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Abstract: In the present work, the gas flows through diverging channels driven by small, moderate,
and large pressure drops are studied, considering a wide range of the gas rarefaction from free
molecular limit through transition flow regime up to early slip regime. The analysis is performed
using the Shakhov kinetic model, and applying the deterministic DVM method. The complete 4D
flow problem is considered by including the upstream and downstream reservoirs. A strong effect
of the channel geometry on the flow pattern is shown, with the distributions of the macroscopic
quantities differing qualitatively and quantitatively from the straight channel flows. The mass flow
rate data set from the complete solution is compared with the corresponding set obtained from
the approximate kinetic methodology, which is based on the fully developed mass flow rate data
available in the literature. In addition, the use of the end-effect approach significantly improves the
applicability range of the approximate kinetic methodology. The influence of the wall temperature on
the flow characteristics is also studied and is found to be strong in less-rarefied cases, with the mass
flow rate in these cases being a decreasing function of the temperature wall. Overall, the present
analysis is expected to be useful in the development and optimization of technological devices in
vacuum and aerospace technologies.

Keywords: diverging channels; rarefied gas flow; Knudsen number; DVM; DSMC

1. Introduction

Studying and describing internal gas flows is important in a wide range of scientific
and engineering fields, serving an essential function in advancing multiple technological
uses. The Knudsen number is a crucial dimensionless factor in the analysis of internal gas
flows. It represents the ratio of the average distance traveled by gas molecules between
collisions to the characteristic size of a system. The Knudsen number acts as an important
guide for selecting modeling equations based on the specific characteristics of the gas flow
regime. Based on this, different flow regimes are defined. The continuum flow regime,
with the mean free path being significantly smaller than the characteristic dimension
of the system, refers to low values of the Knudsen number (lower than 0.001). In the
continuum flow regime, Navier–Stokes equations are easily applicable. The transitional
flow regime occurs when the Knudsen number ranges from 0.1 to 10, where the traditional
Navier–Stokes equations are no longer applicable. At high Knudsen number values (greater
than 10), where the gas state is characterized by long molecular mean free paths, a free
molecular regime is observed. The Boltzmann kinetic equation [1], which offers an accurate
description of the microscopic gas behavior, connecting individual molecular interactions
to macroscopic properties, can be applied in the whole range of the Knudsen number.

In recent years, there has been a significant focus on examining internal gas flows
through the application of Boltzmann’s kinetic equation, mainly using the Direct Simulation
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Monte Carlo method (DSMC) [2] and the Discrete Velocity Method (DVM) [3]. The literature
in this area is extensive, and only some examples are provided here. A substantial body
of work has been done in studying internal gas flows through straight channels. In the
literature, numerous publications analyze such flows in a wide range of the Knudsen
number, covering both small and large pressure ratios, as well as channels of various
cross-sections. S. Varoutis et al. [4,5] conducted research on internal gas flows in circular
channels of finite length covering a variety of the Knudsen numbers related to vacuum
systems. In addition, F. Sharipov and D. V. Kozak [6] utilized the DSMC method, while
I. Graur et al. [7] used the DVM method to analyze rarefied gas flows through a slit into
vacuum. A considerable amount of research has also been conducted on the analysis of
internal gas flows in long channels [8–11].

There is substantial interest in studying gas flows through diverging or converging
channels due to their extensive range of applications. The study of internal gas flows within
diverging channels finds widespread application in the field of aerodynamics, influencing
the design and performance of various engineering systems. Diverging channels play a
significant role in the field of aerospace engineering [12–14] and wind tunnel design [15].
Also, simulations of internal gas flow in channels play a crucial role in various applications
within vacuum technology, contributing to the efficiency and functionality of systems
such as fusion reactors, vacuum pumps, and Knudsen pumps [16,17]. A more extensive
literature review can be found in O. Sazhin and A. Sazhin’s work [18].

The examination of internal gas flows through diverging channels across the entire
range of the gas rarefaction has been typically carried out using the Direct Simulation
Monte Carlo method, particularly employing implicit boundary conditions [19–22]. Recent
research conducted by G. Tatsios et al. [23] indicates that implicit boundary conditions result
in certain deviations; hence, it is crucial to acquire a complete solution with significant
regions at both ends of the channel. Additionally, the flow in diverging channels for
axisymmetric and plate geometries has been thoroughly studied in the works of V.A.
Titarev et al. [24] and O. Sazhin and A. Sazhin [18], respectively, focusing on flows into a
vacuum. In these studies, the complete solution was introduced, and the significant impact
of the existence of the upstream and downstream reservoirs on the calculation of the flow
parameters was demonstrated. The importance of the existence of the reservoirs in the
solution was also highlighted by A. Yakunchikov and V. Kosyanchuk [25] in the case of
rarefied gas flow through a straight channel using the Event-Driven Molecular Dynamics
(EDMD) method. The present work aims to reduce discrepancies in the literature through
the following three aspects: The initial goal is to study the characteristics of the gas flows
through diverging channels over a wide range of gas rarefaction, geometric parameters,
and various pressure ratios by applying the complete flow set-up. To the best of the authors’
knowledge, an extensive kinetic database on the mass flow rate for this flow set-up is
not yet available in the literature. The second objective is to examine the validity range
of a simple kinetic approach based on the simplifications directly expressed by the fully
developed theory [26]. In [24] it has been demonstrated that this approach does not perform
optimally in the case of flows into vacuum. The third objective is to thoroughly study
the effect of the wall temperature in the case of the gas flows through diverging channels
considering the complete solution. In [27], a significant effect of the wall temperature on
the flow field quantities in straight channels was demonstrated.

This paper is organized as follows: In Section 2, the flow configuration and the main
flow parameters are described. In Section 3, the applied kinetic approaches are described
and validated against available numerical data in the literature. In Section 4, the numerical
results are presented and discussed, and in Section 5, the main conclusions that have been
drawn so far are pointed out.

2. Flow Configuration

A schematic diagram of the examined flow configuration is shown in Figure 1a.
The flow set-up consists of two large reservoirs connected by a diverging channel with
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dimensions of length L, width W, and height H(x), with the height increasing linearly in
the flow direction. The height of the channel at a certain distance from the inlet is defined
as H(x) = [(Hout − Hin)/L]x + Hin, where Hin and Hout denote the channel height at the
inlet and outlet, respectively. The width of the channel is assumed to be considerably larger
compared to its height, i.e., W ≫ H(x). The two reservoirs are maintained at different
pressures, namely PA and PB, with PA > PB, while the temperature of the gas at the two
reservoirs is assumed constant and equal to T0. The channel wall temperature TW is also
kept constant and uniform along the wall (see Figure 1a, along the dash–dotted line). Due
to the flow symmetry, only half of the flow domain is considered, i.e., y > 0. Under
steady-state conditions, a flow from the high-pressure reservoir towards the low-pressure
reservoir is established. In order to make the presentation of the numerical results more
compact, their non-dimensional form is chosen. The macroscopic quantities, such as the
number density n, the temperature T, the pressure P, the velocity vector u =

(
ux, uy

)
, and

the heat flux vector q =
(
qx, qy

)
, are normalized as follows:

ñ(x̃, ỹ) = n(x,y)
nA

, T̃(x̃, ỹ) = T(x,y)
T0

, P̃(x̃, ỹ) = P(x,y)
PA

,

ũ(x̃, ỹ) = u(x,y)
υ0

, q̃(x̃, ỹ) = q(x,y)
PAυ0

,
(1)

where υ0 =
√

2kBT0/m is the most probable speed, with kB being the Boltzmann constant
and m being the gas molecular mass. The x and y coordinates are normalized as x̃ = x/Hin
and ỹ = y/Hin, respectively.
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Figure 1. (a) Schematic diagram of the examined flow configuration; (b) illustrative example of the
numerical grid used in the simulations in the case of λ = 5 and η = 5.

The state of the gas flow can be described by the following five dimensionless quantities:

• The reference rarefaction parameter δ0, defined as

δ0 =
PA Hin
µ0υ0

, (2)

where µ0 is the gas viscosity at the reference temperature T0. The rarefaction parameter
δ0 is proportional to the inverse Knudsen number;

• The dimensionless channel length λ = L/Hin;
• The ratio of channel height at the two channel ends η = Hout/Hin;
• The pressure ratio φ = PB/PA;
• The temperature ratio τ = TW/T0.
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The gas mass flow rate
.

M through the channel is the computational parameter of great
practical importance, and its dimensionless form is defined as

M̃ =

.
M
.

M0
, (3)

where
.

M0 = PAHin/
(√

πυ0
)

is the dimensional mass flow rate in the case of flow through
slit (λ = 0) assuming flow into the vacuum (PB = 0) and free molecular flow conditions. It
is noted that the normalization for the mass flow rate has been chosen in order to facilitate
comparisons with already published data in the literature for some limit cases, such as that
of gas flows through straight channels [28]. In the present work, the dependence of the
flow quantities (dimensionless mass flow rate and dimensionless macroscopic quantities)
on the five flow parameters, namely, δ0, λ, η, φ, and τ, is determined and discussed.

3. Kinetic Approaches
3.1. Complete 4D Kinetic Solution

In the complete kinetic solution, the simulation domain includes the channel region as
well as part of the area of the two reservoirs. Due to the fact that in real applications, the
reservoir size can be significantly larger compared to the channel size, for the sake of reduc-
ing the required computational effort, it is a standard practice in this type of flow to extend
the computational domain in the reservoirs until a solution that is independent of the size
of these computational regions is found. As shown in Figure 1a, where the computational
area is highlighted in gray, the computational domain is extended by HA and LA inside the
high-pressure reservoir, as well as by HB and LB inside the low-pressure reservoir. In the
present work, the sizes of the simulation regions inside the high- and low-pressure reservoir
were chosen as (HA, LA) = (30Hin, 30Hin) and (HB, LB) = (20Hout, 20Hout), respectively.
Additional simulations showed that by doubling the size of these regions, the changes in
the calculated macroscopic quantities remain smaller than 1%.

The flow characteristics are analyzed on the basis of the Shakhov kinetic model [29].
The Shakhov kinetic model is considered one of the most widely used kinetic models in
the study of isothermal (e.g., [8,23,24,30–33]) and non-isothermal (e.g., [34–41]) gas flows
in the whole range of the gas rarefaction, and its reliability has been demonstrated by
performing comparisons with available experimental measurements [42–45] and DSMC
data [46–49]. The Shakhov model, in its applied form, recovers both shear viscosity and
thermal conductivity simultaneously and it fulfills all the collision invariants. For the flow
problem under question, the Shakhov governing equations in terms of the dimensionless
quantities (1) can be written as [7,50,51]:

∂

∂t̃

[
h
g

]
+cx̃

∂

∂x̃

[
h
g

]
+ cỹ

∂

∂ỹ

[
h
g

]
= δ0ñT̃1−ω

{[
hs
gs

]
−

[
h
g

]}
, (4)

where c =
(
cx̃, cỹ

)
is the dimensionless molecular velocity vector, which in dimensional

form reads as ξ =
(
cx̃υ0, cỹυ0

)
, t̃ = (tυ0)/Hin is the dimensionless time variable, and ω

is the viscosity index, with its two limit cases being 0.5 for hard-sphere molecules and 1
for Maxwell molecules. In Equation (4), h

(
x̃, ỹ, cx̃, cỹ

)
and g

(
x̃, ỹ, cx̃, cỹ

)
are the reduced

dimensionless distribution functions, which are defined as [h, g] =
∫ ∞
−∞

[
1, c2

z̃
]

f̃ dcz̃, with
f̃ = f nA/υ3

0 being the dimensionless velocity distribution function. The dimensional
distribution function f is defined in such a way that f dξdr represents the number of
particles in the volume element dr = dxdydz around the position vector r with velocity in
dξ = dξxdξydξz around ξ at time t. Additionally, in Equation (4), the relaxing Shakhov
distribution functions, hs and gs, are read as:
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[
hs
gs

]
=


ñ

πT̃ exp
[
−(c−ũ)2

T̃

]{
1 + 4

15ñT̃3 q̃(c − ũ)
[
(c − ũ)2 − 2T̃

]}
ñ

2π exp
[
−(c−ũ)2

T̃

]{
1 + 4

15ñT̃3 q̃(c − ũ)
[
(c − ũ)2 − T̃

]}
, (5)

where (c− ũ)2 = (cx̃ − ũx̃)
2 +

(
cỹ − ũỹ

)2 and q̃(c− ũ) = q̃x̃(cx̃ − ũx̃) + q̃ỹ
(
cỹ − ũỹ

)
. The

macroscopic quantities of practical interest can be calculated as moments of the distribution
functions (h and g) as follows:



ñ
ũx̃
ũỹ
T̃
q̃x̃
q̃ỹ

 =
∫ ∞

−∞

∫ ∞

−∞



h
cx̃h/ñ
cỹh/ñ

2
[
(c − ũ)2h + g

]
/(3ñ)

(cx̃ − ũx̃)
[
(c − ũ)2h + g

]
(
cỹ − ũỹ

)[
(c − ũ)2h + g

]


dcx̃dcỹ. (6)

A complete kinetic formulation requires the definition of the boundary conditions.
In the modeling along the open boundary lines (shown with dashed lines in Figure 1a)
in the high-pressure reservoir, the particles enter the computational area at the reservoir
conditions with their incoming distribution functions (h+A , and g+A) defined as[

h+A
g+A

]
=

[
1
π exp[−c2

x̃ − c2
ỹ]

1
2π exp[−c2

x̃ − c2
ỹ]

]
, (7)

Also, particles enter the computational domain along the open boundary lines in the
low-pressure reservoir at the corresponding conditions with their incoming distribution
functions (h+B , and g+B ) defined as [

h+B
g+B

]
= φ

[
h+A
g+A

]
. (8)

Diffuse boundary conditions are applied along the solid walls (shown with solid
and dash–dotted lines in Figure 1a). According to the diffuse molecular scattering, the
distribution functions of the particles emitted from the walls are expressed as

[
h+W
g+W

]
=

 ñW
πτ exp[

−c2
x̃−c2

ỹ
τ ]

ñW
2π exp[

−c2
x̃−c2

ỹ
τ ]

, (9)

where ñW is calculated from the no-penetration condition (by imposing zero normal ve-
locity) at the walls. In addition, symmetry boundary conditions are imposed along the
x-axis.

As can be easily observed from Equations (4)–(6), the study of the considered flow
set-up involves the solution of a 4D kinetic problem (2D in the velocity space and 2D in
the physical space). The system of the two kinetic Equations (4) and (5) in conjunction
with the moments (6) and the boundary conditions (7)–(9) is solved by applying the
Discrete Velocity Method (DVM). The deterministic DVM method is nowadays considered
the widely accepted numerical technique by the research community for solving kinetic
equations and describing heat, mass, and momentum transfer phenomena in the whole
range of gas rarefaction (e.g., [52–60]). The literature survey is very extensive, and for this
reason, only a brief description of the method is provided here, focusing on the numerical
details concerning the present flow problem. In the velocity space, the continuum spectrum
of the molecular velocity cx̃, cỹ ∈ (−∞, ∞) is replaced by a set of 24 points in each direction
(576 points in total), which have been chosen as the abscissas of the Gauss–Hermite rule.
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Following our previous work [51], in which successful extensive comparisons with the
DSMC method were performed, the physical space is discretized by applying the DUGKS
(discrete unified gas kinetic scheme) cell-centered finite-volume scheme. For further details
regarding the applied DUGKS kinetic scheme, the reader should refer to [61–63], where
a very comprehensive description of the DUGKS kinetic scheme is provided. The kinetic
solution in physical space is achieved using a non-uniform triangular mesh. The applied
mesh was constructed with the open-source SALOME meshing suite [64]. An illustrative
picture of the mesh is shown in Figure 1b. As it is seen, the grid remains dense in the
regions near the inlet and outlet of the channel and becomes even denser inside the
channel and close to the solid walls where rapid changes in the macroscopic quantities
are expected. More specifically, the minimum and the maximum dimensionless cell size
inside the channel are set as 0.03 and 0.06, respectively. The size of the mesh depends
on the geometrical characteristics, such as λ and η, with the number of elements varying
between 40,000 (λ = 1 and η = 2) and 80,000 (λ = 10 and η = 5). The discretized equations
are solved in an iterative manner for a given time step, chosen such that the maximum
Courant–Friedrichs–Lewy number at each time step is 0.8. We assumed that convergence
was achieved, when the maximum relative difference in the local macroscopic quantities
between two successive iteration steps is less than 10−12. After the simulation reaches
steady state, the maximum difference between the dimensionless mass flux values at the
inlet and outlet is less than 2%. The suitability of the before-mentioned choices of the
numerical parameters was checked by performing indicative test simulations with a higher
number of molecular velocity points (×2 the number of discrete velocities) and denser
grids (×2 the number of grid elements), with the maximum observed deviation in terms of
the mass flow rate and the other macroscopic quantities being less than 0.8%. Overall, the
choice of the numerical parameters ensures a numerical uncertainty of the provided data
within 2%. The simulations were performed on a local cluster (CALIPSO) consisting of
16 nodes and each node was equipped with 2 Intel® Xeon® CPUs (E5-2660 v2 @ 2.20GHz).
The simulation time varied from some hours in the case of small δ0, up to several weeks for
the most computationally demanding cases of large values of δ0, λ, and η.

To assess the validity of our numerical implementation, comparisons were performed
with the available and generally accepted DSMC data in the literature for the flows through
straight channels under large and moderate pressure ratio drops [28], as well as for diverg-
ing channel flows into vacuum [18]. The comparison is shown in Table 1 in terms of the
dimensionless mass flow rate M̃ considering moderate (φ = 0.5) and large (φ = 0) pres-
sure ratios, as well as three indicative values of the gas rarefaction parameter δ0 = [0.1, 1, 10].
The results are in very good agreement, with the maximum deviation remaining less than
2%. It is pointed out, that this small deviation remains within the numerical uncertainty
adopted in the present work and it can be considered as an acceptable deviation between
DSMC and DVM.

Table 1. Comparison between the dimensionless mass flow rate M̃ obtained in the present work
and the corresponding DSMC ones for straight channels ( η = 1) in [28] and for diverging channels
( η = 2) in [18], with λ = 1 and for various values of δ0 and φ. Inside the parentheses the absolute
percentage error is shown.

δ0

φ

0.1 (η = 1) 0.5 (η = 1) 0 (η = 2)

[28] Present Work [28] Present Work [18] Present Work

0.1 0.630 0.630 (0.0%) 0.354 0.354 (0.0%) 0.951 0.946 (0.53%)
1 0.706 0.716 (1.4%) 0.419 0.428 (2.1%) 1.06 1.04 (0.94%)

10 1.03 1.02 (0.97%) 0.832 0.838 (0.72%) 1.39 1.39 (0.0%)
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3.2. Approximate Kinetic Approach

A simplified kinetic approach, which is based on the long capillary theory that allows
fast calculations of the mass flow rate, was proposed in [65]. Later on, this approach was
extended to the case of flows through tubes of variable cross-sections [66], while in [26], this
methodology was also applied to simulate rarefied gas flows through channels of variable
rectangular cross-sections. In this work, the same methodology is also applied to the flow
problem under question to investigate its applicability margins by performing comparisons
with the complete solution given in Section 3.1. Hence, only a short description of this
approximate kinetic approach is provided here. According to this simplified approach, as
long as the channel is long enough and the local pressure gradient in the flow direction
remains small, the flow inside the channel at any cross section can be described by the
linear fully developed theory. The computational time needed to simulate one cross-section
with the linear fully developed approach is negligible compared to that required for the
complete solution described in Section 3.1. This approach consists of the following three
steps: (1) the gas rarefaction level at the inlet and outlet of the channel is determined
by calculating the values of the rarefaction parameter δin and δout based on the pressure
values PA and PB, the gas properties (viscosity), and the geometrical characteristics (the
heights Hin and Hout); (2) the fully developed solution (the dimensionless reduced flow rate
GP(δ(x)) [26,67]) is obtained for a wide range of the local gas rarefaction parameter δ(x)
according to δ(x) ∈ [δin, δout]; and (3) calculating the mass flow rate by solving numerically
the following mass balance differential equation:

∂P̃
∂x′

= − LM̃
Hin

√
πGP

(
Hin

H(x)

)2
, (10)

where P̃(x′) = P(x′)/PA and x′ = x/L. The values for GP(δ(x)) were obtained by applying
our already validated, fully developed flow code from [67]. The ordinary differential
Equation (10) is solved in an iterative manner. More specifically, the initial value problem,
described by Equation (10) and the initial condition P̃(0) = 1 is solved iteratively using
Euler’s method until the value of the mass flow rate M̃ that leads to the actual value of the
outlet pressure (P̃(1) = φ) is found. The iteration process is repeated until the absolute
difference between the actual and the estimated value of the pressure is less than 10−8. The
numerical solution is obtained using 4000 intervals equally spaced along the x′-axis. In
Table 2, a comparison between our data and the corresponding ones in [26] is performed
for various values of δ0 and φ with η = 10. As demonstrated, the maximum deviation
remains less than 1%, confirming the validity of our numerical code.

Table 2. Comparison between our mass flow rate data M̃λ/
√

π using the approximate kinetic
approach and the corresponding ones in [26] based on the same approach for various values of δ0

and φ with η = 10 and τ = 1. Inside the parentheses, the absolute percentage error is shown.

φ δ0 [26] Present Work

0.1
0.1 18.3 18.4 (0.55%)
1 13.9 14.0 (0.72%)

10 25.0 25.0 (0.0%)

0.5
0.1 9.45 9.52 (0.74%)
1 7.95 7.98 (0.38%)

10 17.4 17.4 (0.0%)

0.9
0.1 1.82 1.84 (1.10%)
1 1.66 1.66 (0.0%)

10 4.14 4.15 (0.24%)
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4. Results and Discussion

The present analysis covers a wide range of the involved flow paramters. More
specifically, the study was carried out for moderate (η = 2) and large values (η = 5)
of the aspect ratio η, for three pressure ratios φ = [0.1, 0.5, 0.8] corresponding to small
(φ = 0.8), moderate (φ = 0.5), and large pressure drops (φ = 0.1), while the rarefaction
parameter varies from 0 up to 10, representing gas flows from free molecular regime up to
early slip regime. In addition, three indicative values of the dimensionless channel length,
namely, λ = [1, 5, 10], and two values of the temperature ratio τ, namely, τ = [1, 3.3], were
considered.

This section is organized into two subsections. In Section 4.1, the results for the
isothermal case of τ = 1 are presented, and the validity of the approximate kinetic approach
(Section 3.2) is investigated, while in Section 4.2, the analysis is focused on the effect of the
temperature ratio τ on the flow characteristics.

4.1. Isothermal Case

Table 3 shows the hard-sphere values of the dimensionless mass flow rate M̃ for
various combinations of δ0, φ, λ, and η. As expected, in all cases, the increase in the
pressure ratio φ (or decrease in the pressure drop), which is the driving force of the studied
gas flow, causes a significant decrease in the mass flow rate. Depending on the level of the
gas rarefaction, as the pressure ratio φ increases from 0.1 to 0.8, the dimensionless mass
flow rate M̃ can be reduced by 49–78%. As observed, the geometry parameters λ and η
have a significant effect on M̃. In general, the mass flow rate increases either by decreasing
the dimensionless length λ or by increasing the aspect ratio η. This behavior is justified
by the fact that by increasing the dimensionless length or decreasing the aspect ratio, the
wall effects become more pronounced, enhancing the wall resistance to the induced flow.
The effect of the geometry parameters λ and η on M̃ remains significant for all examined
pressure ratio values. In quantitative terms, the increase in the aspect ratio η from 2 to 5
(2.5 times) causes an increase in M̃ by about 1.07–1.09, 1.5–1.9, and 1.7–2.3 times in the case
of λ = 1, 5 and 10, respectively. By comparing the present results for the plane geometry
with those in [24], which considers conical pipes, we can conclude that for similar pressure
ratio conditions, a similar effect of the aspect ratio η on M̃ is observed. This means that
when fast engineering calculations are required, the mass flow rate through diverging
conical pipes for pressure ratios different than zero (which are not considered here since
the plane geometry is studied) may be estimated, as a rough approximation, by using the
available data in literature for straight tubes and modifying them considering the effect
of the aspect ratio η on M̃ reported in this work for the plane geometry. However, when
accuracy is important, the modeling of the flow through diverging conical pipes is required
and suggested.

The data for λ = 10, given in Table 3, confirm the existence of a shallow Knudsen
minimum for the case of small values of the aspect ratio η = 2, as well as for all values of
the pressure ratio φ. However, as the channel becomes more open (higher aspect ratio η),
no Knudsen minimum is observed even for the longest considered channels with λ = 10. It
is noted that, also in [18], the authors observed the Knudsen minimum for the same values
of λ and η assuming φ = 0. However, for the shorter channels with λ < 10 and for all
considered values of η, following the behavior previously reported in [28] for the straight
channels, the dimensionless mass flow rate M̃ always increases monotonically with the
rarefaction parameter δ0.
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Table 3. Mass flow rate data M̃ based on the complete 4D kinetic solution for various values of δ0, φ,
λ, and η with τ = 1.

λ η δ0
φ

0.1 0.5 0.8

1 2 0 0.837 0.465 0.186
0.1 0.862 0.486 0.196
0.5 0.936 0.551 0.227
1 1.00 0.617 0.260
5 1.28 0.983 0.470

10 1.40 1.23 0.685
5 0 0.898 0.499 0.199

0.1 0.927 0.523 0.211
0.5 1.01 0.595 0.246
1 1.08 0.668 0.282
5 1.36 1.06 0.519

10 1.47 1.28 0.748
5 2 0 0.517 0.287 0.115

0.1 0.525 0.293 0.118
0.5 0.548 0.313 0.127
1 0.571 0.335 0.138
5 0.733 0.497 0.220

10 0.893 0.680 0.322
5 0 0.780 0.433 0.174

0.1 0.802 0.452 0.182
0.5 0.867 0.507 0.208
1 0.928 0.562 0.235
5 1.20 0.896 0.419

10 1.35 1.16 0.619
10 2 0 0.364 0.203 0.0812

0.1 0.363 0.201 0.0803
0.5 0.361 0.202 0.0812
1 0.366 0.209 0.0850
5 0.455 0.295 0.129

10 0.578 0.409 0.187
5 0 0.623 0.346 0.139

0.1 0.636 0.356 0.143
0.5 0.670 0.383 0.156
1 0.705 0.415 0.172
5 0.932 0.650 0.294

10 1.13 0.894 0.439

In order to reveal the quantitative differences between the straight channel flows
and diverging channel flows in Figure 2, the ratio M̃diverging/M̃straight is plotted as a
function of δ0, for λ = [1, 5], and η = [2, 5] as well as for two values of the pressure ratio
φ, namely, φ = [0.1, 0.5]. The data for straight channels (η = 1) were taken from [28],
where an extensive database of the dimensionless mass flow for gas flows through straight
channels is provided. As shown in Figure 2, under the same gas rarefaction conditions,
the dimensionless mass flow rate of the diverging channel flows is higher than that of the
corresponding straight channel flows. It was found that this increase in the mass flow rate
in the transition regime is about 1.4–1.7 times for the case of short channels with λ = 1 and
becomes even larger and about 1.6–3.6 times for the longer channels with λ = 5.
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Table 4 presents a comparison between the numerical values for the dimensionless
mass flow rate M̃ obtained from the approximate kinetic approach (see Section 3.2) and
those obtained from the complete 4D kinetic solution. In columns four, six, and eight of
Table 4, the relative difference ∆(%) of the dimensionless mass flow rates defined as

∆(%) = 100 ×
∣∣∣∣∣ M̃approximate − M̃complete

M̃complete

∣∣∣∣∣, (11)

for various values of δ0, φ, λ, and η are reported. As can be seen, the results obtained from
the approximate kinetic approach differ significantly from those obtained from the com-
plete 4D kinetic solution. As expected, the relative difference increases as the dimensionless
length λ decreases or the aspect ratio η increases. It is noted that, by either decreasing λ
or increasing η, we expect the contribution of the end-effect phenomena to become more
pronounced. It is also observed that the increase in the pressure ratio (decrease in pressure
drop) leads to a decrease in the relative difference ∆(%), which is expected if someone
considers that, in this case, the local pressure gradient decreases too. However, the relative
difference ∆(%) remains large in all examined values of δ0, φ, λ, and η, with the approxi-
mate approach always overestimating the mass flow rate values. It should be mentioned
that in [24], large deviations between the complete solution and the approximate kinetic ap-
proach were reported for conical diverging flows into vacuum. A significant improvement
in the description of the approximate kinetic approach is expected if someone considers the
end-effect phenomena at the channel ends. The end-effect correction can be introduced into
the approximate kinetic approach by elongating the length of the channel according to the
local gas rarefaction conditions at the channel ends, i.e., L/H = (∆Linlet + L + ∆Loutlet)/H.
The correction lengths as function of the gas rarefaction parameter are available in the
literature [68] in the case of gas flows through a straight channel. Given the fact that, to
the best of the authors’ knowledge, the corresponding end-effect correction lengths for
diverging channels are not available in the literature, the presented errors in columns five,
seven, and nine of Table 4 are based on the end-effect length values for straight channels.
In general, we expect further improvement in the predictions of the approximate kinetic
approach after the introduction of the exact end-effect correction values for diverging
channels, but this requires performing a dedicated analysis which is beyond the scope of
the present study. As can be seen, by introducing the end-effect corrections of the straight
channels the results of the approximate kinetic approach are improved significantly. We
can conclude that in the case of diverging channel flows, the approximate kinetic approach
coupled with the end-effect correction approach for straight channels can be applied to
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predict the mass flow rate within 15%, for small aspect ratio η = 2 and λ = 5, as long
as δ0 < 5, while this error drops to 10% for longer diverging channels with λ = 10 and
δ0 < 10. Further improvement of the approximate kinetic approach is expected in the case
of longer diverging channels with λ > 10, with its validity range being extended even for
larger aspect ratios η when λ ≫ 10.

Table 4. Relative difference ∆(%) in the dimensionless mass flow rates between the complete 4D
kinetic solution and the approximate kinetic approach for various values of δ0, φ, λ, and η with (w/)
and without (w/o) including end-effects correction lengths.

λ η δ0

φ

0.1 0.5 0.8

w/o w/ w/o w/ w/o w/

1 2 0.5 484 6.08 419 32.1 395 34.5
1 407 20.7 347 44.1 325 43.4
5 351 67.9 262 59.4 227 48.1

10 433 124 302 90.2 223 52.9
5 0.5 1199 191 1079 241 1037 245

1 1049 227 941 267 906 272
5 1027 366 839 329 746 286

10 1324 550 1023 432 776 315
5 2 0.5 100 5.04 82.9 15.3 77.4 15.4

1 78.3 8.73 64.6 15.9 60.5 15.2
5 57.1 17.5 43.1 14.2 39.6 12.4

10 66.8 30.6 44.9 18.5 37.3 12.3
5 0.5 202 78.5 177 85.5 169 84.1

1 168 78.5 147 80.9 141 80.0
5 155 99.0 122 79.2 110 69.2

10 210 150 147 102 111 73.0
10 2 0.5 51.4 4.33 41.6 9.49 38.8 9.43

1 39.2 5.47 31.9 9.01 30.0 8.63
5 26.4 8.19 20.7 7.08 19.5 6.58

10 28.7 13.1 20.4 8.33 18.1 6.32
5 0.5 95.6 45.2 83.0 46.8 79.3 45.8

1 76.6 41.1 67.4 41.5 65.2 41.1
5 64.9 44.4 52.9 36.6 49.2 33.3

10 85.5 65.8 60.9 44.8 49.1 34.2

In addition to the effect of the diverging channel geometry on the mass flow rate, we
are also interested in examining the corresponding effect on the distribution of macroscopic
quantities of practical interest. Figure 3 illustrates the axial distributions of the dimen-
sionless pressure P̃, Mach number Ma (= ũx̃

√
6/

√
5T̃), and dimensionless temperature

T̃ along the symmetry axis (ỹ = 0) for λ = 5 and φ = 0.5, as well as for two indicative
values of the gas rarefaction parameter δ0 = [0.1, 10]. Also, the corresponding distribu-
tions of straight channel flows (η = 1) are plotted for comparison purposes. The data for
the straight channel flows have been extracted from [28], where the DSMC method was
applied. The reason the curves for η = 1 are not smooth is attributed to statistical noise
inherent in the DSMC method. As it is seen, the axial distributions for η = 1 differ not
only quantitatively but also qualitatively from that for η > 1. With the increase in the
aspect ratio η, the flow starts to obtain the characteristics of the slit flow [7,69], namely,
a rapid increase in the axial velocity as the flow enters the channel followed by a rapid
decrease after some distance from the channel inlet. The decrease in the pressure at the
inlet of the channel becomes more rapid as the aspect ratio η increases and is enhanced
significantly as the gas rarefaction level decreases (increase in δ0), where the viscous effects
become more important. As the flow enters the channel it is always accelerated, with
this acceleration being more pronounced for divergent channels due to the weakening of
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the lateral wall effect on the flow. To maintain the amount of gas passing through any
plane perpendicular to the line of symmetry of the channel, the velocity in the case of
channels of constant cross-section increases monotonically along the channel, while in
diverging channels, it slows down within the channel to balance the increase in height of
the channel and the corresponding decrease in number density. A significant influence of
the diverging flow geometry on the temperature profile is also observed. More specifically,
a noticeable temperature drop is observed in the regions with a strong increase in velocity
and, vice versa, the temperature rises with the decrease in the velocity, as a consequence of
conservation of energy.
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Figure 3. Distributions of the dimensionless pressure P̃ (a), Mach number Ma (b), and dimensionless
temperature T̃ (c) along the symmetry axis (ỹ = 0) for δ0 = [0.1, 10], λ = 5, η = [1, 2, 5], and φ = 0.5.
The data for δ0 = 0.1 and 10 are shown with the dashed and solid lines, respectively.

In Figures 4 and 5, we extend the study of the effect of the diverging channel geometry
on the distributions of macroscopic quantities, focusing on the variation in the channel
length and the pressure ratio. Number density distributions are shown in Figure 4, while
the corresponding axial velocity distributions are given in Figure 5. The distributions
are plotted for two indicative values of λ = [1, 10] and three values of φ = [0.1, 0.5, 0.8],
covering the cases of short and long channels, as well as the cases of large, moderate, and
small pressure ratios. As can be seen in Figure 4, the behavior of the number density (and
the pressure) presents the same qualitative behavior for all values of λ and φ. The effect
of the aspect ratio η on the number density distributions is enhanced at larger pressure
drops (smaller values of φ), and longer channels. As observed in Figure 5, the velocity
distributions for λ = 1 show qualitatively similar behavior for all examined pressure
ratios. For the long channel case with λ = 10, where the diverging geometry plays a more
significant role, we observe not only quantitative differences but also significant qualitative
ones among the different pressure ratios. Similarly to the short channel case with λ = 1,
for moderate and large values of φ, the flow always accelerates at the inlet, reaching its
maximum value after some small distance from the inlet, and then decreases monotonically
until the outlet of the channel. However, for small values of the pressure ratio φ and aspect
ratio η, the flow through diverging channels maintains the well-known qualitative behavior
of gas flows through straight channels, namely, the velocity increases monotonically inside
the channel. This behavior is explained by the fact that for η = 2 and φ = 0.1, the change
in the number density (the number density at the outlet is 10 times less compared to the
inlet) between the inlet and the outlet of the channel is larger compared to the change in
the channel area (the outlet area is two times larger compared to the inlet area), while for
smaller values of the pressure ratio φ, the increase in the area compensates for the change in
the pressure drop. Likewise, the weaker change in the velocity inside the channel for η = 5
compared to η = 2 is explained. To obtain a better understanding of the Mach number
variation inside the channel for various combinations of λ, φ, η and δ0, the average Mach



Fluids 2024, 9, 78 13 of 21

number values at different sections of the channel are given in Table 5. The values of the
Mach number remain well less than 0.3 in all examined cases for φ = 0.8. This is indirect
evidence that the compressibility effects are insignificant for this low-pressure drop. While,
as the values of the Mach number indicate, they are expected to play a more significant
role as the pressure drop increases with a simultaneous increase in the gas rarefaction
parameter δ0.
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η = 2 and 5 are shown with the dashed and solid lines, respectively.
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Table 5. Average Mach number at the inlet, middle, and outlet of the channel for various values of δ0,
φ, λ, and η.

λ η δ0

φ

0.1 0.5 0.8

Inlet Middle Outlet Inlet Middle Outlet Inlet Middle Outlet

1 2 0.1 0.45 0.51 0.53 0.19 0.16 0.13 0.065 0.047 0.036
1 0.50 0.60 0.63 0.24 0.20 0.16 0.086 0.063 0.048
10 0.66 0.91 1.1 0.51 0.47 0.38 0.23 0.17 0.13

5 0.1 0.54 0.40 0.31 0.21 0.091 0.059 0.070 0.026 0.016
1 0.61 0.49 0.39 0.27 0.12 0.077 0.094 0.035 0.021
10 0.76 0.81 0.74 0.56 0.27 0.16 0.26 0.10 0.058

10 2 0.1 0.13 0.19 0.34 0.066 0.063 0.057 0.025 0.019 0.015
1 0.13 0.19 0.35 0.068 0.065 0.061 0.026 0.020 0.016
10 0.19 0.27 0.60 0.13 0.13 0.12 0.058 0.045 0.036

5 0.1 0.27 0.29 0.27 0.13 0.064 0.042 0.046 0.018 0.011
1 0.28 0.31 0.31 0.15 0.076 0.050 0.055 0.021 0.013
10 0.45 0.54 0.60 0.32 0.17 0.11 0.14 0.056 0.034

4.2. Non-Isothermal Case—Effect of the Wall Temperature

In this subsection, we study the flow characteristics in the case that the wall tempera-
ture is not equal to the temperature of the gas in the reservoirs, i.e., τ ̸= 1. The influence
of the wall temperature is investigated by assuming a large temperature ratio, namely,
τ = 900/273.15 ≈ 3.3. The reason for this choice is twofold: first, under such a large
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temperature difference, any potential effect of the temperature wall on the flow field is
expected to be significant [27], and second, this temperature ratio covers a wide range of
the examined temperature differences in [27], where the temperature wall effects were
examined in the case of straight channels, allowing us to examine whether the observations
made previously for the case of straight channel flows into vacuum (φ = 0) also hold true
for diverging channel flows. The investigation of the wall temperature effect was performed
for φ = 0.1, which can be considered as the closest one to that studied in [27]. Given the
well-known inability of the hard sphere model to describe strongly non-isothermal gas
flows, due to the lack of an appropriate description of the viscosity variation with temper-
ature, the inverse power law molecular model was applied for the non-isothermal cases.
This requires the definition of the viscosity index ω, with 0.5 ≤ ω ≤ 1, which depends
on the working temperature range, and is gas-specific. In the present work, the value of
ω = 0.75 is considered, which corresponds to argon gas and reproduces the experimental
argon viscosity data [70] within 1.5% over the entire range of the temperature variation
examined here. It is noted that, this value is representative also for other gases with similar
viscosity index values (e.g., Krypton) [2]. For consistency reasons, all the isothermal results
presented in this subsection have been obtained using the inverse power law molecular
model and the same value for ω.

In Table 6, the dimensionless mass flow rate data M̃ obtained for τ = 3.3 are compared
with the corresponding isothermal ones for τ = 1. The comparison covers a wide range of
all involved parameters, namely, δ0, λ, and η. By comparing the data for τ = 1 in Table 6
and the corresponding hard-sphere ones in Table 3, it is clearly seen that the effect of the
molecular model on M̃ in the transition regime is very weak. A similar weak dependence
of the dimensionless mass flow rate on ω in the case of isothermal gas flows was reported
in [5] for the case of straight channels. A strong effect of the wall temperature on M̃ is
observed at high values of δ0. Indeed, as observed in the case of straight channels [27], the
effect of the temperature wall is enhanced in low-rarefied atmospheres (large values of
δ0), mainly due to the fact that the higher particle collision rate makes the energy transfer
mechanism more effective. For the cases close to the slip flow regime with δ0 = 10, the
impact of τ on M̃ is increased as the aspect ratio η decreases. However, at smaller values of
δ0, the effect of the temperature ratio becomes weaker.

Table 6. Mass flow rate data M̃ based on the complete 4D kinetic solution for various values of δ0, λ,
and η with τ = 3.3 and τ = 1, in the case of ω = 0.75.

λ η δ0
φ

1 3.3

5 2 0.1 0.525 0.517
1 0.571 0.500

10 0.894 0.484
5 0.1 0.802 0.799

1 0.928 0.878
10 1.35 1.06

10 2 0.1 0.363 0.356
1 0.366 0.313

10 0.579 0.272
5 0.1 0.636 0.631

1 0.705 0.635
10 1.13 0.660

In Figure 6, the temperature contours T̃ are shown for τ = 1 and 3.3 and for δ0 = [1, 10],
η = [2, 5], and λ = [5, 10]. As can be seen, the temperature wall has a strong influence on
temperature contours, which also depends strongly on the geometric characteristics of the
channel. It is deduced that, for τ = 3.3, as the gas enters the channel, its dimensionless
temperature increases rapidly and always remains above one (the equilibrium value in the
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reservoir), in contrast to the isothermal case, in which the dimensionless gas temperature is
always below one. In addition, for the non-isothermal case, as the aspect ratio increases,
the temperature of the gas inside the channel decreases but always remains above one. It is
also evident that the increase in the gas rarefaction parameter δ0 enhances the influence
of the wall temperature, resulting in higher gas temperature values inside the channel.
This can be considered as a consequence of the higher particle collision rate existing at
larger values of δ0 compared to the smaller ones, leading to an improvement in the energy
transfer mechanism.
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Figure 6. Contours of the dimensionless temperature T̃ for τ = [1,3.3], δ0 = [1,10], and λ = [5,10]. In
each subfigure, the upper part shows the results for τ = 1, and the lower part shows the results for
τ = 3.3.

Next, in Figure 7, the corresponding pressure P̃ contours are shown. Inside the
reservoirs and far away from the channel ends, the pressure remains uniform and equal
to its equilibrium values. It is evident that the pressure for the non-isothermal flow case
remains higher and is characterized by smoother changes compared to the isothermal
flow case. In the case of τ = 1, as the flow passes the channel, the pressure decreases
monotonically, while for τ = 3.3, this is the case only for large aspect ratios η. For smaller
values of the aspect ratio (η = 2), an overshoot in the pressure is observed at the entrance
of the channel. The overshoot becomes more pronounced as both the channel length and
the gas rarefaction increase. The overshoot is a consequence of the high inlet temperature
that the gas acquires as it enters the channel in the case of non-isothermal flow and greatly
exceeds the equilibrium temperature in the reservoirs. It is worthwhile mentioning that,
for similar flow conditions, the overshoot in pressure was also pointed out in [27] for gas
flows through straight tubes.

In Figure 8, for the same set of flow parameters as those in Figures 6 and 7, the corre-
sponding axial velocity ũx̃ contours are presented. The velocity contours are overlaid by
the velocity streamlines. The velocity contours under isothermal and non-isothermal condi-
tions present the same qualitative picture. However, the velocity increases noticeably as the
wall temperature increases too. The streamlines do not align with the x̃-axis, highlighting
the 2D character of the gas velocity. This may partially explain the deviations mentioned in
Table 4 between the complete kinetic solution and the approximate kinetic solution. The
approximate kinetic solution requires the velocity to be one-directional (in the x̃-direction)
at each cross-section, and the flow is pure isothermal.
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Figure 8. Contours of the dimensionless axial velocity ũx̃ for τ = [1,3.3], δ0 = [1,10], and λ = [5,10]. In
each subfigure, the upper part shows the results for τ = 1, and the lower part for τ = 3.3.

5. Conclusions

In the present work, the flow through diverging channels is studied parametrically,
covering a wide range of geometry and flow parameters. The analysis is performed
considering the complete flow domain, including the upstream and downstream reservoirs,
without introducing computational domain simplifications by applying artificial boundary
conditions at the inlet and at the outlet of the channel. The kinetic solution is based on
the Shakhov kinetic model assuming diffuse boundary conditions on the solid walls. Two
different molecular models have been applied, namely, the hard-sphere model and the
inverse power law model. The applied deterministic approach allowed us to perform the
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present analysis in a wide range of pressure ratios, including the case of small pressure
drops, which have not yet been studied thoroughly.

The main findings can be summarized as follows:

• The effect of the geometry parameters, namely dimensionless length λ and the aspect
ratio η on M̃, remains quantitatively significant over the entire range of the pressure
ratio φ.

• The values of the dimensionless mass flow rates in the diverging channel flows are
significantly higher compared to the corresponding ones in the straight channel flows,
not only for large pressure drops but also for small pressure drops. For channels with
λ > 1 and φ ≥ 0.1, at least an increase between 1.5 and 3 times can be expected in the
transition flow regime.

• This study confirms the existence of a shallow Knudsen minimum for all values of
the pressure ratio φ in the case of long channels (λ = 10) with small values of the
aspect ratio η = 2. No Knudsen minimum is observed for η = 5, even for the longest
examined channel case with λ = 10.

• Attention should be paid to the use of the approximate kinetic approach (Section 3.2),
which makes use of the fully developed flow data when flows through diverging
channels are considered. Although the accuracy of the approximate kinetic approach
improves as the pressure drop decreases, the deviations compared to the complete
flow solution (Section 3.1) remain high even for relatively long channels with λ = 10.
However, the present analysis shows that by applying the end-effect correction lengths
of the straight channel flow, the validity range of the approximate kinetic approach is
improved significantly. More specifically, the application of the approximate kinetic
approach coupled with the end-effect correction approach results in a maximum
deviation of less than 10% when λ ≥ 10 and η ≤ 2.

• The diverging channel geometry has a significant effect on the distributions of the
macroscopic quantities. The analysis shows that an increase in the aspect ratio of
the channel η causes a drop of the pressure (and density) in the channel not only for
flows under large pressure drops but also for small ones. In addition, depending on
the pressure ratio, the velocity distributions may differ, not only quantitatively but
also qualitatively, compared to the corresponding ones reported in the literature for
straight channel flows.

• The influence of the wall temperature on the mass flow rate is observed to be strong
in less-rarefied cases, with the mass flow rate being a decreasing function of the
temperature ratio τ, while this influence is reduced as the channel aspect ratio η
increases. In the highly rarefied cases, the influence was noticeably smaller.

Overall, the present analysis is expected to be useful in the development and optimiza-
tion of technological devices in vacuum and aerospace technologies. The provided data can
also be used as a reference point for testing other numerical approaches and kinetic models.
It is noted that the applied diffuse gas–surface interaction is a reliable model for noble
gases with sufficiently large gas molecular mass and typically technical surfaces. However,
for light gases such as helium and for atomically clean surfaces, a more advanced type of
gas–surface interaction should be applied. Thus, in the future, this work may be extended
by considering more advanced types of gas–surface interactions. In addition, this study
can be further extended by considering also polyatomic gases in order to investigate any
possible effects related to the internal degrees of freedom of the polyatomic gas molecules.
Given the expected increase in the computational cost by adding more physical complexity
to the modeling, a possible further acceleration of the simulation of the current flow set-up
may be achieved by the use of the general synthetic iterative scheme (GSIS) [71].
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