number of grid points. The incoherent vorticity is the residual |ω− ω̄|, which is
shown at the bottom of Figure 2 (blue). The CVS modes capture the coherent flow, which
retains 99.9% of the total energy and 99.7% of the total enstrophy.

4.2.2. The POD Modes of Coherent Structures

In the late 1960s, Lumley [2] introduced the POD method, which is an orthogonal
decomposition of a function, u(x, t) : [a, b]× [0, T]→ R, given by

u(x, t) =
∞

∑
k=0

ck(t)ϕk(x). (14)

The decomposition (14) is said to be complete if it converges to all u(x, t) ∈ L2[a, b] for
all t ∈ [0, T] (some texts refer to this a generalized Fourier series of functions satisfying
periodic boundary conditions). The Bessel’s inequality and the Parseval’s equality

∞

∑
k=0

c2
k ||ϕk(x)||2 ≤ ||u||2 < ∞ and ||u||2 =

∞

∑
k=0

c2
k ||ϕk(x)||2 ≤ ||u||2, respectively,

guarantee that a finite number of coefficients ck = 〈u, ϕk〉/||ϕk||2 is sufficient for the best
approximation of all u ∈ L2[a, b] for all t ∈ [0, T] [88].

The POD is a widely used unsupervised machine learning technique to study tur-
bulent flows [89]. For 3D turbulent flows, the POD method provides a data-driven basis
{ϕk(x)}Nk=1 with a near-optimal dimension N , which represents the spatial coherence of
the flow kinematics, while the time evolution of the coefficients {ck(t)}Nk=1 captures the
low-dimensional coherent dynamics. Thus, the POD method essentially offers an optimal
low-dimensional approximation of high-dimensional fluid data using an orthogonal basis
in a certain least-squares optimal sense [90]. In the context of the Germano identity [91]
(and the Leonard decomposition), the POD method extracts most of the resolved turbu-
lence kinetic energy. Recent works [92–96] demonstrate the potential of the POD method in
capturing complex turbulent flows, but its application to turbulence modeling is relatively
new [97].

Here, we employ the best approximation using the POD modes to formulate the
Leonard decomposition of a turbulent flow. Consider the velocity snapshots, U = [ũ(xi, tj)],
and construct a decomposition of the form U = Ū + U ′′, where Ū contains most of the
(turbulence kinetic) energy such that ||U ′′||1 is minimized. Such a decomposition would
minimize the following Lagrangian

L(Ū ,U ′′, V) = ||Ū ||∗ + λ||U ′′||1 + VT(U − Ū − U ′′) + η

2
||U − Ū − U ′′||2F (15)

to extract the energy containing motion captured by the POD modes. Note that minimizing
the nuclear norm || · ||∗ ensures maximization of the resolved turbulence kinetic energy (i.e.
data variance) over a low-dimensional subspace. In addition, minimizing the norm ||U ′′||1
aims to capture the intermittency of turbulence fluctuations. Based on the POD method,
we compute the Leonard stress τL

ij = ũiũj − ũiũj (see [97]). Minimizing the Lagrangian
Equation (15) for a short-time snapshot, the POD method captures the most energy con-
taining coherent structures with respect to a cutoff time-scale α∆t that is equivalent to
a spatial cutoff scale α∆, where α ≥ 1 and ∆t is the turnover time units of the smallest
resolved eddies (see Pruett et al. [98]). We know that the commutativity (of filtering and
differentiation) is natural for a temporal filter, which remains problematic for spatial ones.
The temporally filtered Navier–Stokes equations remain frame-invariant under the Galilean
group of transformations [19,98]. Thus, minimizing the Lagrangian Equation (15) must
faithfully resolve a significant fraction of the subfilter-scale stress τs

ij. However, a sharp
cutoff of frequencies does not translate into sharp cutoff of spatial scales [19,97]. Thus, we
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may better understand relatively difficult turbulent flows (e.g., [96,99]) by advancing the
mixed-subgrid models that combine a temporal filtering approach with a spatially filtered
subgrid model. Combining a spatial filtering process with the POD method, we get

τs
ij ≈ ũiũj − ũiũj︸ ︷︷ ︸

τL
ij

+ ūiu′′j + u′′i ūj − ūiūj︸ ︷︷ ︸
τij

. (16)

Equation (16) takes the standard form of a mixed model [18], where the Leonard
stress τL

ij is obtained through the POD method and subgrid-scale stress τij is obtained

through a classical approach. The linear combination of the Leonard (resolved) stress (τL
ij )

with the subgrid- scale stress (τij) improves the prediction of the true subfilter-scale stress
(τs

ij). Note that Kang et al. [100] proposed a mixed-subgrid-scale model using the NN
approach and tested the performance by simulating isotropic turbulence and turbulent
channel flow. Within the scope of the present review, we find that the underlying premise
of considering the POD method in LES is that the low-dimensional POD of short-time
snapshots also attenuates the small-scale fluctuations by time-domain filtering (see [89]). To
date, the literature is not fully clear about the computational improvement of considering
the POD method in LES. A more fundamental understanding of the relationship between
the time-domain filtering by the POD and the attenuation of high-wavenumber content by
the wavelet method would take a major step forward for the wavelet-based high-fidelty
LES methodology.

Let us now briefly review the wavelet method and the POD method for dimensionality
reduction while extracting coherent structures. Here, we consider the velocity snapshots
U for a two-dimensional flow past a circular cylinder at Re = 14, 440 [101]. A column
of U ∈ R2N×M consists of two velocity components [u(xi, yj, tn), v(xi, yj, tn)]T at N grid
points (i, j) and n-th time step. Consider the one-dimensional wavelet transform of each
row of U . The wavelet transform produces coefficients that contain energetic information
of the relative local contribution of various frequency bandwidths at each level of wavelet
transform. Figure 3a shows the energy distribution of wavelet components. The cumulative
energy at each successive level of wavelet decomposition is also shown.

We have compared the relative energy per wavelet mode with that of the POD modes.
Figure 3b shows the energy distribution of POD modes. Figure 3 compares the energy
distribution of wavelet modes (Figure 3a) and POD modes (Figure 3b). The first four
wavelet components contain 88% of the total kinetic energy. The wavelet components
of levels 1 and 2 makes the largest contribution, accounting for 32% and 45% energy,
respectively. The first four POD modes are the most energetic, containing 80% of the
total kinetic energy. The first and the second POD modes contribute 41% and 32% energy,
respectively. The energy distribution of first two wavelet components is similar to the first
two POD modes [102].

Figure 3. The distribution of energy (a) in wavelet modes and (b) POD modes. Each bar represents
relative energy contained, respectively, in the corresponding wavelet level or POD mode. Each symbol
indicates the cumulative energy in the corresponding wavelet level or POD mode. Reproduced
from [101].
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4.3. Space-Time Wavelet and Neural Networks

This section reviews the connection between the wavelet transforms and the machine
learning methods for simulating turbulent flows [103,104]. In the last few decades, many
researchers focused on the one-dimensional coneptual model of turbulence using the
Burgers equation. Here, we consider the one-dimensional Burgers equation to illustrate
both the space-time adaptive wavelet method [105] and the PINN method [68] for solving
PDEs. The wavelet method finds the optimal number of the wavelet modes to formulate the
best approximation uw(x, t) ≈ u(x, t) of the solution. Each wavelet mode (indicated by the
subscript w) is associated with a grid point. Thus, discarding a wavelet mode discards the
corresponding grid point. We minimize the wavelet-based residualRw over an essential
set of the collocation points, the number of which is usually small. Interested readers may
find a technical details of the space-time wavelet method given by Alam et al. [105].

This review considers the PINN method in Python programming framework using
the TensorFlow environment. Our code has been adapted from Raissi et al. [68]. Note that
the PINN method finds the best approximation uw(x, t) ≈ u(x, t) of the solution by finding
the optimal values of the parameter w. Here, we have kept the same symbol ‘w’ to denote
wavelet modes and neural networks weights, respectively. Classical machine learning
minimizes the residual R[uw] given by Equation (9). However, the underlying premise
of PINNs is that the boundary condition and the differential operators simulatneously
define the residual R[uw] to ‘inform’ the ’physics’ of the problem while training neural
networks. In other words, PINNs find the solution on a (training) set of collocation points
in the simultaneous space-time domain.

Figure 4a,b compares the solution u(x, t) between the two methods. Figure 4c,d
compares, respectively, the collocation points used by the PINN and the space-time wavelet
methods. We see from Figure 4c that PINNs aim to optimize the values of the parameter
w on a set of randomly chosen training samples. There is no requirement to adjust the
location or the number of training samples. Figure 4d shows that the space-time wavelet
method clusters the collocation points as it learns the steep gradient of the solution.

(a) (b)

(c) (d)

Figure 4. (a) The approximate solution u(x, t) by the PINN method. (b) A comparison of u(x, t) at
t = 0 and t = 0.4 between the PINN method and the wavelet method. (c) The grid used by the PINN
method. (d) The grid used by the wavelet method (reproduced with permission from [105]).
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Here, we briefly discuss the application of the space-time wavelet transforms and
the PINN for simulating two-dimensional turbulence. First, we discuss the supervised
learning of 2D turbulence by minimizing the wavelet-based residual (or loss). Figure 5a
shows the locations (x, y, t) of flow samples in the space-time domain. We consider 3D
tensor-product wavelet transform and minimize the equation loss (or residual) to find a
set of best wavelet coefficients. The clustering of the collocation points shows that the
wavelet transforms dynamically adapt N samples {xi, yi, ti, u(xi, yi, ti)}i≤N [103] to learn
fluid velocity u(x, y, t) at every point of the domain [9]. According to Bishop [9] and Raissi
et al. [67], the space-time wavelet method is like a physics-informed supervised machine
learning, which takes a set of inputs {xi, yi, ti}i≤N and a set of output {u(xi, yi, ti)}i≤N ,
finding the best weights that minimize the `0 or `1 norm of the wavelet coefficients and the
corresponding residual. In this particular example, the minimization of the equation loss
(by the gradient descent method) was regularized by minimizing the `0 norm of wavelet
coefficients. Kevlahan et al. [103] observed that the space-time wavelet method accurately
reproduces DNS results.

Figure 5. (a) The collocation points used by the space-time wavelet method. The figure was adapted
from Kevlahan et al. [103]. (b) A sketch of the collocation points used by the PINN. (N) Locations for
the equation loss; (•) locations for the DNS data loss; and (?) locations for the boundary data loss.
The figure was adapted from Kag et al. [104].

Figure 5b shows the collocation points that we randomly chose to train the PINNs
model. However, the main challenge of PINNs to reproduce DNS results of turbulent flows
arises from the need for a large amount of training data [104]. To date, we do not know the
Reynolds number scaling of PINN-based simulation of turbulent flows, nor do we know
whether PINN-based methods would capture the global behavior of turbulence.

Arzani et al. [106] and Kag et al. [104] observed that sparse collocation points are
appropriate for training PINNs models. Injecting the sparse nature of underlying physics
through DNS data or spectral decomposition helps improve the results of PINN-based
turbulence simulation [104]. Such a remarkable finding for the PINNs method motivates
us to take advantage of the space-time wavelet method and the PINN method. According
to Kag et al. [104], capturing turbulent flow physics within PINNs may lead to a potentially
robust turbulence modeling approach.

5. Conclusions and Future Direction

Wavelet-based turbulence modeling is a research topic more than 30 years old. While
many researchers have thoroughly investigated the AWCM and the CVS methods, their
applicability remains limited by the underlying mathematical complexity of wavelet trans-
forms [35,107]. The CVS method has evolved around the Taylor hypothesis that vortex-
stretching is a primary mechanism for the energy cascade. In contrast, the AWCM follows
the Richardson hypothesis [77] and assumes that the fidelity of subgrid models depends on
the local grid refinement to ensure that subgrid scales are approximately isotropic. Thus,
both the AWCM and the CVS can drastically reduce the computational complexity of
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the turbulent flow simulation [17,35,107]. A large number of articles have demonstrated
wavelet-based RANS, DES, and LES techniques for the numerical simulation of compress-
ible and incompressible flows (e.g., the Ref. in [17]).

Similar to supervised (and reinforment) machine learning, wavelet transforms have the
ability to learn the invariant manifold, which accounts for the low-dimensional coherence of
the turbulent flow dynamics [6,83,89]. Both the CVS and the AWCM are learning algoritms
that optimize the wavelet coefficients in order to minimize the average reconstruction
error on the adaptively chosen training samples [3,7]. The wavelet transforms separate
scales, followed by a nonlinear threshold (or activation), and ultimately learn the invariant
manifold of the high-dimensional input data, such as velocity fields in turbulent flows. It is
worth mentioning that deep neural networks are intelligent computational architectures
that are promising in the regression and classification of big data problems [108]. The
striking similarities between wavelet transforms and machine learning indicate a potential
cross-fertilization and the development of a common mathematical framework, particularly
in the study of turbulence.

Recently, the applications of wavelet transforms and machine learning in turbulence
modeling have emerged as a promising area of investigation [10,17]. This review highlights
two primary challenges in developing machine learning techniques for subgrid models of
turbulence. First, in turbulence modeling, achieving an optimal low-dimensional represen-
tation of both the nonlinear dynamics and the large-scale turbulent motion is important. For
instance, this concept is a principal hypothesis of LES, where (implicit) filtering captures the
low-dimensional, coarse-grained flow features. In most applications of machine learning,
the number of training samples would grow linearly with the dimensionality of the system
(see Brunton et al. [10] and the references therein). Such a curse of dimensionality is a
bottleneck for machine learning of high-Reynolds-number turbulence, where the number
of degrees of freedom scales like Re3. Second, turbulence is highly sensitive to changes
in geometry, flow parameters, and boundary conditions. The lack of generalization of
machine learning (including the reinforcement learning) limits the broader applicability of
such methods in practical engineering and scientific applications.

Summary Points and Future Tasks

• Over the past decades, the fluid dynamics community has explored unsupervised
machine learning [10] and cutting-edge first-principles-based (LES) techniques [22]
to understand turbulent flows. Recent progresses in machine learning techniques
offer valuable insights in the study of turbulent flows [11,104,109]. By bridging
machine learning and first-principles-based approaches, we can uncover new physical
mechanisms, symmetries, invariants, and constraints from fluid data.

• Wavelet transforms naturally entail machine learning algorithms that learn the multi-
scale physics necessary for modeling, optimization, and control of turbulent flows [6,7].
Classical supervised machine learning is a high-dimensional interpolation problem
that learns the optimal map between inputs and outputs [9]. Limited availability
of the high-quality (“ground truth”) output of turbulence quantities (such as stress,
eddy viscosity, etc.) hinders the application of such machine learning to solve turbu-
lence problems.

• Physics-informed neural networks emerged as a new subclass of supervised machine
learning to reduce the requirement of the large amount of high-quality data in lieu
of first principles governing equations for the desired physics [67,104,109]. However,
such a method of combining machine learning and first-principles-based approaches
still requires clipping with additional high-quality data [104] or a model for turbulence
and wall stresses [109] to deal with the multiscale challenges of turbulence.

Recent developments in the applications of machine learning in turbulence modeling
aim to speed up the computational cost of solving the Navier–Stokes equations. In other
words, machine learning would deal with the near-wall and the subgrid-scale phenomena,
while first principles account for the significant or large-scale processes (e.g., Bae and
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Koumoutsakos [11]). A formal analysis of the speed-up of CFD calculations with machine
learning requires further investigations. Some studies indicate a 20% speed-up of CFD
calculations if machine learning takes care of some of the costly elements of turbulence
modeling. In contrast, wavelet methods are efficient to drastically reduce the number of
computational elements in CFD calculations [7,17,103]. The space-time adaptive wavelet
collocation method (e.g., Alam et al. [105]) is similar to the recent developments of physics-
informed neural networks proposed by Raissi et al. [68]. Clearly, there are potential new
research directions in the applications of neural networks and wavelet transfroms, which
may benefit our understanding of many unresolved problems of fluid turbulence. Finally,
this brief review of wavelet transforms and machine learning opens new questions. However,
the potential consequences of combining both approaches require further investigations.
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