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Abstract: Particle concentration is an important parameter for describing the state of gas–solid two-
phase flow. This study compares the performance of three methods, namely, Back-Propagation Neural
Networks (BPNNs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM),
in handling gas–solid two-phase flow data. The experiment utilized seven parameters, including
temperature, humidity, upstream and downstream sensor signals, delay, pressure difference, and
particle concentration, as the dataset. The evaluation metrics, such as prediction accuracy, were used
for comparative analysis by the experimenters. The experiment results indicate that the prediction
accuracies of the RNN, LSTM, and BPNN experiments were 92.4%, 92.7%, and 92.5%, respectively.
Future research can focus on further optimizing the performance of the BPNN, RNN, and LSTM to
enhance the accuracy and efficiency of gas–solid two-phase flow data processing.

Keywords: gas–solid two-phase flow data processing; BPNN; RNN; LSTM

1. Introduction

Gas–solid two-phase flow is a common and complex fluid state in industries such
as energy and chemical engineering [1]. Particle concentration is a key parameter that
determines the flow characteristics of gas–solid two-phase flow and plays a crucial role in
investigating these characteristics and optimizing industrial production processes. Vari-
ous techniques, including microwave [2], capacitance [3], acoustic [4], and optical wave
fluctuation [5] techniques, have been proposed for measuring the parameters of gas–solid
two-phase flow. Particularly, the electrostatic principle has received widespread attention
in recent years due to its reliability and high sensitivity. Nonintrusive sensors are widely
used for detecting charge in various industrial applications [6,7].

Traditional methods extract useful signals from electrostatic signals, using different
algorithms to accurately study the parameters of gas–solid two-phase flow. For instance,
Wang et al. decomposed the signal from an electrostatic sensor using harmonic wavelet
transform (HWT) [8] and discrete wavelet transform (DWT) [9]. Zhang et al. utilized the
Hilbert–Huang transform to obtain the average flow characteristic parameters of particles
within the sensor, such as average flow velocity and average mass flow rate [10]. However,
a challenge of electrostatic sensing technology is establishing a model between particle
concentration, flow rate, and electrostatic current signal. This is due to the complexity
of the electrostatic behavior of powder particles, as well as the amount and polarity of
charges being related not only to the properties of the particles themselves (shape, size,
distribution, roughness, relative humidity, chemical composition, etc.) but also to the
material and arrangement of the pipeline, as well as conveying the conditions of particles
within the pipeline (pipe size, conveying velocity) [11,12]. Researchers have improved
the characteristics of the instrument to mitigate the influence of sensors on flow patterns
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and enhance the consistency of spatial sensitivity, thereby improving measurement accu-
racy [9,10]. This compensation for spatial sensitivity is an important step in enhancing
measurement accuracy and improving the instrument’s suitability for flow patterns.
From a theoretical perspective, it is still challenging to explain the complexity and random-
ness of gas–solid and other multiphase flow systems. Therefore, it is crucial to acquire a
large amount of data through experiments and in actual production processes, study the
phenomena using statistical methods, and establish models. Modeling unknown functions
of unrelated variables using machine learning techniques is an effective application of
electrostatic sensor modeling. Deep learning algorithms can effectively model variables
such as signals, concentration, and particle velocity. Furthermore, deep learning [13–15]
offers valuable characteristics that allow for efficient learning and processing of complex
relationships and non-linear features in data, providing efficient and accurate modeling
and prediction capabilities.

In the field of measurement research on gas–solid two-phase flow, Yan et al. have
made effective explorations in applying machine learning algorithms to optimize models
and improve measurement accuracy [16]. Despite this progress, there has been relatively
little research on using deep learning methods to determine parameters in gas–solid two-
phase flow.

Nevertheless, deep learning models demonstrate sufficient flexibility to promptly
respond to and update based on changes in data in order to adapt to dynamic system
variations. This characteristic provides robust support for industrial production optimiza-
tion, environmental protection, and process safety. Despite the limited research on deep
learning for determining parameters in gas–solid two-phase flow, it is foreseeable that deep
learning will emerge as a pivotal method in future studies, offering new perspectives and
opportunities for addressing related issues.

2. Materials and Methods

Deep learning is a sub-field of artificial intelligence that focuses on developing algo-
rithms and models capable of learning and making predictions or decisions without explicit
programming. It involves studying statistical models and algorithms that enable computers
to automatically analyze and interpret complex patterns and relationships in data.

At the core of machine learning is the construction of computational models that can
learn from data and make predictions or decisions based on that knowledge. These models
are trained using large datasets, which consist of input data and corresponding desired
outputs or outcomes. During the training process, the models learn to recognize patterns,
extract meaningful features, and generalize from the data to make predictions or decisions
on new, unseen data.

In the context of complex gas–solid two-phase flow data, this study utilized several
models for predicting particle concentration, including RNNs, LSTM, and BPNNs.

2.1. BPNN

The main steps of training a BPNN include parameter initialization, forward propaga-
tion, loss computation, back propagation, and parameter updating [17–19]. During forward
propagation, input samples are processed through the network to obtain output results.
The loss function is then calculated to measure the discrepancy between the output and
the target. Subsequently, back propagation is performed to compute the gradients layer by
layer and update the weights and biases. This iterative process continuously adjusts the
parameters to make the network output approach the target values.

2.1.1. Forward Propagation

During forward propagation, input data are transmitted from the input layer to
the output layer. At each layer, the input is multiplied by weights and passed through
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an activation function to produce the output. The process can be described using the
following equations:

Zi =
n

∑
i=1

(Wi Ai−1 + bi) (1)

yi = f (Zi) (2)

In these equations, Zi represents the weighted sum of inputs at layer i, Wi represents
the weighted matrix connecting layer i − 1 to layer i, Ai−1 represents the output of layer
i − 1, bi represents the bias vector at layer i, f () represents the activation function, and Ai
represents the output of layer i.

2.1.2. Backward Propagation

Backward propagation is used to calculate the gradients of the parameters (weights
and biases) with respect to the loss function. This allows the neural network to update its
parameters and improve its performance. The gradients are calculated using the chain rule
of differentiation.

For example, let us consider the output layer. Assuming the activation function is f (),
the loss function is L, the input to the output layer is Z, and the output is A. The gradient of
the loss function with respect to the output can be calculated as:

∂L
∂Z

=
∂L
∂a

f ′(Z) (3)

Here, f ′ represents the derivative of the activation function. Using these gradients, the
weights and biases can be updated according to the following formulas:

wl = wl − a
∂L
∂wl

(4)

bl = bl − a
∂L
∂bl

(5)

In these formulas, a represents the learning rate of the neural network, ∂L/∂wl repre-
sents the gradient of the loss function with respect to the weights, and ∂L/∂bl represents
the gradient of the loss function with respect to the biases.

The common activation functions and their expressions are as follows:

fSigmoid =
1

1 + e−x (6)

The Sigmoid function can map real numbers to between 0 and 1 in the input and is
usually used for binary classification problems.

fReLU = Max(0, x) (7)

The ReLU function returns the input itself for non-negative inputs and returns 0 for
negative inputs. ReLU is widely used in deep learning because it can accelerate training
and reduce the risk of overfitting.

fTanh =
ex − e−x

ex + e−x (8)

The Tanh function is similar to the Sigmoid function but maps the input to between
−1 and 1 and is usually used for multi-classification problems.

These activation functions introduce non-linearity into the neural network, allowing it
to learn complex patterns and make predictions. The choice of activation function depends
on the nature of the problem and the characteristics of the data.
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2.1.3. Advantages and Disadvantages of BPNNs

BPNNs have advantages in handling non-linear relationships, flexibility, and adaptabil-
ity. By optimizing model parameters, it effectively reduces the loss function and improves
performance. However, BPNNs have the drawbacks of long training time, susceptibility to
local minimums, and sensitivity to outliers, requiring data preprocessing and parameter
tuning to avoid overfitting. When dealing with gas–solid two-phase flow data, additional
parameter tuning and preprocessing may be necessary to enhance stability and accuracy.

2.2. RNNs and LSTMs

RNNs and LSTMs are neural network architectures used for processing sequential
data [20]. RNNs have recurrent connections that allow information to be passed and
shared within a sequence, capturing temporal dependencies and contextual information.
However, traditional RNNs suffer from the issues of vanishing and exploding gradients.
To address this problem, LSTM was introduced, which incorporates gate mechanisms to
selectively update, retain, or discard information, mitigating the gradient problem and
better capturing long-term dependencies. Hence, LSTM can be regarded as an enhanced
version of RNN designed to improve the handling of long sequential data.

2.2.1. RNNs

An RNN (Recurrent Neural Network) is a type of recursive neural network used for
processing sequential data. Its principle can be represented by the following equation:

ht = f (Whh + Wxhxt + bh) (9)

Here, ht represents the hidden state at time step t, xt represents an element of the input
sequence, Whh is the weight matrix from hidden state to hidden state, Wxh is the weight
matrix from input to hidden state, bh is the bias vector, and f is the activation function.

2.2.2. LSTM

LSTM (Long Short-Term Memory) is a variant of Recurrent Neural Networks (RNNs)
that effectively handles long-term dependencies. It achieves this by incorporating gate
mechanisms to control the flow of information, which primarily consists of input gate,
forget gate, and output gate [21,22], as follows:

1. Forget gate.

The forget gate determines which information from the previous time step’s memory
state should be forgotten. It is calculated using the following formula:

g f = δ(w f [ht−1, xt] + b f ) (10)

Here, w f and b f are the parameters of the forget gate, and δ represents the Sigmoid
activation function; ht−1 refers to the previous time step’s hidden state, and xt represents
the current input.

2. Input gate.

The input gate determines which information from the current time step should be
updated into the memory state. It is calculated using the following formula:

it = δ(wi[ht−1, xt] + bi) (11)

gt = tanh(wg[ht−1, xt] + bg) (12)

Here, it denotes the output of the input gate, gt represents the candidate memory value
at the current time step, and wi, wg, bi, and bg are the weights and biases of the input gate.
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3. Updating memory state (cell state).

The previous memory state, ct−1, is updated based on the outputs of the forget gate
and input gate. The computation formula is as follows:

ct = δ(w f [ht−1, xt] + b f ) (13)

Here, ct represents the current memory state.

4. Output gate.

The output gate determines which information from the current hidden state should
be output to the next time step or externally. It is calculated using the following formula:

ot = δ(wo[ht−1, xt] + bo) (14)

ht = ottanh(ct) (15)

Here, Ot denotes the output of the output gate, and ht represents the current hid-
den state.

At each time step, LSTM utilizes the input, previous hidden state, and memory state
to update the memory state and hidden state through the computation of the forget gate,
input gate, and output gate. This enables LSTM to model and retain information from
sequential data.

2.2.3. Advantages and Disadvantages of RNNs and LSTM

RNNs can effectively capture temporal dependencies in the time-series data of gas–
solid two-phase flow, enabling improved prediction and analysis. Its strength lies in its
ability to capture sequential time-dependent information, making it suitable for handling
time-series data in gas–solid two-phase flow. However, it suffers from the challenge of
vanishing or exploding gradients when dealing with long sequences. Consequently, its
performance may be limited when handling extremely long sequences.

On the other hand, LSTM’s memory units allow for selective retention and forgetting
of information, making it a suitable choice for addressing long-term dependencies in gas–
solid two-phase flow data. It overcomes the issue of long-term dependencies in RNNs and
handles temporal data more effectively in gas–solid two-phase flow. Compared to tradi-
tional RNNs, it performs better in handling long sequences and long-term dependencies.
Nevertheless, it may require increased computational resources and training time.

3. Data Collection and Processing
3.1. Data Collection

The experiment required the collection of data such as temperature, humidity, pressure
difference, and velocity during the running process of the particles. The experimental
equipment utilized a gas–solid two-phase flow detection device provided by the laboratory
to complete the research work. The experimental platform is shown in Figure 1.

The experimental platform equipment included a separator, a receiving bin, a feeding
bin, a blower, a power supply unit, and a digital multimeter, as well as a ring-shaped
electrostatic sensor, temperature and humidity sensors, and a pressure difference sensor
located near the annular electrostatic sensor. The experiment used fly ash particles with
particle sizes ranging from 0.1 mm to 0.9 mm.
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The following equipment was used for measurement and monitoring in this experi-
mental platform:

1. KZWSRS485 temperature and humidity transmitter.

The Kunlun Zhongda Company in Beijing, China manufactures this transmitter, which
comprises a sensor, signal-processing circuit, and communication interface. It converts the
measured temperature and humidity data into standard electrical signal output. The tem-
perature measurement range is from 0 ◦C to 50 ◦C, and the humidity measurement range
is from 0%RH to 100%RH. The KZWSRS485 temperature and humidity transmitter have
high accuracy, reliability, and stability and can operate within a wide range of temperatures
and humidity.

2. KZY-808BGA pressure difference sensor.

The sensor, produced by Kunlun Zhongda Company in Beijing, China, is designed
for measuring air pressure differences and converting them into corresponding electrical
signal outputs. It offers a measurement range from 0 to 3 KPa.

3. Electrostatic sensor.

Two inductive ring-shaped electrostatic sensors and a metal shield were used in the
experiment. The sensor electrodes were made of highly sensitive stainless steel material in a
ring-shaped structure, providing good wear resistance. To ensure the stability of the signal
output, the electrostatic sensor was equipped with a metal shield to reduce the influence of
external electromagnetic interference.

4. APS3005S-3D power supply unit.

This device is manufactured by Shenzhen AntaiXin Technology Co., Ltd., located in
Shenzhen, China. It provides stable voltage and current outputs for sensors, ensuring the
normal operation of the sensors.This device provided stable voltage and current output to
the sensors, ensuring their normal operation.

5. GDM-842 digital multimeter.

The manufacturer of the GDM-842 Digital Multimeter is GW Instek (Good Will In-
strument Co., Ltd.), located in Taiwan, China. This multimeter is used to measure voltage
signals outputted by sensors, ensuring accurate measurement results.
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The use of these devices in the experimental platform aimed at achieving precise
measurements and data acquisition of environmental conditions, providing reliable data
support for the experiment.

Due to the randomness and complexity of fluid motion, the charge signals sensed by
electrostatic sensors often exhibit instability. Processing the charge signal itself is relatively
challenging. Therefore, the experiments were designed to consider the influence of the
sensor’s impedance and signal bandwidth, and corresponding conditioning circuits were
developed. Through the conditioning circuit, the charge signal was able to be converted
into a stable and measurable voltage signal.

The data acquisition system uses an FPGA (Intel’s EP4CE40F) as the main control
chip, which is produced by Shenzhen Gongshen Electronic Technology Co., Ltd. located
in Shenzhen, China. It employs the AD7606 as the ADC with a precision of 16 bits and
a sampling frequency set at 104 Hz. In addition, to achieve data storage, a NAND flash
memory was added, utilizing the H27U1G8F2B chip from Micron Technology Inc., located
in Boise, ID, USA. The CY60813A chip from Cypress Semiconductor Corporation in San
Jose, CA, USA, was utilized as the core chip for USB transmission. This chip played a
crucial role in enabling seamless communication with the PC. The data collection process is
illustrated in Figure 2.
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The experiment utilized a feeder and a blower to control the mass flow rate and
velocity of particles, obtaining data on gas–solid two-phase flow at different mass flow
rates and velocities within a range of 30–50 m/s for velocity and 33.5–54.5 g/s for mass
flow rate.

3.2. Calculation of Particle Velocity and Particle Concentration

The experiment involved the processing of voltage output from two electrostatic
sensors. After running the system for a period of time, it was observed that the signal
outputs between these two sensors exhibited notable similarities. This trend can be clearly
observed in Figure 3.

The experiment measured the difference in the index numbers corresponding to
the peak values of signals from the upstream and downstream sensors as the particle
delay. Considering the known constant values of the sampling frequency and the distance
between the two electrostatic sensors, this delay value can be used as an approximate
particle velocity.
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After obtaining the velocity, the particle concentration can be calculated using the
following formula:

C =
q

AV
(16)

where C is the particle concentration, q is the mass flow rate, V is the particle velocity, and
A is the cross-sectional area of the particle transport pipeline.

By following the aforementioned process, the experiment obtained complete data
for temperature, pressure difference, humidity, signals from upstream and downstream
sensors, velocity, and particle concentration.

3.3. Normalization of Model Data

Data normalization is typically performed in deep learning models to ensure that the
input data have similar value ranges across different features. This helps in accelerating
model convergence and improving stability. Normalization prevents issues such as feature
bias and excessive gradient changes, allowing the model to treat all features fairly and
enhance training effectiveness and reliability. It is calculated using the following formula:

x′ =
x − xmin

xmax − xmin
(17)

where, xmin refers to the minimum value of the original data, and xmax refers to the
maximum value of the original data. x refers to the value before normalization, and x′

refers to the value after normalization.

4. Results
4.1. Experimental Preparation and Environment Configuration

The experiment utilized a two-phase gas–solid flow dataset consisting of seven
columns of data, including temperature, humidity, upstream sensor signal, downstream
sensor signal, delay, pressure differential, and particle concentration. The training set
consisted of 25,500 samples with varying velocities and particle concentrations. The test set
was extracted from the remaining samples and contained 5100 samples. The training set
was used for model training and parameter optimization, while the test set was used to
evaluate the model’s predictive performance.
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To establish the experimental environment, Jupyter Lab (4.0.3) was chosen as the com-
putational environment, which is a scientific computing tool implemented in an interactive
manner. For the selection of the main programming language, Python (3.9) was adopted,
which is a high-level programming language widely used in the field of machine learning.

To enhance the reliability of project management and the independence of experiments,
the Anaconda platform was utilized. With Anaconda, it is possible to create isolated virtual
environments to ensure the isolation of dependencies between different projects. Within
the virtual environment, TensorFlow was installed as the machine learning library, which is
an open-source framework developed by Google. Along with TensorFlow, other essential
machine learning libraries and tools such as Keras, PyTorch, and scikit-learn experiments
were installed to enhance the functionality and flexibility of the experiments.

4.2. Model Evaluation Metrics

This experiment set up three evaluation metrics: prediction accuracy (AF), mean
squared error (EMSE), root-mean-square error (ERMSE), and mean absolute error (EMAE).
The specific expressions are:

AF =
1
n∑ 1 − |y − y′|

y
(18)

ERMSE =

√
1
n∑ (y − y′)2 (19)

EMSE =
1
n∑ (y − y′)2 (20)

EMAE =
1
n∑

∣∣y − y′
∣∣ (21)

where n represents the total number of samples, and y and y′ represent the actual value
and predicted value, respectively.

4.3. Model Construction and Parameter Determination

In order to construct a model for predicting particle concentration, the present ex-
periment used temperature, humidity, upstream and downstream sensor signals, velocity,
and pressure difference as input parameters and the predicted particle concentration as
the output of the model. The experiment employed BPNN, RNN, and LSTM models
for modeling. Before beginning the modeling process, it was necessary to determine the
number of hidden layers and the number of nodes in the hidden layers.

The decision to utilize three hidden layers in the experimental setup was driven
by the findings of preliminary experiments, which suggested that a model with three
hidden layers exhibits superior capability in capturing the intricate features within the
dataset. Conversely, the potential drawbacks associated with introducing a fourth hidden
layer, such as an increased risk of overfitting, heightened model complexity without
substantial performance enhancements, and escalated computational expenses, were taken
into consideration. The primary focus of the experiment was to explore the impact of
varying node quantities within the three hidden layers. Starting with 40 nodes, the quantity
was incrementally increased to 80 in increments of 10 nodes. Evaluation of each parameter
combination was conducted to pinpoint the combination of node quantities that yielded the
most favorable results. Throughout the experiment, EMSE was employed as the designated
loss function.

Following the completion of training, the model’s performance was evaluated using the
test set. The prediction accuracy of models with different parameter settings was quantified
by calculating the loss function. The experimental results are shown in Figures 4–6.
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Based on the results presented in Figures 4–6, it is evident that the BPNN demonstrated
superior predictive performance when configured with three hidden layers and 80, 60, and
50 memory units in each respective layer. Similarly, the LSTM model delivered optimal
results with three hidden layers and 80, 80, and 70 memory units, while the RNN model
exhibited the best predictive performance when utilizing three hidden layers with 80, 40,
and 40 memory units. The decision to set the maximum iteration count to 500 was informed
by experimental data indicating that errors across different models converged to a stable
level after 500 iterations. The parameters determined for the BPNN, LSTM, and RNN
models are presented in Table 1.

Table 1. The key parameters of the model.

Parameter BPNN RNN LSTM

Number of Hidden Layers 3 3 3
Number of Units per Layer 80, 60, 50 80, 40, 40 80, 80, 70

Maximum Number of Iterations 500 500 500
Training Batch Size 32 32 32

4.4. Results

When handling gas–solid two-phase flow data, the present experiment compared
the predictive performance of different methods and used three evaluation metrics for
comparison, including AF, ERMSE, and EMAE. Table 2 shows the prediction results of the
different models. Figure 7 presents a comparison between the predicted values and actual
values for the different models.

Table 2. Comparison of prediction results for different models.

Prediction Model AF RMSE RMAE

BPNN 92.5 52.22 37.45
RNN 92.4 53.19 38.88
LSTM 92.7 53.43 38.70
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After obtaining the predicted values and actual values of the different models’ test sets,
the results were divided into different intervals based on the relative error. By evaluating
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the proportion of low-error-interval samples, the performance of the models was able to
be quantitatively assessed. A high proportion of low-error-interval samples indicated that
the model could accurately predict the majority of samples, demonstrating a high level
of precision. The proportions of samples within different relative error intervals for each
model can be observed in Figure 8.
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Based on the analysis of experimental results, it was evident that there were differences
in the performance of the LSTM, RNN, and BPNN models in predicting the relative error of
particulate matter concentration in gas–solid two-phase flow. In the relative error range of
[0.0, 0.1), the LSTM model demonstrated strong performance, with an accuracy of 74.27%,
which was slightly higher than the RNN model (71.57%) and the BPNN model (71.61%).
Regarding the overall prediction performance indicators, the three models showed similar
values in prediction accuracy, root-mean-square error, and mean absolute error, with no
significant advantages observed. The LSTM model exhibited superior memory and long-
term dependency capabilities compared to the BPNN and RNN, making it suitable for
handling time-series data and long-distance dependency relationships, thereby providing
the LSTM model with stronger modeling capabilities for gas–solid two-phase flow data
processing. Although the LSTM model required a longer training time and computational
resources, its training efficiency and convergence speed in handling complex gas–solid
two-phase flow sequence data were higher compared to the BPNN and RNN, as observed
in Figures 3–5, where, under the same number of iterations (100) and parameter settings,
the LSTM’s loss function was relatively smaller than those of the BPNN and RNN.

In summary, according to the experimental results, the LSTM model performs well in
the relative error range of [0.0, 0.1), which is possibly attributable to its superior memory
and long-term dependency capabilities, as well as its modeling capabilities in handling
gas–solid two-phase flow sequence data. However, there were no significant differences
observed among the three models in terms of overall prediction performance indicators.

5. Discussion

This experimental study compared the performance of LSTM, RNN, and BPNN models
in predicting the concentration of particulate matter in gas–solid two-phase flow. The results
showed that within the relative error range of [0.0, 0.1), the LSTM model exhibited the
best performance, validating its advantages in handling time-series data and capturing
long-term dependencies. Although the overall prediction performance indicators of the
three models were similar and showed no significant advantages, they all demonstrated
certain predictive capabilities and adaptability. This may be due to the similar challenges
and limitations they face in handling the concentration of particulate matter in gas–solid
two-phase flow. The complexity and dynamics of gas–solid two-phase flow may lead to
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noise and uncertainty in the data, posing similar challenges for all models. Additionally,
the prediction of particulate matter concentration is influenced by various factors, such as
gas flow velocity, particle size distribution, and pipeline or equipment structure, which
may have similar impacts on the prediction performance of different models.

Furthermore, these models possess similar modeling and expressive capabilities,
leading to similar predictive performance when processing gas–solid two-phase flow
data. The quantity and quality of the data may have similar effects on the prediction
performance of the three models, resulting in relatively close predictive effects if the
dataset features are challenging to all of the models to some extent. Therefore, despite
potential differences in handling time-series data and capturing long-term dependencies,
these models demonstrate similar predictive effects in specific tasks of predicting the
concentration of particulate matter in gas–solid two-phase flow.

To enhance the performance of these models, it is recommendable to conduct further
experiments with different parameter settings and optimization strategies, feature selections
and engineering, and model integration methods. Future research may involve evaluating
other machine learning models (such as CNNs and self-attention mechanism models),
improving feature selection and engineering methods, and exploring the interpretability of
the models. Interdisciplinary cooperation is crucial to integrate fluid mechanics and deep
learning for in-depth research to seek more reliable and accurate data processing models
for gas–solid two-phase flow.
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