
Citation: Bussière, M.; Bessa, G.M.;

Koch, C.R.; Nobes, D.S. Application of

a Combinatorial Vortex Detection

Algorithm on 2 Component 2

Dimensional Particle Image

Velocimetry Data to Characterize the

Wake of an Oscillating Wing. Fluids

2024, 9, 53. https://doi.org/10.3390/

fluids9030053

Academic Editor: Stéphane Le Dizès

Received: 12 December 2023

Revised: 6 February 2024

Accepted: 13 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Application of a Combinatorial Vortex Detection Algorithm on
2 Component 2 Dimensional Particle Image Velocimetry Data to
Characterize the Wake of an Oscillating Wing
Mathew Bussière, Guilherme M. Bessa , Charles R. Koch and David S. Nobes *

Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada;
bessa@ualberta.ca (G.M.B.); bob.koch@ualberta.ca (C.R.K.)
* Correspondence: david.nobes@ualberta.ca; Tel.: +1-780-492-7031

Abstract: To investigate the vortical wake pattern generated by water flow past an oscillating
symmetric airfoil, using experimental velocity fields from particle image velocimetry (PIV), a novel
combinatorial vortex detection (CVD) algorithm is developed. The primary goal is to identify
and characterize vortices within the wake. Experimental flows introduce complexities not present
in numerical simulations, posing challenges for vortex detection. The proposed CVD approach
offers a more robust alternative, excelling in both vortex detection and quantification of essential
parameters, unlike widely-used methods such as Q-criterion, λ2-criterion, and ∆-criterion, which
rely on subjective and arbitrary thresholds resulting in uncertainty. The CVD algorithm effectively
characterizes the airfoil wake, identifying and analyzing vortices aligning with the Burgers model.
This research enhances understanding of wake phenomena and showcases the algorithm’s potential
as a valuable tool for vortex detection and characterization, particularly for experimental fluid
dynamics. It provides a comprehensive, robust, and non-arbitrary approach, overcoming limitations
of traditional methods and opening new avenues for studying complex flows.
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1. Introduction

Vortices constitute fundamental flow features with widespread relevance in various
fluid dynamic applications. Their formation in the wake of airfoils and streamlined bodies
holds a paramount significance in both research and practical applications. In turbulent flow
regimes, temporally evolving and spatially coherent structures, commonly identified as
vortices [1], exert substantial influence. For instance, studying the airflow around a pitching
airfoil not only aids in comprehending undesirable phenomena such as wing flutter [2]
but also finds applications in understanding biologically inspired aquatic propulsion [3,4].
Researchers have extensively compared the simulation of pitching airfoils using full Navier–
Stokes and vortex models [5–7]. In this context, precise detection and characterization of
coherent wake structures emerge as central research objectives [2,8,9]. Notably, at a given
Reynolds number, the generation of various wake schemes hinges on the positioning and
organization of vortices in the wake [3].

The classification of wakes characterized by the presence of vortices can be effectively
depicted in a phase diagram that illustrates significant wake transitions as functions of two
independent nondimensional variables [3,10,11]. These parameters are the Strouhal number
(St = fC/U), which is based on the flapping frequency (f ), the chord length (C), and the free
stream velocity (U), and the dimensionless oscillation amplitude derived from the chord
length. To construct accurate phase diagrams, it is crucial to identify vortices in the wake
with high precision and reliability. Furthermore, beyond the fundamental task of vortex
detection, it is important to compute several key parameters that are essential for describing
the flow, especially in the context of aerodynamics. These parameters encompass crucial
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metrics such as the coordinates of vortex cores, their drift velocities, peak vorticity values,
overall circulation, the radius defining vortex boundaries, and the highest circumferential
velocity [12].

The existing methods for detecting vortices, such as the widely used Q-criterion [13],
λ2-criterion [1], ∆-criterion [14–16], and Γ1-criterion [17], have inherent limitations [18–20].
A primary challenge arises from their reliance on threshold values to discern vortices.
Selecting an appropriate threshold is often subjective, and there may not be a universally
optimal value across flow types. This is particularly pronounced in turbulent flow studies,
marked by significant, multiscale, intermittent variations in both vorticity and strain rates.
More significantly, the threshold sensitivity of these methods can lead to unreliable and
inaccurate vortex identification [21,22]. Excessively low thresholds cause frequent false
positives, incorrectly labeling non-vortex regions as vortices. Conversely, high thresholds
result in many missed detections, failing to identify real vortices in the flow. This tradeoff
hinders finding a robust threshold that generalizes across the wide variability in real-world
flow dynamics [23,24].

One core limitation identified in the Γ1-criterion, developed by Laurent Graftieaux
et al. (2001) [17], is that the Γ1 function used to locate vortex centers lacks Galilean invari-
ance, rendering it susceptible to the constant advection of the flow field. This inherent lack
of robustness becomes particularly evident in scenarios where the overall flow undergoes
consistent shifts. Additionally, Graftieaux’s theoretical relations linking the Γ1 and Γ2 func-
tions to vortex properties assume axisymmetry in the swirling flow structure. While this
assumption simplifies the theoretical framework, real unsteady flows often deviate from
the idealized axisymmetric case, introducing complexities that challenge the method’s ap-
plicability to diverse flow conditions. Moreover, directly applying the Γ1-criterion to flows
with multiple, interacting vortices poses challenges. Ambiguity can arise in attributing
vortex indices, especially in scenarios where vortices dynamically interact, merge, or evolve
over time. The method’s reliance on theoretical relations may lead to difficulties in precisely
characterizing complex vortex structures within the flow. Consequently, the method’s
effectiveness diminishes in situations where accurate identification and differentiation of
interacting vortices are crucial [17].

To provide a robust approach for vortex detection, researchers often use combinations
of criteria or data-driven techniques such as machine learning to adaptively determine opti-
mal thresholds for a given flow [25–27]. However, subjectivity and extensive parameter tun-
ing may still be required. Furthermore, while the Q-criterion, λ2-criterion, and ∆-criterion
are effective in binary classification, categorizing regions as vortical or non-vortical, they do
not inherently provide direct quantification of vortex strength or intensity [28]. Evaluating
vortex strength is often crucial for in-depth analysis of vortex dynamics, comparative
studies between vortices, and various related objectives [29,30]. Researchers typically need
to perform supplementary analyses to calculate circulation, maximum vorticity, core radius,
or other relevant parameters to obtain strength information [29,30].

Recently, advanced vortex identification techniques such as the Ω-method [24] and
‘Rortex’ method [31,32] have shown promise in addressing some of the limitations of
traditional criteria. The Ω-method defines vortices as regions where vorticity overtakes
deformation, providing a clear physical interpretation. It does not require arbitrary thresh-
old selection and can simultaneously capture strong and weak vortex structures [24]. The
‘Rortex’ method decomposes vorticity into rotational and non-rotational parts, excluding
shear contamination. As a vector quantity, ‘Rortex’ identifies both vortex axis orientation
and strength [31,32]. These methods offer greater objectivity and physical insight compared
to conventional techniques. However, the Ω-method and ‘Rortex’ method have thus far
been predominantly applied to direct numerical simulations (DNSs) data [24,28,31–34].
Their effectiveness in processing experimental measurements with inherent noise remains
to be rigorously validated.

Substantial effort has been dedicated to the development and validation of advanced
techniques using DNS data [1,35,36]. DNS provides high-resolution flow field information
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for testing novel vortex identification strategies, especially in three-dimensional turbulent
flows such as boundary layers [37,38]. However, DNS is limited to relatively simplified
flow conditions and small domains due to computational constraints. Therefore, while
beneficial for initial development, additional rigorous validation of new methods with
experimental data remains essential before broader utilization across complex flows. DNS
aids technique refinement, but ultimate validation still requires experiments.

Detecting vortices in particle image velocimetry (PIV) data poses unique challenges
due to inherent measurement noise and experimental uncertainties [39]. Typically, mitigat-
ing measurement noise involves prior filtering before applying a detection algorithm [12].
However, selecting appropriate thresholds becomes crucial to avoid overlooking weak or
small vortices [39]. Additionally, the flow field near the vortex core exhibits substantial
gradients, potentially causing difficulties in particle seeding and correlating PIV data [12].

In contrast to DNS data that can utilize local mesh refinement for better spatial detail in
areas like vortex centers, PIV analysis methods must seek alternative strategies to effectively
manage the pronounced gradients encountered around the vortex core [40].

Due to camera resolution limits, PIV analysis often requires integrating images from
several cameras, necessitating image de-warping and stitching, which might lead to discon-
tinuities in the flow-field representation, potentially leading to the erroneous identification
of elevated local vorticity as a vortex [1].

Given the increasing availability of PIV data in experimental fluid mechanics [12], the
need for developing dedicated and effective algorithms for vortex detection and character-
ization in PIV datasets has emerged as a pivotal area of research. The precise definition
of a vortex remains elusive [1], making their detection in practical flows a complex task.
The most common and intuitive conception of a vortex revolves around the perception of
swirling fluid motion centered around a focal point [35]. However, translating this intuitive
notion, rooted in human perception, into a rigorous numerical characterization detectable
by algorithmic methods poses considerable challenges.

Lugt (1979) [41] proposed that “A vortex is the rotating motion of a multitude of
material particles around a common center”, aligning with the fundamental notion of
swirling motion. While this concept is intuitively appealing, it lacks specific criteria
for describing vortical structures and does not easily translate into a workable vortex
identification algorithm. Building upon Lugt’s concept, Robinson (1991) [36] offered a
more geometrically precise definition: “A vortex exists when instantaneous streamlines,
projected onto a plane perpendicular to the vortex core, exhibit a roughly circular or
spiral pattern when observed from a reference frame moving with the center of the vortex
core”. While this definition offers clarity in geometric characterization, it necessitates a
priori information about the vortex core’s location, posing challenges for systematic vortex
detection. In contrast, Jeong and Hussain (1995) [1] put forth the notion that “A vortex
core must possess net vorticity, hence net circulation”. This concept offers a direct method
to pinpoint potential vortex regions without requiring prior knowledge of the vortex
core’s location or drift velocity. By computing scalar vorticity fields from velocity vectors,
researchers can generate and label regions of interest. Combining Jeong and Hussain’s
definition [1] with Robinson’s geometric criteria [36] forms a solid groundwork for creating
an effective vortex detection algorithm.

Vortex identification techniques are often designed for specific data types and unique
flow fields, aiming to identify well-defined vortex structures based on precise defini-
tions [35]. These algorithms exhibit a high degree of sensitivity to various parameters,
including vortex spacing, particularly when multiple vortices coexist within a given flow
field, vortex size, angular velocity, and the presence of shear flow [12].

Sadarjoen and Post (2000) [42] proposed a classification of vortex detection algorithms
found in the literature, distinguishing them into two primary categories. The first category
encompasses traditional vortex detection algorithms, which rely on the evaluation of physi-
cal flow-field properties at specific points. Commonly assessed properties include velocity,
vorticity, pressure, and the velocity gradient tensor. However, one notable limitation of
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these algorithms, as emphasized by Sadarjoen and Post (2000) [42], is their reduced sensitiv-
ity to large, slowly rotating vortices. For instance, the maximum vorticity method defines a
vortex core based on local vorticity maxima [35]. Inherently, this method disregards regions
where vorticity falls below a predefined threshold, potentially leading to the failure of
detecting weak, slowly rotating vortices.

The second category comprises geometric methods, representing a more recent set of
vortex detection algorithms. These methods prioritize the examination of flow patterns
and trajectories, such as streamlines and pathlines, over the analysis of scalar attributes
measured at distinct grid locations [35]. Although geometric methods demand more
computational resources, they offer a significant advantage over traditional techniques by
effectively differentiating between actual vortices and false positives, addressing a common
limitation in earlier approaches [35,42].

The limitations of the most widely adopted vortex identification criteria, including
their sensitivity to threshold values and their inability to quantify vortex strength directly,
underscore the pressing need for complementary techniques, modifications to existing cri-
teria, combinations of criteria, and the exploration of emerging methods to enable accurate
and comprehensive vortex detection across a wide range of fluid mechanic applications.

This work introduces a vortex detection algorithm that combines selected features
from three individual algorithms to interrogate PIV data. The primary aim of this algorithm
is to efficiently process data, detecting and locating vortices while calculating characteristic
vortex parameters. Given the potential magnitude of the datasets associated with the PIV
results, the algorithm also incorporates automated procedures for identifying false positive
vortices without the need for human intervention. The algorithm’s performance is evalu-
ated by analyzing vortex behavior in the extensively studied wake behind a symmetrically
pitching airfoil [2,10].

2. Background on Existing Vortex Detection Algorithms

The development of an effective vortex detection algorithm relies on the fundamental
principles and methodologies established in the existing literature. This background
reviews three pivotal methods that serve as the basis for the proposed combinatorial vortex
detection (CVD) framework tailored for the analysis of PIV data. These methods encompass
the maximum vorticity (MV) method [43], the cross-sectional lines (CSL) method [12], and
the winding angle (WA) method [44]. The following sections delve into the core principles
of each method and discuss key aspects leveraged in developing the CVD algorithm.

2.1. Maximum Vorticity (MV) Method

The MV method, proposed by Strawn et al. (1999) [43], assumes that a vortex core
exists at locations characterized by a local maximum in vorticity magnitude. This approach
proves effective in detecting vortices in situations where their cores may overlap [35].
However, a notable limitation of the MV method is its propensity to not only identify
vortices but also regions exhibiting shearing activity [1]. Consequently, devising a vortex
detection algorithm solely based on vorticity fields becomes more challenging, particularly
in non-free shear flow [1,35]. An alternative utility of vorticity fields lies in outlining
regions of interest (ROIs) where potential vortices may be located, enabling the use of other
algorithms to evaluate these ROIs individually.

To enhance the performance of the MV method within the framework of the CVD
method, a Gaussian low-pass spatial filter is applied to the velocity data to mitigate
measurement noise and experimental uncertainties [39]. This filtering process produces a
smoother field, effectively eliminating small-scale fluctuations that might otherwise lead
to localized spikes in the vorticity field. Scalar vorticity, ω, calculated numerically at each

grid point, is defined within the two-dimensional velocity field,
⇀
v , as ω =

⇀
∇×⇀

v .
In the pursuit of detecting weak vortices characterized by relatively low vorticity, it

becomes necessary to apply a low vorticity threshold. However, this approach carries the
inherent risk of grouping stronger, nearby vortices into a single ROI, effectively evaluating



Fluids 2024, 9, 53 5 of 30

them as a singular vortex structure. To mitigate this, multiple threshold levels are used,
and the indexed image is further analyzed using logical operations and image morphology
(IM) techniques to distinguish between closely situated vortices [45].

The application of multilevel thresholds serves the dual purpose of allowing the
identification of weak vortices while ensuring that even when strong vortices are close
together or their cores overlap, they can still be distinctly identified and analyzed as
separate entities. Figure 1 provides a visual representation of this concept, depicting two
vorticity field test cases where a three-level thresholding approach is applied. The resulting
indexed images, accompanied by the corresponding desired ROI maps, are presented for
these sample vorticity fields. The left-hand side of Figure 1 illustrates the indexed images,
where index levels are denoted as i = 1, 2, and 3. On the right, the desired ROI map is
displayed, signifying the regions to be extracted from the corresponding indexed image.
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Figure 1. Schematic illustrating the application of a multilevel threshold technique for identifying
vortices in two vorticity fields. (left): indexed images with levels i = 1, 2, and 3. (right): corresponding
desired ROI maps for vortex extraction.

Without the utilization of multilevel thresholds, a single threshold level would be
chosen, leading to one of two scenarios. When solely threshold level i = 1 is applied, as
seen in both examples, the broader vorticity region, clearly exhibiting two distinct peaks
of vorticity, is incorrectly grouped into one single ROI, consequently treated as a single
potential vortex. However, this area features two distinct peaks and should rightfully be
considered as two individual ROIs. Conversely, when exclusively threshold level i = 3 is
employed, the weaker vortices failing to meet the vorticity ωpeak level i = 3 threshold are
excluded from consideration as ROIs and remain unidentified as potential vortices.

To address the notable limitations associated with the use of a single-level threshold
for identifying ROIs, the algorithm employs a three-level threshold to generate an ROI
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map. In this approach, the vorticity field is segmented, resulting in a classified image using
threshold values specified by the threshold intensity vector (TIV):

TIV = ⟨TI1, TI2, TI3⟩ (1)

Subsequently, the algorithm executes morphological opening for each of the thresh-
olds specified in Equation (1). Morphological opening combines two fundamental image
morphology techniques, erosion and dilation, performed in a specific sequence. Initially,
the image undergoes erosion using a diamond-shaped structuring element of size Se. This
operation effectively eliminates clusters of pixels smaller than Se, while reducing the size of
clusters larger than Se.

Following erosion, a dilation step is performed with the same structuring element
Se to bring the pixel clusters, which remained post-erosion, back to their original size.
This combination of erosion and dilation, performed in a well-defined sequence, plays a
pivotal role in refining the ROI map and contributes to enhancing the algorithm’s efficacy
in vortex detection.

Connected pixel groups in the vorticity intensity indexed image are categorized by
intensity levels (I1, I2, I3). Groups associated with index I1, denoting the lowest vorticity
intensity level, undergo an initial morphological opening procedure, employing an IM
diamond-shaped structuring element of size Se1. Subsequently, these groups are labeled and
individually investigated. Structures corresponding to index I2 also undergo morphological
opening, but this time utilizing an IM diamond-shaped structuring element of size Se2.
They are then sub-labeled within each of the previously labeled groups from index I1.

The algorithm follows a conditional path: If none of the groups from the second
threshold index I2 are found within a group from the first level I1, the algorithm concludes,
and the group of pixels from index level I1 is designated as an ROI. Conversely, if at least
one I2 group is found within a group from index I1, the algorithm progresses further.
Pixels corresponding to index I3 undergo morphological opening using an IM diamond-
shaped structuring element of size Se3 and are further categorized within each of the index
I2 groups.

At this stage, the algorithm enumerates the group counts at each threshold level. If
an I2 cluster encloses several I3 groups, each individual index I3 group becomes a distinct
ROI. However, if only one index I3 group is counted, the algorithm reverts to a lower level,
considering the number of index I2 clusters. Once again, if multiple index I2 groups are
detected, each individual index I2 group is recognized as an ROI. However, if only one
index I2 label is counted, the group from index I1 becomes the designated ROI. This process
ensures that the ROI encompasses the largest possible area while partitioning into multiple
ROI’s when distinct, higher vorticity peaks are detected.

2.2. Cross-Sectional Lines (CSL) Method

The CSL method is designed to identify potential vortex cores within a designated ROI
by evaluating the velocity component perpendicular to parallel straight cross-sectional lines
intersecting the ROI at arbitrary angles [12]. In this context, the CSL method is integrated
into the CVD framework for its proven ability to accurately pinpoint vortex cores within
ROIs labeled using the MV algorithm.

It is essential to clarify that the CSL method does not serve as a vortex detection
mechanism itself. Instead, its primary function revolves around locating potential vortex
cores and defining boundary radii within the ROIs. The method provides two-dimensional
coordinates for a core, whether or not an actual vortex exists within the current ROI.

Each labeled ROI undergoes a CSL algorithm akin to the one described by Vollmers
(2001) [12]. A schematic outlining the fundamental CSL procedure is presented in Figure 2,
featuring a sample vortex for illustrative purposes. The schematic employs concentric
ellipses to represent vorticity contours, with the vortex core identified by an ‘×’.
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In the context of a vector velocity field with dimensions A × B, the y-component of
velocity, represented as vy(i, j), is assessed for columns i = 1, 2, 3, . . ., A and rows j = 1, 2, 3,
. . ., B along each row within the defined grid. During the discussion of the CSL method,
this velocity component, vy(i, j), is referred to as the “perpendicular velocity,” denoted as
vp(i, j).

The determination of maximum and minimum perpendicular velocities for each row,
designated as j, within a specified ROI is a pivotal aspect of the analysis. These extreme
values are calculated as follows:

vp,max (j) = max
(
vp(As, j), vp(As + 1, j), . . . , vp(Ae, j)

)
(2)

vp,min (j) = min
(
vp(As, j), vp(As + 1, j), . . . , vp(Ae, j)

)
(3)

The indices As and Ae are used to denote the first and last velocity vectors within a
ROI on a given row, respectively. Within the ROI, the row ψ that exhibits the difference∣∣∣vp,max (j) − vp,min (j)

∣∣∣ is identified as the critical cross-section line and is represented as
CSLψ. This ‘critical line’ corresponds to the y-coordinate of a potential vortex core, should
one exist within the ROI under evaluation.

The perpendicular velocity along this critical row is denoted as vp(i, ψ). The x-
coordinate of the vortex core is determined by the location along CSLψ where the velocity
satisfies the condition

vp(ς, ψ) =

(
vp,max (ψ) + vp,min (ψ)

)
2

(4)

and the coordinates of the vortex core are, therefore, represented as (ς, ψ).
For the sake of simplicity, Figure 2 illustrates a hypothetical vortex with only three

rows/lines of the vy velocity field. In this example, the critical perpendicular line is denoted
as CSLψ = CSL2. Among the three lines, CSL2 exhibits the most significant difference
between its maximum and minimum perpendicular velocities, vp,max (2) and vp,min (2),
respectively. Consequently, the y-coordinate for the hypothetical vortex core is determined
as ψ = 2.

Using Equation (4) along CSL2, the velocity vp(ς, 2) is evaluated. The algorithm
searches for the point along CSL2 where vp(ς, 2) matches, thus finding the value of ς. These
two computed coordinates effectively pinpoint the vortex core of a potential vortex within
the ROI. However, it is important to note that this process alone does not confirm the
presence of an actual vortex within the ROI.
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The CSL method also offers an estimation of vortex size by fitting a circle with a radius
rv centered at the vortex core, which is determined as

rv =

∣∣∣ςv,max (ψ) − ςv,min (ψ)

∣∣∣
2

(5)

Here, ςv,max (ψ) represents the column position on row ψ where the velocity vector
vp,max (ψ) is located, and ςv,min (ψ) refers to the column position on row ψ where the velocity
vector vp,min (ψ) is found.

The CSL method proves to be particularly effective for identifying vortex cores and
estimating vortex size and drift velocity in flow fields where available information regard-
ing the vortical structures present is scarce. Additionally, Vollmers (2001) [12] proposed
that the transverse and streamwise components of the vortex drift velocity, represented
as

⇀
v dri f t =

(
vdri f t,x, vdri f t,y

)
, correspond to the x and y components of velocity evaluated

at the core coordinate (ς, ψ). This algorithm operates on a predefined ROI, which is de-
termined using the MV method. The algorithm comprises two main nested loops: one
iterating over individual ROIs and the second for individual cross-sectional lines within
each ROI. The input data include the 2C2D velocity field and the labeled ROI map.

A drawback of the CSL method lies in its inherent inability to reject false positives. It
may identify a vortex core in an ROI that does not actually contain a vortex. To address
this challenge, a hybrid detection algorithm is proposed that combines physical quantity-
based methods, such as MV and CSL, with geometric methods integrated into the CVD
framework, as geometric methods are known for their effectiveness at identifying and
rejecting false positives, a capability often overlooked by other methods.

2.3. Winding Angle (WA) Method

The WA method, initially proposed by Portela in 1999 [44], represents a geometric
approach to vortex detection. This method involves the assessment of discretized stream-
lines to determine their affiliation with a vortex. According to the criteria suggested by
Sadarjoen and Post in 2000 [46], a streamline must meet two conditions to be classified as
part of a vortex.

Firstly, for a streamline denoted as Sk, the winding angle αw,k must satisfy the equation∣∣αw,k
∣∣ = n2π, where n is a positive integer [42]. The signed angle αki

between vectors
⇀
V1

and
⇀
V2 on a given streamline is expressed as

αki
=

cos−1
(

⇀
V1·

⇀
V2

)
∣∣∣∣⇀V1

∣∣∣∣·∣∣∣∣⇀V2

∣∣∣∣


⇀
Vn·

(
⇀
V1 ×

⇀
V2

)
∣∣∣∣⇀Vn·

(
⇀
V1 ×

⇀
V2

)∣∣∣∣
 (6)

where
⇀
V1 =

〈(
Px,(i−1) − Px,(i−2)

)
,
(

Py,(i−1) − Py,(i−2)

)
, 0
〉

(7)

and
⇀
V2 =

〈(
Px,i − Px,(i−1)

)
,
(

Py,i − Py,(i−1)

)
, 0
〉

(8)

and
⇀
Vn = ⟨0, 0, 1⟩ (9)

Here, Px and Py are the respective (x,y) location on a given streamline and
⇀
Vn is a unit

vector normal to the flow-field of interest. Figure 3 demonstrates how the individual angles
αw,i are calculated on a section from streamline Sk. The winding angle αw,k for a streamline
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Sk is determined by summing the angle contributions for all points along the streamline, as
expressed in the following equation:

αw,k =
N

∑
i=2

αki
(10)
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A crucial characteristic of a vortex-associated streamline is the formation of a closed
semi-elliptical path [1,47,48]. However, relying solely on the winding angle criterion
is insufficient to meet this requirement [46]. It is possible for a streamline to exhibit a
substantial winding angle without tracing a closed path. Therefore, an additional condition
is necessary.

The second requirement dictates that a streamline deemed part of a vortex must have
its initial and terminal points in close proximity [42]. The distance between the starting
point (Px,1, Py,1) and the endpoint (Px,N , Py,N) of a streamline Sk is calculated using

Dse =
√
(Px,N − Px,1)

2+
(

Py,N − Py,1
)2 (11)

The initiation point of a streamline is predetermined, and each streamline consists of a
fixed number of points with uniform spacing between them. Consequently, for a streamline
tracing a closed path, its starting and ending points can be anywhere along the path, as the
streamline’s length is pre-defined. To address this challenge in establishing a Dse threshold,
consider a scenario where streamlines follow a closed circular path. In such cases, the
maximum separation between the starting and ending points of any streamline following a
closed circular trajectory would equal the circle’s diameter, which outlines the path. This
presents a significant challenge in setting a Dse threshold, as streamlines associated with
larger vortices would require a larger Dse. However, an excessively large Dse threshold may
incorrectly associate non-vortical streamlines with relatively small vortices. To mitigate
this issue, streamlines are split whenever the cumulative angle sum reaches the highest
multiple of 2π. This technique ensures that the beginning and end points of a streamline
on a closed loop remain as close as possible.

While the WA threshold is defined as
∣∣αw,k

∣∣ = n2π, selecting a suitable value for the
threshold Dse is necessary. The Dse threshold depends on the length scale of the vortical
structures present, but the previously defined ROIs can aid in determining a sensible
Dse threshold. Within each ROI, circles with a radius rv are used to identify potential
vortices. This parameter serves as a reasonable length scale for coherent structures in the
flow. Therefore, an appropriate choice for the Dse threshold would be a value greater than
rv/2. This criterion ensures that only streamlines with minimal endpoint separation are
considered as part of a vortex. Streamlines that extend significantly beyond the typical size
of flow structures are excluded to maintain the accuracy of vortex identification.

The final step of the algorithm involves verifying whether individual streamlines
adhere to the specified thresholds. Streamlines meeting all required criteria are marked and
assigned unique identifiers. The sign of the winding angle αw,k for each streamline deter-
mines the direction of rotation associated with the vortex corresponding to that streamline.
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In situations where an ROI encompasses multiple vortices, it becomes essential to
appropriately label all the closed streamlines associated with these vortices. This labeling
process involves mapping each of the closed streamlines to a specific point and subsequently
identifying clusters of closely situated points [42]. The mapping of the streamlines Sk
belonging to a particular vortex is achieved by associating them with corresponding points
MPk, which are determined by

MPx,k =
1
N

N

∑
i=1

Px,i (12)

and

MPy,k =
1
N

N

∑
i=1

Py,i (13)

To ascertain the distance between two such mapped points, MPk and MPk’, the follow-
ing computation is applied:

DMPk,k′ =

√(
MPx,k − MPx,k′

)2
+
(

MPy,k − MPy,k′
)2

(14)

The labeling process begins with the first point, MP1, serving as the foundation for
the initial cluster group. When considering point MP2, a crucial criterion is whether the
distance between MP1 and MP2 falls within a specified tolerance. If it does, MP2 is assigned
to the existing group labeled as group 1. Conversely, if the distance exceeds the defined
tolerance, MP2 initiates the formation of a new cluster group.

Moving on to point MP3, the algorithm evaluates two distances, namely DMP3,1′
and

DMP3,2 . If neither of these distances meets the tolerance criteria, MP3 takes the role of
establishing yet another new cluster group. However, if either DMP3,1′

or DMP3,2 falls
within the tolerance range, MP3 is assigned to the nearest existing group, ensuring optimal
grouping based on proximity.

This meticulous labeling process is applied consistently to all other points, ensuring
that each point is appropriately categorized within the designated cluster groups. Finally,
after all the streamlines have been meticulously labeled, the algorithm proceeds to compute
the arithmetic average for each cluster group.

The WA algorithm implemented in this study utilizes a three-tiered nested loop
structure: the first loop investigates the ROIs, the second loop delves into the instantaneous
streamlines within each ROI, and the third loop focuses on the individual grid points
comprising each streamline. This intricate process operates on the input data, which consist
of streamlines computed from local velocity fields with a reference velocity equal to the
drift velocity of the corresponding ROI.

It is important to note that the WA method’s accuracy is closely tied to the precise
selection of the reference velocity for streamline computation. Deviations from the actual
vortex core’s drift velocity can lead to inaccuracies in estimating the vortex boundary. While
the WA method may not excel in providing accurate estimates of vortex size and shape, it
exhibits remarkable robustness in effectively eliminating false positives, as demonstrated
by previous research [42]. Additionally, it serves as a valuable means of validating the
accuracy of other vortex detection techniques.

Typically, verifying the presence of a vortex in a flow field involves visual inspection,
but this approach becomes impractical when dealing with large datasets. As such, the WA
method assumes the role of a swirling flow verification tool once potential vortex core
locations and drift velocities have been computed through other detection methods.

2.4. Comparison of MV to other Detection Methods

Vorticity magnitude alone cannot distinguish between shear generated and free shear
vorticity. However, in the current study, MV serves only as an initial means of identifying
ROIs. Detection methods such as Q-criterion, λ2-criterion, or ∆-criterion are far less likely
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to identify a shear region, as a vortex, than the MV method and ultimately produce less
false positives but are more complex [12,49]. The simplicity of the MV method makes it
a good candidate for initially identifying ROIs in the flow and to effectively study the
WA’s ability to reject shear generated ROIs by deliberately identifying some of these shear
regions as potential vortices. It is also important to consider that the vortices in the pitching
airfoil flow-field have vastly different vorticity magnitudes. The Q, λ2, and ∆ methods
have difficulty distinguishing between individual vortices with potentially overlapping
cores and selecting the right threshold in order to distinguish individual vortices can be
complex [49]. For example, in incompressible flows, the Q-criterion identifies vortices as
regions where the vorticity magnitude prevails over the strain-rate magnitude [13,18]. It
accomplishes this by finding connected regions in the flow field having a second invariant
of the velocity gradient tensor that is less than a negative threshold value IIE [13] shown as

I I < −I IE (15)

The second invariant of the velocity gradient tensor (II) is expressed as

I I =
∂ui
∂xj

∂uj

∂xi
(16)

As a result, vortices with overlapping cores will blend together and appear as a single
vortex without the proper threshold value −IIE.

When the entire vortex identification procedure is carried out in a single method, and
it is not guaranteed that the flow is free shear, then it is favorable to use a more elaborate
method such as the Q-criterion, ∆-criterion, or λ2-criterion.

In summary, MV is favored as an ROI identifier for several reasons:

• MV is not employed as a standalone detection method; instead, it is integrated with
multilevel thresholds, CSL, and WA methods.

• The flow field comprises vortices with a wide range of magnitudes and potentially
overlapping cores. Therefore, it is recommended that the use of multilevel thresh-
olds and adjusting WA thresholds is more intuitive, given that the threshold unit is
expressed as a vorticity magnitude.

• Unlike other methods such as Q-criterion, ∆-criterion, or λ2-criterion, MV provides in-
formation about the direction of rotation. This additional feature aids in distinguishing
closely spaced vortices by symmetrically extending the multilevel threshold.

• MV’s simplicity is valuable in the development of a combinatorial method as it facili-
tates the isolation of each method’s contribution.

• For the purpose of evaluating WA’s effectiveness in identifying and eliminating false
positives, it is useful to include some shear-generated ROIs (false positives).

• The computation of derivatives required by the Q-criterion, ∆-criterion, or λ2-criterion
methods is computationally demanding and sensitive to noise, which is often present
in experimental data.

3. New Combinatorial Vortex Detection (CVD) Method

The CVD method has been developed through the integration of three distinct detec-
tion algorithms, MV, CSL, and WA, alongside straightforward image morphology tech-
niques. The primary objective in crafting this method was to ensure its consistent and
reliable capability to detect and characterize multiple vortices within velocity vector maps
generated by PIV. The CVD method’s functionalities encompass labeling each vortex within
the flow field, pinpointing vortex cores, determining drift velocities, calculating circulation,
assessing peak vorticity, and estimating boundary radii for individual vortical structures.
Above all, the method serves the crucial purpose of reducing the dimensions of the original
dataset while preserving essential vortex parameters accurately.

The CVD algorithm is succinctly outlined in the flow chart presented in Figure 4.
Within the flowchart, the three individual detection algorithms are represented by green
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boxes, and the input and outputs are indicated in grey boxes, encompassing the 2C2D
velocity vector field and the characterized vortex field, respectively. To begin, a 2D scalar
vorticity field is derived from the global velocity map. This vorticity field undergoes
indexing through the multilevel threshold algorithm, leading to the generation and labeling
of sensible ROIs via the MV technique.
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Subsequently, the CSL method is employed to evaluate each ROI individually, provid-
ing coordinates for the vortex core, boundary radius, and drift velocity. One of the CVD
method’s standout features is its reliance on Galilean invariant indicators for vortex core
detection. The CSL method, which searches for critical points along perpendicular velocity
profiles, ensures consistent and reliable identification of vortex cores, independent of uni-
form flow shifts. This robust approach significantly broadens the method’s applicability in
dynamic flow scenarios. However, it is essential to note that the CSL algorithm yields these
vortex parameters regardless of the presence of an actual vortex, underscoring its inability
to ascertain vortex existence within a given ROI.

The WA method serves the purpose of validating the presence of a vortex within an
ROI. This is achieved by the WA method searching each individual ROI for closed stream-
lines and automatically confirming or denying the presence of one or multiple vortices. By
identifying vortex-affiliated streamlines based on their inherent geometry, independently
of any symmetry assumptions, this approach allows for the accurate detection of vortices
in complex, asymmetric flows, even in scenarios involving significant vortex interactions.
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It is noteworthy that, for consistency with Robinson’s definition [36], the WA method
necessitates the computation of instantaneous streamlines from a reference frame moving
with the vortex core [12]. Consequently, prior knowledge of the vortex, specifically its core
coordinates and drift velocity, is required. This poses a unique challenge as, unlike CSL and
MV, WA cannot be conducted within the global coordinate system. Instead, local velocity
vector maps must be generated for each ROI, with the drift velocity, calculated from CSL,
subtracted before computing the streamlines. Ultimately, the WA method either accepts an
ROI and labels it as a vortex or rejects it.

The CVD algorithm has been implemented in MATLAB. The code is freely available on
GitHub (link in Supplementary Material). This includes an example vector field generated
from a commercial PIV software (DaVis 8.1, LaVision GmbH Göttingen Germany) and
examples in the form of videos of the oscillating wing, determined vorticity field, and
detected vortices.

4. Verification on a Simulated Flow Field

To determine the minimum required number of velocity vectors, obtained through PIV,
for the CVD algorithm to accurately identify and describe a vortex, an investigation was
conducted using a simulated flow field measuring 15 mm × 15 mm. This simulated field
contained an axisymmetric Burgers vortex positioned at the center of the region. Various
levels of discretization of the velocity field were employed, enabling an examination of
vector density per vortex.

The Burgers vortex solution serves as a well-known model for illustrating key aspects
of modern turbulence theory [50]. This vortex model offers an exact solution to the cylin-
drical Navier–Stokes equations, depicting the flow on a cylindrical vortex core inducing a
circulation denoted as Γ∞ at large distances [51]. For an axisymmetric Burgers vortex in a
fluid with kinematic viscosity ν and radius rv , the distribution of circumferential velocity
vθ and vorticity ω are [52]

vθ(r) =
Γ∞

2πr

(
1 − e−

γr2
4ν

)
(17)

and

ω(r) =
γ Γ∞
4πr

(
e−

γr2
4ν

)
(18)

where the parameter γ represents the axial strain (∂w/∂z) within a velocity field
⇀
u described

by an irrotational pure strain component denoted as
⇀
u s = (αx, βy, γz) and a rotational

component confined to the x-y plane denoted as
⇀
u w =

(
ux, uy, 0

)
. Specifically, for the case

of an axisymmetric Burgers vortex, γ > 0 and β = α = −γ/2.
The simulated flow field consists of (n,m) velocity vectors, denoted as

⇀
v (i, j) with

indices i in the x-direction and j in the y-direction, expressed by
⇀
v (i, j) =

(
⇀
v x(i, j),

⇀
v y(i, j)

)
.

In this simulation, an axisymmetric Burgers vortex is modeled, which travels in the negative
y-direction at a freestream velocity of U∞ = −2.25 mm/s. The vortex exhibits a peak
vorticity of ωpeak = −3.96 s−1, a boundary radius of rv =3.18 mm, and induces a circulation
of Γ∞ =100 mm2/s at far distances.

The effects of changing the grid resolution of the flow field and introducing Gaussian
white noise to the velocity vectors are investigated. This simulation aims to establish the
minimum grid resolution and the acceptable level of velocity field noise that ensures the
accurate application of the CVD algorithm to a universal flow field. Figure 5 illustrates the
simulated vector field, with the background color map representing velocity magnitude.
Additionally, Figure 6 displays the simulated velocity field after subtracting the freestream
velocity, accompanied by a background color map representing vorticity.
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Figure 6. Simulated velocity vector field (200 × 200 resolution) with the freestream velocity (U∞)
subtracted, displaying every 6th vector, and featuring vorticity as a color map in the background.

The resolution is quantified by the number of velocity vectors (n,m) spanning the
diameter of the vortex, which corresponds to ∅v = 2rv. This ratio, nm/∅v, defines the
minimum necessary number of velocity vectors spanning a vortex’s diameter for accurate
identification and characterization. Figure 7 illustrates the vortex radius calculated by
the CVD algorithm across different nm/∅v values, alongside the known vortex radius
employed in the Burgers model. Vortices with nm/∅v < 5 are categorized as Type II errors
(as described later). Considering the expected radius of rv = 3.18 mm, the computation of
vortex radius for rv = 3.18 mm ± 5% is achieved when nm/∅v > 17. Figure 7 also exhibits
discretization artifacts originating from the simulation.

Figure 8 depicts the vortex circulation (Γ) calculated by the CVD algorithm across
various nm/∅v values. Circulation is not computed for cases with nm/∅v < 5, as these
vortices are rejected by the WA method. The circulation derived using the CVD algorithm
pertains specifically to the core region circulation, representing the circulation induced
within the vortex boundaries within −rv ≤ r ≤ rv. This value is expected to be smaller
than Γ∞ = 100 mm2/s, which corresponds to the circulation induced by the vortex at
far distances (as rv → ∞ ). Using Γ∞ = 100 mm2/s is impractical in this study due to
interference from neighboring vortices, making it unobtainable experimentally. Measuring
core region circulation is a more feasible approach to gauge vortex strength, as it can be
calculated within a finite circle with a radius of rv, within which most of the vorticity is
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concentrated [53]. Throughout this section, the term ‘circulation Γcore’ refers to the core
region circulation, and the expected core region circulation is determined as

Γcore =

θ=2π∫
θ=0

r=rv∫
r=−rv

γΓ∞
4πν

(
e−

γr2
4ν

)
rdrdθ (19)

By substituting rv = 3.18 mm into Equation (19), the expected core circulation of the
simulated vortex is determined to be Γcore = 71 mm2/s. Computation of core circulation
within Γcore = 71 mm2/s ± 5% range is achieved when nm/∅v > 25, as shown in Figure 8.
For lower values of nm/∅v, the circulation is consistently underestimated, primarily due
to discretization errors in the summation of vorticity pixels within the vortex boundaries.
The grid resolutions used for calculating vorticity radius (rv) and core circulation (Γcore) are
summarized in Table 1 for reference.
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Figure 7. Vortex radius variations calculated by the CVD algorithm for different nm/∅v values,
compared with the expected radius (rv = 3.18 mm ± 5%) in the Burgers model. Vortices with
nm/∅v < 5 are disregarded. Discretization artifacts from the simulation are also evident.
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Figure 8. Circulation data are excluded for cases with nm/∅v < 5, as rejected by the WA method.
The computed circulation pertains to the core region circulation, representing circulation induced
within the vortex boundaries (−rv ≤ r ≤ rv).

Table 1. Grid resolution thresholds for simulated flow field.

Threshold nm/∅v

Type II error nm/∅v < 5
Computation of rv within 5% of true value nm/∅v > 17
Computation of Γ within 5% of true value nm/∅v > 25

Having established the minimum grid resolution requirements using an ideal simu-
lated flow field, the robustness of the CVD algorithm to noise is now examined. Specifically,
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Gaussian white noise is deliberately introduced to the velocity vector components to deter-
mine the impact on vortex characterization. A simulated vector field with n = m = 200 was
chosen, yielding a resolution of nm/∅v = 43, which satisfies the minimum requirements
for accurate computation of circulation and radius, as determined previously. Gaussian
white noise is generated by adding random real number vectors to the x and y components
of each velocity vector, where both components follow a probability distribution with a
zero mean and a predetermined variance. The noise vectors are statistically independent
and have a standard deviation of εσ times that of the vector fields.

The impact of adding white noise on vortex characterization is assessed by calculating
the standard deviation and mean values of both the core region circulation and the detected
vortex radii across a range of noise levels. For this study, 10 noise levels ranging from
0 ≤ εσ ≤ 0.2 with 100 samples per noise level were investigated. Beyond εσ = 0.2, the
algorithm starts to fail in detecting the vortex. Figure 9 presents the mean circulation results,
along with standard deviation error bars, and the expected circulation value for each of the
10 noise levels examined. Similarly, Figure 10 displays the mean vortex radius results for
each of the noise levels.
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Figure 9. Mean circulation computed by the CVD for 100 simulations at various noise levels, along
with standard deviation error bars.
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Figure 10. Mean radius computed by the CVD for 100 simulations at various noise levels, along with
standard deviation error bars.

The velocity vectors near the center of the vortex exhibit larger magnitudes com-
pared to those near the boundary. Consequently, the impact of adding white noise is less
pronounced near the core. However, increasing εσ eventually results in the entire vector
field appearing incoherent. Notably, this incoherence starts from the outer regions and
progresses inward due to the increasing velocity magnitude in the negative radial direction.
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Consequently, as εσ increases, the detection algorithm tends to underestimate the size
of the vortex. It primarily identifies the center of the vortex, as this region is relatively
less affected by the added noise (or is at least affected to a lesser extent, still resembling
a vortex). Figure 11 illustrates the probability density function (PDF) of the boundary
radius of a detected vortex based on 100 simulations conducted with εσ values of 0.05
and 0.1. For the higher noise level (εσ = 0.1), a distribution with a negative bias in its
mean relative to the expected value of 3.18 mm is observed, indicating that the algorithm
tends to underestimate the size of detected vortices at higher noise levels, as anticipated.
This highlights the robustness of the CVD algorithm under controlled conditions. The
CVD algorithm was able to detect and importantly return the characteristics of a vortex
defined by Burger’s model. The introduction of noise to the velocity field did affect that
detection and determination of the characteristic circulation but was only detrimental at
high noise levels.
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Figure 11. Probability density function of boundary radius for detected vortices based on 100 simula-
tions at εσ values of 0.05 and 0.1, i.e., 5% and 10% noise, respectively.

5. Verification on an Experimental Flow Field

The velocity flow field immediately downstream from an oscillating NACA 0012
airfoil is captured using a PIV system with the experimental setup described below. The
CVD approach is used to identify and characterize vortical structures.

5.1. Experimental Facility and PIV Setup

The experimental facility was a water flume measuring 0.7 × 0.4 m (27.5′′ × 16′′),
designed to exhibit low turbulence characteristics as detailed by Hilderman (2004) [54].
Within this setup, an airfoil is vertically suspended, allowing it to extend through the free
surface into the water channel, positioned perpendicular to the upstream flow direction.
The experimental setup and subsequent analysis were conducted in a two-dimensional
domain, focusing on the planar cross-section of the wing’s wake.

The experimental PIV setup, depicted in Figure 12, was equipped with four 2112 × 2072
pixel resolution, 14-bit, dual-frame CCD cameras (Imager Pro X 4M, LaVision). These
cameras view the investigation plane through four independent local coordinate systems.
Calibration of the cameras was carried out using a 300 mm × 800 mm calibration target
featuring 1.3 mm diameter markers spaced at 3 mm intervals. Subsequently, the captured
images were de-warped to account for variations in camera viewing angles and were
stitched together with specified offsets to create a unified global field.

To mitigate surface refraction effects, an acrylic sheet was positioned at the free surface,
with the cameras capturing images through it. In the illumination process, a double-pulse
Nd:YAG laser (Solo III-15Hz, New Wave Research Fremont, California, United States) was
employed to illuminate the flow. This flow was seeded with 18µm hollow glass spheres
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(SPHERICEL®, Potters Industries, Malvern, PA, USA). The laser beam was focused into a
thin sheet and directed upstream by a mirror and a submerged periscope.
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includes a vertically suspended airfoil extending into the channel and a PIV setup with four CCD
cameras capturing the measurement plane.

Before performing cross-correlation on image pairs, the raw images underwent pre-
processing using commercial software (LaVision GmbH, DaVis 8.05). This preprocessing
step was essential as it enhances particle intensity and shape, ultimately resulting in an
improved correlation peak [55]. The strength of correlation can be affected by disparities in
image intensity caused by factors such as non-uniform light sheets, shadows, reflections, or
variations in particle size [55]. To enhance correlation strength, several image preprocessing
methods were employed, including background intensity subtraction, sliding minimum
subtraction, and min–max filtering for intensity normalization. In this study, the generation
of the vector field involved three passes of a cross-correlation algorithm with window
shifting. The first pass used a 64×64 pixel interrogation window, while the subsequent two
passes employed a 32 ×32 pixel interrogation window with a 50% overlap.

An important consideration in this study is the error that arises from the disparity
between the motion of seed particles (r) and the actual fluid motion. This error is primarily
attributed to particle slip, wherein the seed particles lag behind the fluid motion by a finite
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quantity. To compute the slip velocity to first order, the approach outlined by Adrian and
Westerweel (2011) [56] was utilized:∣∣∣vp − v f

∣∣∣ = [
(ρ − 1)gτ0

ρ

]
(20)

In this equation, vp represents the velocity of the seed particle, v f is the fluid velocity,
and g is the gravitational constant with a value of 9.81 m/s2. The time constant, τ0, is
defined as

τ0 =
ρpd2

p

18v f ρ f
(21)

where dp is the diameter of the seed particles, set to 18 µm, and the densities of the seed
particle and water are ρp = 600 kg/m3 and ρ f = 998 kg/m3, respectively. Additionally,
the density ratio, ρ , is defined as

ρ = ρp/ρ f (22)

The slip velocity error, which amounts to 0.47% relative to the freestream velocity
(U∞ = 0.017 mm/s), is initially approximated using Equation (20). To address variations
in image magnification across the image domain, calibration with a target is employed.
However, it is important to note that image magnification also varies along the thickness of
the light sheet, introducing a magnification uncertainty typically around 0.3% in most PIV
setups, as discussed by Adrian and Westerweel (2011) [56].

Furthermore, the measurement error associated with determining the precise location
of the correlation peak for an 8-pixel particle displacement is approximately 1–2% of the
full-scale velocity for similar planar PIV systems [56]. Lastly, in terms of event timing
accuracy, the system achieves a resolution of 10 ns with a jitter of less than 1 ns.

In summary, the key measurement accuracy specifications of the present PIV system
include a particle slip velocity error of 0.47% relative to the freestream velocity, 0.3%
uncertainty in image magnification, 1–2% error in determining particle displacement
correlation peaks, and 10 ns timing resolution with sub-ns jitter.

The aluminum airfoil used was a continuous extrusion featuring a cross-sectional
shape conforming to the NACA 0012 airfoil profile, with a chord length (C) of 75 mm. The
airfoil’s cross-section and the parameters governing its motion are visually represented in
Figure 13. The airfoil is suspended on a sturdy shaft, which is driven by a stepper motor
(PK258-02Dl, ORIENTAL MOTOR CO. LTD., Tokyo, Japan). This shaft passes through the
airfoil’s aerodynamic center, enabling precise pitch oscillations of any desired waveform.
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Figure 13. Representation of the aluminum airfoil, a continuous extrusion with an NACA 0012 cross-
sectional shape and a chord length (C) of 75 mm. The figure also illustrates the motion parameters,
including pitch oscillations, enabled by a sturdy shaft driven by a stepper motor passing through the
airfoil’s aerodynamic center.
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To orchestrate these oscillations and maintain control, a commercial hardware system
(DS1104, dSPACE Inc., Paderborn, Germany) was programmed. This system governs the
motion of the stepper motor and generates output trigger signals when the airfoil’s pitch
reaches the desired angle. Consequently, this setup synchronizes the imaging system to
capture data at predefined positions, facilitating the acquisition of both phase-averaged
and time-averaged datasets.

To maintain a well-controlled flow and avoid the formation of disruptive leading-edge
vortices in the wake, the airfoil, characterized by its chord length (C), is limited to small
pitch oscillation amplitudes (θA ≤ 8◦). The flow can be characterized by the Reynolds
number (Re), defined in terms of the airfoil’s chord thickness (D) as

Re =
U∞D

ν
(23)

In the experiments conducted in this study, a constant freestream velocity (U∞) of
17 mm/s was maintained, using an airfoil thickness (D) of 8.6 mm and a kinematic viscosity
of water (ν) equal to 1 × 10−6 m2/s, resulting in a Reynolds number (Re) of 146.

The oscillation waveform of the airfoil is given by

θa f (t) =
θA
2

sin(2π f t) (24)

By adjusting the oscillation amplitude (θA) and frequency (f ), various wake conditions
can be achieved.

5.2. Analysis of Oscillating Airfoil Wake

A schematic depicting the oscillating airfoil and the flow features observed in its
wake is illustrated in Figure 14, highlighting the relationship between the airfoil and the
generated vortices. The use of small airfoil oscillation amplitudes results in an orderly
wake pattern, characterized by the shedding of precisely two counter-rotating vortices per
oscillation cycle, as detailed by Bohl and Koochesfahani (2009) [2]. The airfoil, with a chord
length C, is shown in the context of the uniform flow with a velocity U∞.

These vortices are organized into two distinct rows separated by a distance Sy and
aligned with the flow direction. Within each row, the vortices are spaced apart by Sx. The
core coordinates of the vortices are labeled, and a core boundary radius (rv) is defined.

Additionally, the drift velocity,
⇀
v dri f t =

(
vdri f t,x, vdri f t,y

)
, is represented by an instan-

taneous velocity vector at the grid point coinciding with the vortex core. Furthermore,
the vortices are characterized by their peak vorticity (ωpeak) and circulation (Γ). The circu-
lation is approximated by summing the vorticity at each velocity measurement location
determined by PIV within a radius rv of a vortex as follows:

Γ =
x

S

(
⇀
∇×⇀

v
)

ds = Apixel

Ni

∑
i=1

Nj

∑
j=1

ωi,j (25)

Here, s refers to the surface integral over area ds, and Apixel is the surface area of a
rectangle formed from the coordinates of 4 adjacent velocity vectors.

By manipulating the parameters θA and f, various wake configurations can be achieved.
Common wake patterns for sinusoidal pitching symmetric airfoils include the
following [57–60]:

1. von Karman Wake: This configuration, illustrated in Figure 15a, resembles the wake
pattern typically associated with vortex shedding from a cylinder.

2. Aligned Wake: In this arrangement, the transverse separation distance Sy between
vortices approaches zero.
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3. Inverted von Karman Wake: This wake pattern, illustrated in Figure 15b, differs from
the von Karman wake by reversing the rotation direction of each row of vortices, as
described by Godoy-Diana et al. (2009) [10].

At an airfoil pitch angle of 0◦, instantaneous velocity vector fields are computed for
100 wake datasets using PIV. These fields are then averaged to generate a phase-averaged
representation since all the data are collected at a fixed oscillation phase. Subsequently, WA
and CSL methods are applied to the phase-averaged fields, and the results are depicted in
Figure 15. Within Figure 15, the CSL method identifies vortex core locations, represented
as white crosses, and vortex boundary radii, denoted by black circles, superimposed on the
vorticity field.
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Figure 14. Schematic representation of the oscillating airfoil and the associated wake flow features.
The airfoil, with chord length C, interacts with a uniform flow (U∞), generating organized vortices.
These vortices form two distinct rows, separated by Sy and spaced apart by Sx, aligned with the flow
direction. Core coordinates and the core boundary radius (rv) are identified. The drift velocity is
represented by an instantaneous vector at the vortex core grid point.

Figure 15a illustrates the von Karman wake pattern, resulting from sinusoidal pitching
at f = 1.6 rad/s and θA = 8◦, while Figure 15b showcases the inverted von Karman wake
pattern generated by sinusoidal pitching at f = 3.4 rad/s and θA = 8◦. The von Karman
wake typically displays weak vortices characterized by low peak vorticity and circulation.
It exhibits minimal vortex decay over downstream distances and features larger streamwise
spacing (Sx). Conversely, the inverted von Karman wake shown in Figure 15b exhibits
vortices with a higher peak vorticity and circulation. These vortices also experience the
most rapid decay as they progress downstream and display relatively smaller streamwise
spacing (Sx). These two wake configurations at Re = 146 exemplify the extreme cases of
wake vorticity for θA = 8◦.
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Figure 15. Phase-averaged results obtained at an airfoil pitch angle of 0 degrees using PIV data. The
cross-section lines (CSL) method identifies vortex core locations (white crosses) and vortex boundary
radii (black circles), superimposed on the vorticity field; (a) showcases the von Karman wake pattern
generated by sinusoidal pitching at f = 1.6 rad/s and θA = 8◦, while (b) illustrates the inverted von
Karman wake pattern resulting from sinusoidal pitching at f = 3.4 rad/s and θA = 8◦.

A false positive vortex diagnosis, or a Type I error, occurs when a vortex is identified
where none exists [35], potentially due to local shear, boundary influences, or image
stitching inaccuracies. Figure 15 highlights this issue with the CSL method, which may
incorrectly confirm a ROI containing no vortex. However, when the CSL data are processed
through the WA algorithm, these false positives are eliminated, as it checks for streamlines
forming semi-closed, semi-elliptical paths, which are absent in the false detections.

The Supplementary Material includes animations (Supplemental Files S1 and S2)
featuring instantaneous velocity vector fields for the von Karman Wake and inverted von
Karman Wake cases. These animations dynamically illustrate vortex core locations and
vortex boundary radii superimposed on the vorticity field for each wake configuration.

5.2.1. Sample Experimental Vortex for WA and CSL Verification

Figure 16 provides a detailed view of a vortex field sample from Figure 15a, highlighted
within a red square, and includes a locally calculated velocity field centered on the vortex
core. This calculation employs a moving reference frame that matches the drift velocity of
the sample vortex, as described in the pre-WA section of the combinatorial algorithm.
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Figure 16. Illustration of a sample vortex along with a locally computed velocity field centered on the
vortex core. The velocity field is calculated in a moving reference frame matching the drift velocity of
the sample vortex. In (a), streamlines generated from the velocity field overlay the local vorticity field,
and (b) highlights five streamlines meeting WA criteria, along with cluster points (black), determined
via the CSL method, denoted by a black ‘+’ symbol.

In Figure 16a, the streamlines generated from this velocity field are plotted over the
local vorticity field. Figure 16b highlights five streamlines that meet the criteria set by the
WA method. Each of these compliant streamlines is represented by a point (depicted as
black dots), and the vortex core, previously determined using the CSL method, is indicated
with a black ‘+’ symbol. The WA algorithm serves to confirm the presence of a vortex
within the sample ROI, consistent with the vortex definition of Robinson (1991) [36]. It also
verifies the existence of a single vortex within the sample ROI and corroborates that the core
location, computed by CSL, closely aligns with the geometric center of all the complying
streamlines. Should the WA algorithm identify multiple vortices within a single ROI, it
signals the possibility of Type II errors. However, it is crucial to note that the WA algorithm
does not correct these errors directly. Instead, it acts as an indicator, and addressing
Type II errors requires additional processing, such as using clustering algorithms. The
primary vortex is determined by the largest number of complying streamlines, while other
streamline clusters are marked as potential Type II errors. This underscores that while the
WA algorithm detects deviations, further analyses and processing are necessary to correct
and characterize potentially missed vortices within the ROI.

A false negative, or a Type II error, occurs when a vortex exists in the flow but remains
undetected by the algorithm. Unfortunately, due to the a priori knowledge required by
the WA algorithm, it is inevitable to encounter Type II errors for vortices that fall outside
the predefined ROI. However, when multiple vortices coexist within a single ROI, the WA
algorithm has the capability to identify a Type II error, but only if the drift velocity of the
primary vortex closely matches that of any secondary vortices represented by separate
streamline clusters.

The proposed CVD algorithm offers ways to minimize Type II errors through two key
mechanisms:

• Wider Threshold Bounds: By expanding the threshold bounds in the threshold inten-
sity vector (TIV) defined in Equation (1) for the MV algorithm, the ROI can encompass
weaker vortices, including those with lower vorticity. This adjustment ensures that
such vortices are considered by both the CSL and WA algorithms.

• Erosion Process Optimization: Employing two smaller sizes of image morphology
(IM) structuring elements in the erosion process preserves smaller vortices, those with
small values of (rv), allowing them to remain within the ROI. These vortices can then
be assessed by the CSL and WA algorithms.

It is important to note that implementing these modifications significantly increases the
computational time. Therefore, it is recommended to define a minimum vortex size rv,min
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and strength ωpeak,min before running the algorithm. Weak and/or small vortices falling
below the specified threshold are intentionally disregarded, reducing the algorithm’s
computational demands. The selection of both the threshold defined in Equation (1) and
the sizes of IM structuring elements (Se1, Se2, and Se3) are based on the goal of minimizing
Type II errors while maintaining efficient computation.

5.2.2. Vorticity Distribution Profiles

With the vortex identified and core location determined, the distribution of vorticity
within the vortex can be examined. The vorticity profiles of these vortices play a crucial role
in assessing various aspects of vortex characteristics, including the accuracy of the vortex
radius (rv), vortex shape and symmetry and their suitability for fitting analytical models.

In Figure 17, the vorticity distribution of the sample vortex depicted in Figure 16 is
plotted against the dimensionless radius (y − yc)/rv along a constant y line traversing the
vortex core. The vorticity profile indicates a Gaussian distribution with slight asymmetry,
which may be attributed to interactions with nearby counter-rotating vortices.
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Figure 17. Vorticity distribution profiles of an identified vortex, showing the vorticity plotted against
the dimensionless radius along a constant y line traversing the vortex core. Additionally, vorticity
profiles for ideal Burgers and Rankine vortices are included, sharing the same peak vorticity and
radii as computed by the CSL algorithm.

Figure 17 also includes vorticity profiles for ideal Burgers and Rankine vortices. These
profiles have the same peak vorticity and radii as those computed by the CSL algorithm.
The Burgers vortex was described in Equations (17) and (18) and the Rankine vortex
represents a simplified model that attempts to mimic real vortices by dividing them into
two regions: the inner core with uniform vorticity, resembling a forced vortex, and the outer
core, which lacks vorticity, simulating an irrotational or free vortex [61]. In contrast, the
Burgers vortex solution is a more intricate model used to illustrate fundamental elements
of modern turbulence theory, providing an exact solution to the cylindrical Navier–Stokes
equations that accounts for flow on a cylindrical vortex core inducing circulation (Γ∞) at
large distances [51].

The vorticity distribution plot in Figure 17 reveals that the sample vortex profile closely
resembles a Burgers vortex, sharing the same radius and peak vorticity values computed
by the CSL algorithm. This correspondence validates the CSL algorithm’s effectiveness in
predicting vortex radius and core coordinates from a PIV-generated velocity vector field. A
slight spatial offset between the experimental vortex and the Burgers vortex is attributed to
the spatial resolution of the experimental PIV data. This discrepancy arises from the CSL
algorithm’s sequential reading of vp(ς, ψ) in Equation (4), from left to right. When the true
core coordinate falls between two velocity vectors, the algorithm consistently selects the
leftmost value.
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5.2.3. Circumferential Velocity Profiles

In addition to vorticity, circumferential velocity profiles are valuable for characterizing
vortical flow structures. The circumferential, or azimuthal, velocity represents the velocity
component perpendicular to any straight line passing through the vortex core.

Figure 18 provides a comparison of the circumferential velocity profile for the sample
vortex from Figure 16 against theoretical profiles for a Rankine vortex and Burgers vor-
tex. The sample vortex profile is plotted alongside the analytical curves. As observed in
Figure 17, defining the vortex boundary radius based solely on vorticity profiles requires
an arbitrary cutoff [1]. This highlights the limitations of relying solely on the MV method
for radius determination. However, circumferential velocity profiles offer a distinct ad-
vantage for defining the boundary. Within the vortex radius, the circumferential velocity
magnitude generally increases with radial distance, reaching a maximum value precisely
at the boundary (rv) [1]. This characteristic peak at rv is clearly illustrated for the sample
vortex in Figure 18. Using the peak velocity avoids ambiguity and arbitrary cutoffs. Addi-
tionally, circumferential velocity can be measured farther from the high shear at the core,
where PIV more accurately represents curvature. Thus, circumferential profiles provide an
unambiguous vortex boundary definition without relying on vorticity gradients alone.
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Figure 18. Comparison of circumferential velocity profiles for the sample vortex, a Rankine vortex,
and a Burgers vortex.

Circumferential velocity profiles effectively showcase the CSL algorithm’s ability to
distinctly identify the boundary of a vortex core by pinpointing the radial location where
the absolute circumferential velocity is maximized. This method of defining the core
boundary radius is less prone to ambiguity compared to one derived from vorticity profiles,
making it a superior approach for computing vortex boundary radii.

5.2.4. Circulation Analysis in the Von Karman Wake

With the CVD approach now in place, it can be used to analyze a large number of
PIV datasets without the need for setting limits to individual vector sets to detect vortices.
The flow field in Figure 15a has some unique characteristics. In the near wake, vortices
exhibit more consistent spatial locations compared to those further downstream. In other
words, vortex cores close to the trailing edge of the flapping wing consistently appear in
the same positions across oscillation periods. However, structures farther downstream
demonstrate greater spatial variation. Phase averaging multiple vector fields reduces
the magnitudes of spatially varying vortices while preserving more consistent structures.
The CVD method enables quantifying key wake parameters after computing vorticity
distributions and defining vortex boundaries and cores. As highlighted before, these
parameters include circulation (Γ), peak vorticity (ωpeak), vortex radii (rv), vortex drift
velocity (vdri f t), streamwise spacing (Sx), and transverse spacing (Sy).
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Figure 19 plots the circulation of 25 instantaneous vector fields from the case illustrated
in Figure 15a against dimensionless downstream distance when the airfoil angle is θa f = 0◦.
Individual field circulations from the instantaneous images appear as black dots, while
phase-averaged circulation is shown in red. This illustrates the increasing variability of
the vortex core streamwise coordinate xC with downstream distance. In the near field
xC = x/C < 2, tight vertical data groups indicate consistent vortex locations. However,
groups become indistinguishable farther downstream as locations vary. Consequently,
phase averaging underestimates circulation versus individual fields.
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Figure 19. Circulation vs. dimensionless downstream distance for 25 instantaneous fields (black dots)
and phase-averaged data (red circles) when the airfoil is at θa f = 0◦. Near field (xC < 2) shows tight
vertical data grouping, indicating consistent vortex positions.

Circulation provides critical insights into vortex strength and influence within the
wake. Examining circulation across instantaneous fields reveals vortex evolution and
interactions over time, granting a deeper understanding of von Karman wake dynamics.

5.3. Considerations for Higher Reynolds Number Applications

At the demonstrated Reynolds number of 146 based on airfoil thickness and free-
stream velocity, the flow remains laminar and ordered, facilitating structured vortex shed-
ding amenable to characterization with the combinatorial vortex detection (CVD) technique.
However, applying the algorithm to scenarios with significantly higher Re introduces addi-
tional complexities that must be considered.

As Re increases in the transitional flow regime, turbulence levels intensify. This places
greater demand on spatial resolution to fully resolve steeper velocity gradients and smaller-
scale flow structures. If spatial resolution becomes insufficient, discretization errors may
prevent accurate calculation of vorticity and vortex parameters. Additionally, heightened
turbulence increases variability in vortex properties such as circulation, boundary radius,
and peak vorticity. To achieve a statistically reliable description of vortex characteristics, an
increased number of velocity field samples is necessary. Lastly, elevated turbulence can
cause vortex core boundaries to become more diffuse [62,63], complicating boundary iden-
tification. Addressing these challenges would necessitate modifications such as improving
localized velocity calculations and using an adaptive ROI threshold approach.

Proper validation of the CVD algorithm at higher Re requires a more controlled
experimental facility and PIV setup meeting minimum resolution requirements. While not
explored presently with the available resources, the proposed method shows promise for
characterization of transitional flows. Future efforts should focus on method refinements
targeting higher Re applications.
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6. Conclusions

In this study, a robust vortex detection and characterization algorithm has been devel-
oped and rigorously tested on 2C2D velocity vector fields obtained from the wake of an
oscillating NACA 0012 airfoil within a uniform flow. Existing vortex detection methods
face major limitations in handling experimental data, including sensitivity to measurement
noise and substantial velocity gradients near vortex cores that complicate particle seeding
and the performance of the PIV algorithm [12,39].

The proposed combinatorial vortex detection (CVD) algorithm aimed to address these
challenges and accurately identify wake vortices and their attributes. It harnesses the
strengths of three distinct vortex detection methods, ensuring reliable vortex detection
solutions. The central technique was the cross-section lines method, which played a key
role in determining vortex core coordinates, boundary radii, and drift velocities. Evaluation
of vorticity and velocity profiles verified the algorithm’s precision in locating cores, defining
boundaries, and calculating drift vectors, thus precisely enabling definition of the vortex
swirling strength.

In the pursuit of comprehensive verification, the winding angle method emerged
as a valuable tool for the verification of vortex detection, facilitating the reliable identi-
fication and subsequent elimination of false positives within the dataset. Such precise
measurements have significant implications for comprehending and characterizing vortical
structures with accuracy.

A limitation of the current study is that rigorous validation was restricted to a single
low Reynolds number airfoil case. As turbulence levels intensify with increasing Reynolds
numbers, factors such as sufficient spatial resolution, statistical convergence of vortex
parameters, and diffuse vortex boundaries would need to be addressed. However, the CVD
methodology shows promise for adaptation to characterize transitional flows at higher
Reynolds numbers with proper experimental design. Refinements to the algorithm could
incorporate spatial and temporal mesh refinement within vortex cores and adaptive ROI
thresholds tuned to local vorticity gradient thicknesses. Further assessment across a range
of higher turbulence flows would aid in refinement and demonstrate expanded applicability.
Additionally, future work could explore combining this vortex analysis approach with
machine learning for automated parameter tuning at varying flow conditions.

In summary, the CVD method could significantly contribute to the advancement of
vortex detection and characterization techniques in the realm of fluid dynamics research.
The demonstrated efficacy of the algorithm in addressing the complexities associated with
experimental data reaffirms its potential as a valuable asset in the study of vortical flows.
By mitigating challenges related to measurement uncertainties and the intricate dynamics
of vortex structures, this approach facilitates enhanced understanding and modeling of
vortical phenomena, ultimately advancing the comprehension of fluid mechanics and its
manifold of applications.

Supplementary Materials: Figure S1 illustrates the von Karman Wake, and Figure S2 showcases
the Inverted von Karman Wake. The Figure S1, Figure S2 and CVD algorithm’s MATLAB codes are
available on GitHub at https://github.com/dsnobes/Combinatorial-Vortex-Detection-Algorithm.
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