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Abstract: The Transcribed-Ultra Conserved Regions (T-UCRs) are a class of novel non-coding RNAs
that arise from the dark matter of the genome. T-UCRs are highly conserved between mouse,
rat, and human genomes, which might indicate a definitive role for these elements in health and
disease. The growing body of evidence suggests that T-UCRs contribute to oncogenic pathways.
Neuroblastoma is a type of childhood cancer that is challenging to treat. The role of non-coding RNAs
in the pathogenesis of neuroblastoma, in particular for cancer development, progression, and therapy
resistance, has been documented. Exosmic non-coding RNAs are also involved in shaping the biology
of the tumor microenvironment in neuroblastoma. In recent years, the involvement of T-UCRs in a
wide variety of pathways in neuroblastoma has been discovered. Here, we present an overview of the
involvement of T-UCRs in various cellular pathways, such as DNA damage response, proliferation,
chemotherapy response, MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived
(avian)) amplification, gene copy number, and immune response, as well as correlate it to patient
survival in neuroblastoma.

Keywords: transcribed-ultra conserved regions; microRNAs; MYCN; exosomes; metastasis; biomarkers;
oncogenes; therapy resistance; neuroblastoma

1. Neuroblastoma

Neuroblastoma is a type of peripheral sympathetic nervous system cancer, affecting mostly infants
and young children (95% of which are under the age of 5, and occurring 13% more frequently in males),
which alters the growth and proliferation of neural crest cells (precursor nervous system cells) [1].
Neuroblastoma has a diverse clinical response to current treatments across the patient population and
is quite rare, making research difficult. In Europe, alone, the annual incidence rate is recorded to be
six cases/million [2]. Some children respond well to treatment and eventually are deemed cured of
their cancer, while some children’s cancer spontaneously regresses on its own, but others develop a
strong resistance to treatments and a poor prognosis remains [3–6]. Infants have the best prognosis of
all age groups, with a 5-year survival rate of 91%. However, the 5-year survival rate decreases with
age of onset, with a 56% survival rate for children 10–14 years of age [7,8]. Most often, neuroblastoma
originates within either the adrenal glands, the paravertebral ganglia, and/or the neck as a solid
tumor, and can potentially spread, although it is normally caught prior to widespread malignancy [2].
Surgery, chemotherapy, and radiotherapy are all current options for treatment depending upon the
characteristics of the tumor’s presentation and behavior; however, chemotherapy is currently the main
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treatment option [1]. It was discovered that an amplification of the MYCN (v-myc myelocytomatosis viral
related oncogene, neuroblastoma derived (avian)) gene in Neuroblastoma patients was correlated with an
increased aggressive behavior of the tumor, leading to a poor prognosis [9,10]. Currently, research
is focused on new therapies aimed at attempting to target and inhibit both the MYCN amplification
process, as well as the tumorigenesis of the cancer [11].

2. Transcribed-Ultra Conserved Regions

Bezarano et al. were the first to discover ultra-conserved regions (UCRs), using a bioinformatics
approach from the genome [11]. UCRs are 481 elements longer than the 200 base pairs that are 100%
conserved, without any deletions or insertions, between the orthologues regions of human, rat, and
mouse genomes. Protein-coding genes represent anywhere from 1% to 2% of the human genome;
therefore, the scientific community was ignoring the rest of 98% of the genome, referred to as “junk
DNA.” Recently, a group led by Axel Visel described the functional role of non-coding DNA elements in
mice. Authors used genome editing technology to create knockout mice lacking individual or a group
of ultra-conserved elements. Mice with deletions of ultra-conserved elements showed neurological
abnormalities, including structural brain defects [12]. UCRs represent a small portion of the “junk
DNA” and are likely to be involved in different biological pathways. Based on their localization, UCRs
are classified into five groups: exonic, partly exonic, exon-containing, intronic, and intergenic, as
shown in Figure 1 [13].
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Figure 1. Types of ultra-conserved regions (UCRs). A schematic representation of the different types of
UCRs as per their genomic location with respect to their protein-coding genes.

The transcripts that are transcribed from UCRs are called Transcribed-Ultra Conserved Regions
(T-UCRs), which can either be “sense” (transcribed in the same orientation) or “anti-sense” (transcribed
in the opposite direction). If the T-UCRs are transcribed towards the host gene, they are called sense
direction, whereas they are called anti-sense direction in the opposite direction of the host gene. T-UCRs
are defined as a novel class of long, non-coding RNAs. Furthermore, the presence of cancer-specific
mutations in UCRs raises the question of their potential role in cancer biology [14]. In addition, UCRs
are located within cancer-associated genomic regions, suggesting a role in cancer biology [15].

3. Regulation of Transcribed-Ultra Conserved Regions

Calin et al. were the first group to describe the differential expression of T-UCRs in human
cancers, specifically in chronic lymphocytic leukemia (CLL; a cancer type of the blood and bone
marrow), colorectal carcinoma (cancer of the colon or rectum), and hepatocellular carcinoma (primary
malignancy of the liver) models [16]. These studies were performed in vitro, using patient samples
or cell line models, as well as in silico, using various bioinformatics tools. The authors concluded
that cancer cells express distinctive T-UCR and miRNA signatures when compared to their respective
controls. Based on the in vitro experiments, alterations in T-UCRs and miRNAs indicated that they
regulate each other, suggesting that the coding and non-coding genes cooperate to play a vital role in the
biology of malignancy. Regulation of T-UCRs in various cancers has been found in four potential ways,
including altered interactions with miRNAs, hypermethylation of CpG islands at the promoter region
of the protein-coding gene [17], trimethylation of histone H3 (H3K4me3) located near the transcription
site of the protein-coding gene, and hypoxia [13]. These data were obtained from 59 cancer cell lines
and 283 primary tumors treated with or without 5-aza-2′-deoxycytidine, a demethylation agent [17].
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3.1. Regulation of Gene Expression by T-UCRs

Recent evidence highlights the importance of T-UCRs in the regulation of gene expression through
direct interaction with mRNA [18,19]. Wang et al. performed a series of experiments using colorectal
cancer tissue and cell lines, exploring the possible connection between uc.338 and tissue inhibitor of
metalloproteinase-1 (TIMP-1) mRNA in a model of colorectal cancer. The authors discovered that
uc.338 negatively regulates TIMP-1 levels through direct interaction with the 3′UTR of TIMP-1 mRNA,
suggesting that uc.338 acts as an oncogene [18] (Figure 2A). The authors used 293T and colorectal
cancer cell lines (SW480 and HCT116) in the studies. This was the first study to demonstrate the
function of T-UCRs in negative regulation of mRNA by direct interaction at 3′UTR [18]. A similar
mechanism has been found in non-small-cell lung cancer involving the negative regulation of Heat
shock protein family A member 12B (HSPA12B) mRNA by uc.454 through direct interaction at the
3′UTR of HSPA12B mRNA [19]. Moreover, uc.8 acts as a decoy molecule through the direct binding of
miRNA-596, suggesting a new regulatory loop between T-UCRs and miRNAs [20]. The authors have
used bladder cancer tissues and bladder cancer cell lines, and have performed experimental techniques,
such as miR-binding domain accessibility, RNA binding affinity, and RNA species abundance, to find
that uc.8 translocates from the nucleus to the cytoplasm in this decoy mechanism.
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Figure 2. Regulation of gene expression by Transcribed-Ultra Conserved Regions (T-UCRs). T-UCRs
regulate gene expression by (A) direct interaction with 3′UTR of specific mRNA, (B) trapping
miR, (C) degradation of primary miR or (D) inhibition of primary miR processing mechanism
by microprocessor complex.

A similar mechanism exists in lead-induced neurotoxicity by uc.173 through degradation of
pro-apoptotic miRNA-291a-3p. The authors delineated the mechanistic aspects of the regulation of
miRNA-291a-3p by uc.173 by using blood samples from 200 students who were living in the area of
lead-associated plants, as well as studies on N2a mouse nerve cell lines [21]. High uc.173 expressions
were positively correlated with lead concentrations in the blood, thus providing a new mechanism
of lead-mediated nerve damage (Figure 2B). A group led by Manel Esteller et al. discovered a novel
interaction between the T-UCR named uc.283A and the stem region of the pri-miR-195 transcript
through complementary base pairing, which prevents the inhibition of pri-miRNA processing by
the Drosha/DGCR8 microprocessor complex [22]. A mutated version of pri-miR-195 uncouples
uc.283A-mediated regulation, in both in vivo and in vitro systems. The authors revealed a novel model
for the regulation of miRNA through inhibiting microprocessor-mediated recognition and cleavage of
primary-miRNA [22] (Figure 2C,D).

3.2. Regulation of T-UCR Expression

Some of the miRNAs show significant complementarity with T-UCRs. Additionally, expression of
T-UCRs was negatively correlated with the appearance of miRNAs. Experimental evidence indicates
that miRNA-155 directly targets uc.160, whereas miRNA-24-1 and miRNA-29b downregulate uc.346A
and uc.348 in MEG01 leukemia cells [16]. Furthermore, miRNA-153 suppresses uc.416 through direct
binding in a model of gastric cancer [23]. Similarly, five miRNAs regulate the expression of nine
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T-UCRs in neuroblastoma [24] while, in gastric cancer, miRNA-153 acts as a tumor suppressor by
directly downregulating the expression of uc.416 [23], suggesting that miRNAs may regulate the
expression of T-UCRs (Figure 3A). These results were concluded from experiments involving CLL
patient samples [16], gastric cancer cell lines and patient tissue samples [23], and neuroblastoma patient
tumor tissue samples [24].

Non-Coding RNA 2019, 5, x FOR PEER REVIEW 4 of 14 

 

suppresses uc.416 through direct binding in a model of gastric cancer [23]. Similarly, five miRNAs 
regulate the expression of nine T-UCRs in neuroblastoma [24] while, in gastric cancer, miRNA-153 
acts as a tumor suppressor by directly downregulating the expression of uc.416 [23], suggesting that 
miRNAs may regulate the expression of T-UCRs (Figure 3A). These results were concluded from 
experiments involving CLL patient samples [16], gastric cancer cell lines and patient tissue samples 
[23], and neuroblastoma patient tumor tissue samples [24]. 

Hypermethylation regulates the expression of protein-coding genes and miRNAs. To test 
whether hypermethylation of CpG islands also regulates the expression of T- UCRs, Lujambio et al. 
screened the CpG island methylation status within a 2000-bp region upstream of the sense transcripts 
and found that three T-UCRs (uc.160, uc.283A, and uc.346) correlated with methylation status of CpG 
island promoter regions, suggesting a link between hypermethylation and T-UCR silencing [25,26]. 
Another group, led by Yasui W, also found methylation-mediated downregulation of the T-UCR, 
uc.158 [23]. It has also been reported that treatment with 5-AzaC, a nucleoside-based DNA 
methyltransferase inhibitor, restored expression of T-UCRs in HCT116 (a colon cancer cell line) and 
LNCaP (a prostate cancer cell line) [17,23,27], suggesting that epigenetic mechanisms regulate the 
expression of T-UCRs (Figure 3B). 

To understand the regulation of T-UCRs transcription, Mestdagh and colleagues explored the 
distant distribution of the trimethylation status of lysine 4 molecule on histone H3 protein 
(H3K4me3), a mark for transcriptional initiation for intergenic T-UCRs, intragenic T-UCRs, and 
protein-coding genes, using four different neuroblastoma cell lines. This group found that intergenic 
and intragenic T-UCRs significantly associate with active H3K4me3, but not with protein-coding 
genes, which suggests that a different transcriptional regulation mechanism may exist between 
intergenic T-UCRs, intragenic T-UCRs, and protein-coding genes [13] (Figure 3C). Furthermore, 
miRNAs were also associated with the trimethylation status of H3K4me3, suggesting a common 
mechanism of regulation in these two non-coding RNA classes [28–30]. A recent study by Ferdin J. 
and colleagues found that hypoxia induces upregulation of several T-UCRs (uc.63, uc.73, uc.106, 
uc.134, and uc.475), named the ‘hypoxia-induced noncoding ultra-conserved transcripts’ (HINCUTs), 
partly through hypoxia-inducible factor 1-alpha (HIF1A) [31]. The authors performed a series of 
experiments involving cell lines from colon cancer, breast cancer, bladder cancer, and glioblastoma, 
with or without hypoxic conditions, thus providing the first evidence of the functional network 
between hypoxia and T-UCRs [31].  

 

Figure 3. Regulation of T-UCR expression by (A) miR, (B) CpG island methylation, or (C) 
trimethylation of histone H3. 

4. Transcribed-Ultra Conserved Regions in Neuroblastoma 

4.1. T-UCRs Expression and Patient Survival in Neuroblastoma 

The team involving Scaruffi, P et al. was the first to analyze the deregulation of the microRNA/T-
UCR network and its correlation to survivorship in neuroblastoma. The team collected 34 tumor 
specimens from stage 4, high-risk neuroblastoma patients diagnosed between 1990 and 2006 at the 

Figure 3. Regulation of T-UCR expression by (A) miR, (B) CpG island methylation, or (C) trimethylation
of histone H3.

Hypermethylation regulates the expression of protein-coding genes and miRNAs. To test whether
hypermethylation of CpG islands also regulates the expression of T- UCRs, Lujambio et al. screened
the CpG island methylation status within a 2000-bp region upstream of the sense transcripts and found
that three T-UCRs (uc.160, uc.283A, and uc.346) correlated with methylation status of CpG island
promoter regions, suggesting a link between hypermethylation and T-UCR silencing [25,26]. Another
group, led by Yasui W, also found methylation-mediated downregulation of the T-UCR, uc.158 [23].
It has also been reported that treatment with 5-AzaC, a nucleoside-based DNA methyltransferase
inhibitor, restored expression of T-UCRs in HCT116 (a colon cancer cell line) and LNCaP (a prostate
cancer cell line) [17,23,27], suggesting that epigenetic mechanisms regulate the expression of T-UCRs
(Figure 3B).

To understand the regulation of T-UCRs transcription, Mestdagh and colleagues explored the
distant distribution of the trimethylation status of lysine 4 molecule on histone H3 protein (H3K4me3),
a mark for transcriptional initiation for intergenic T-UCRs, intragenic T-UCRs, and protein-coding
genes, using four different neuroblastoma cell lines. This group found that intergenic and intragenic
T-UCRs significantly associate with active H3K4me3, but not with protein-coding genes, which suggests
that a different transcriptional regulation mechanism may exist between intergenic T-UCRs, intragenic
T-UCRs, and protein-coding genes [13] (Figure 3C). Furthermore, miRNAs were also associated with
the trimethylation status of H3K4me3, suggesting a common mechanism of regulation in these two
non-coding RNA classes [28–30]. A recent study by Ferdin J. and colleagues found that hypoxia induces
upregulation of several T-UCRs (uc.63, uc.73, uc.106, uc.134, and uc.475), named the ‘hypoxia-induced
noncoding ultra-conserved transcripts’ (HINCUTs), partly through hypoxia-inducible factor 1-alpha
(HIF1A) [31]. The authors performed a series of experiments involving cell lines from colon cancer,
breast cancer, bladder cancer, and glioblastoma, with or without hypoxic conditions, thus providing
the first evidence of the functional network between hypoxia and T-UCRs [31].

4. Transcribed-Ultra Conserved Regions in Neuroblastoma

4.1. T-UCRs Expression and Patient Survival in Neuroblastoma

The team involving Scaruffi, P et al. was the first to analyze the deregulation of the microRNA/T-UCR
network and its correlation to survivorship in neuroblastoma. The team collected 34 tumor specimens
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from stage 4, high-risk neuroblastoma patients diagnosed between 1990 and 2006 at the Gaslini Children
Hospital in Genoa, Italy. Patients were divided into short- and long-term survivors. Short term
survivors were patients who did not survive with the disease longer than 36 months after diagnosis,
while long-term survivors were patients who lived longer than 36 months after diagnosis. All patients
were over the age of one-year-old. The study sought to compare the T-UCR expression levels of
short- vs. long-term survivors to create a “T-UCR threshold risk-prediction model.” They analyzed
the expression of all 481 UCRs, and their associated 723 microRNAs, using qRT-PCR and microarray
analysis, respectively. Of the T-UCRs examined, 460 were detectable and, of these, 54 were differentially
expressed between the short- and long-term survivor groups. Interestingly, the expression levels of nine
T-UCRs were inversely correlated with the five microRNA signatures that have complementary binding
sites, indicating a negative regulation of T-UCRs by direct interaction with microRNAs (Table 1).

Table 1. AlistofT-UCRsnegativelycorrelatedwithmiRNAsinshort-vs. long-termsurvivorsofneuroblastoma.

T-UCR
Name

Chromosome
Location Start (bp) End (bp) T-UCR

Expression miRNA miRNA
Expression

uc.209 7 23,561,888 23,562,137 ↑ hsa-miR-877-3p ↓

uc.271 9 128,304,352 128,304,562 ↑ hsa-miR-383 ↓

uc.312 10 120,076,537 120,076,858 ↑
hsa-miR-877-3p,
hsa-miR-548d-5p ↓

uc.330 11 66,393,896 66,394,102 ↑ hsa-miR-548d-5p ↓

uc.371 14 36,020,189 36,020,484 ↑ hsa-miR-877-3p ↓

uc.411 17 35,329,619 35,329,847 ↑ hsa-miR-33b-5p ↓

uc.421 18 22,693,155 22,693,499 ↑ hsa-miR-877-3p ↓

uc.435 18 53,089,931 53,090,157 ↑ hsa-miR-939 ↓

uc.452 19 31,827,947 31,828,150 ↑ hsa-miR-383 ↓

T-UCR—Transcribed Ultra Conserved Region; bp—base pairs; hsa—Homo Sapiens; miR—microRNA; ↑—Upregulation;
↓—Downregulation.

The authors have concluded that complementary microRNA down-regulation may cause the
up-regulation of T-UCRs within short-term survivors in neuroblastoma patients [24]. This was the first
report describing the association of T-UCRs with survival in neuroblastoma patients. Nevertheless,
the authors did not attempt to study the gene expression profiles and their correlation with T-UCR
signatures and their outcomes in both long-term and short-term survivors of neuroblastoma patients.

4.2. T-UCR Expression, Genomic Locations, and Coding Genes in Neuroblastoma Tumors

For the first time, the research team of Mestdagh et al. used a functional genomic approach
to designate functions to each of the T-UCRs [13]. The authors collected 49 neuroblastoma tumors
from the Ghent University Hospital in Ghent (Belgium), the Medical School of Valencia in Valencia
(Spain), and an additional cohort of 366 neuroblastoma tumors, as described [32]. The staging was
confirmed according to the International Neuroblastoma Staging System [6]. Using a qRT-PCR-based
approach, the research team analyzed the expression of all 481 T-UCRs in neuroblastoma tumors with
respect to genomic location. They then correlated these findings with host and surrounding genes
in neuroblastoma patients and validated the results using a cellular model system. These T-UCRs
were found to be categorized as intronic (42.6%), intergenic (38.7%), exon containing (5.6%), partly
exonic (5%), and exonic (4.2%). To find out whether intragenic T-UCRs independently express their
host protein-coding genes, the authors also quantified T-UCR and mRNA levels (by RT– qPCR (n = 49)
and exon array (n = 40), respectively) and correlated the results to their host gene expression in
neuroblastoma tumors. The authors found that almost half (237) of the T-UCRs (inter and intragenic)
are expressed independently of their host gene expression, while 17 T-UCRs (inter and intragenic)
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showed a negative correlation to one of the flanking up- or downstream-coding genes. Otherwise,
none of the T- UCRs (intragenic) showed a negative correlation to their host gene.

4.3. T-UCR Expression and Histone Marks in Neuroblastoma

In studying the initiation and regulation of T-UCR transcription, the genomic neighborhood
surrounding T-UCRs was analyzed to understand the chromatin state (specifically, the trimethylation of
lysine 4 of histone H3 (H3K4me3) that indicates active transcription) in neuroblastoma patient samples
and cell lines [13]. Results demonstrated that both intergenic and intragenic T-UCRs were associated
with active H3K4me3 marks, but with a different distribution when compared with protein-coding
genes, documenting a different transcriptional regulation between T-UCRs and protein-coding genes.
These results are in agreement with other reports [30,33,34].

4.4. T-UCR Expression and MYCN Amplification in Neuroblastoma

The obtained T-UCR data was compared with a clinical and genetic subgroup of the patients
to see if T-UCRs have any prognostic value in neuroblastoma. An upregulation of seven T-UCR
signatures (four intergenic, three intronic; uc.279, uc.347, uc.350, uc.364, uc.379, uc.446, and uc.460)
was found in MYCN-amplified tumors (n = 18) as compared to MYCN-non-amplified tumors (n = 31).
Interestingly, none of the T-UCRs were downregulated in the MYCN-amplified tumors. Out of the
seven T-UCRs, three were randomly selected (uc.279, uc.364, and uc.460) to be evaluated for expression
in a neuroblastoma cohort (n = 366), which led to finding significant upregulation in two of the
T-UCRs (uc.279, uc.460) in MYCN-amplified tumors. The seven T-UCR signatures were also validated
using a SHEP-MYCN-ER cell line (4-hydroxy tamoxifen-induced MYN activation cell line) [35], which
found an upregulation (more than two-fold) in three of the seven T-UCRs (uc.350, uc.379, and uc.460),
suggesting that MYCN induces the expression of these T-UCRs.

4.5. T-UCR Expression & DNA Copy Number in Neuroblastoma

DNA copy-number affects gene expression in cancers. Chromosomal abnormalities, such as
deletions of 1p, 3p, and 11q, as well as the gain of 17q, have been shown to positively influence the
progression of neuroblastoma [36–39]. A team led by Mestdagh et al. tested to see if the expression of
any T-UCRs correlates with DNA copy-number changes [13,39,40]. The authors identified a seven
T-UCR signature that correlated with DNA copy-number (Table 2). These findings established that
T-UCR deregulation associates with DNA copy number changes in neuroblastoma tumors. However,
the exact manner in which T-UCR signatures influence DNA copy number remains unknown in the
context of neuroblastoma.

Table 2. A list of T-UCRs correlated with DNA copy number changes in neuroblastoma patients.

T-UCR Location Start (bp) End (bp)

uc.10 1 10,965,574 10,965,848

uc.25 1 51,166,034 51,166,268

uc.300 10 102,547,118 102,547,325

uc.303 10 103,052,427 103,052,698

uc.308 10 103,245,812 103,246,088

uc.379 14 97,431,368 97,431,619

uc.380 14 97,762,594 97,762,825

T-UCR—Transcribed-Ultra Conserved Region; bp—base pairs.
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4.6. T-UCR Expression and p53 Response in Neuroblastoma

In identifying putative functions of T-UCRs, the authors followed a functional genomics approach to
find that T-UCRs were correlated with the function of protein-coding genes in neuroblastoma tumors [13].
A Gene Set Enrichment Analysis (GSEA) was performed to further inquire into which pathways T-UCRs
are potentially involved in, which demonstrated an association with various pathways related to cancer
cell proliferation, cell cycle, apoptosis, DNA repair, and differentiation [41]. Additionally, the authors
also validated the involvement of T-UCRs in p53 activation using neuroblastoma cells following the
inhibition of p53 with the lentiviral shRNA system and treatment with nutlin, a small molecule that
activates p53 by inhibiting the interaction between MDM2 and p53 [42,43], which showed that 29 out of
40 T-UCRs are p53 responsive. Thus, these findings suggest that T-UCRs mediate the p53 responsive
pathway. These results were inconsistent with other investigators, who reported that uc.73 is p53
responsive and plays a role in inducing apoptosis [16].

4.7. T-UCR Expression Network in Neuroblastoma

Bejerano et al. first discovered 481 T-UCRs that are conserved and located within or around the
genes involved in various functional properties [11]. From these findings, a network approach was used
to find pairwise correlations of 237 independently expressed T-UCRs in neuroblastoma tumors [13],
of which four major clusters of T-UCRs were identified. Functions were then assigned to each cluster by
GSEA. Each cluster had a function that is closely associated with common cancer relation pathogenesis:
Cluster 1 consisting of nine T-UCRs was associated with DNA damage response (TP53 responsive);
Cluster 2, comprised of 11 T-UCRs, was associated with cell cycle regulation and proliferation; Cluster
3, containing nine T-UCRs, was associated with p53-dependent neuronal differentiation; and Cluster
4, involving six T-UCRs, was associated with immune response and development. The correlation
of these Clusters with patient survival was analyzed, which showed that Cluster 4 was significantly
correlated with overall and event-free patient survival, suggesting a possible predictor of patient
prognosis (Table 3). In all, these results indicated that T-UCRs are involved in various aspects of
neuroblastoma progression.

Table 3. A list of T-UCR clusters and the associated pathways in neuroblastoma patients.

Cluster Pathway T-UCR Chromosome Location

Cluster 1

uc.31 1
uc.58 2

DNA uc.130 3
Damage uc.139 4

Response uc.196 6
uc.293 10
uc.296 10
uc.365 14
uc.405 16

Cluster 2

uc.74 2
uc.103 2
uc.104 2
uc.131 3
uc.134 3

Cell Cycle and uc.257 9
Proliferation uc.277 9

uc.278 9
uc.279 9
uc.431 18
uc.444 19
uc.483 3



Non-coding RNA 2019, 5, 39 8 of 14

Table 3. Cont.

Cluster Pathway T-UCR Chromosome Location

Cluster 3

uc.16 1
uc.30 1
uc.46 1
uc.49 2

Differentiation uc.101 2
uc.193 6
uc.366 14
uc.380 14
uc.456 20

Cluster 4

uc.21 1
uc.65 2

Immune uc.98 2
Response and uc.145 4
Development uc.334 11

uc.347 13

T-UCR—Transcribed-Ultra Conserved Region; bp—base pairs.

4.8. T-UCR Expression and Retinoic Acid Treatment

The differentiating agent all-trans-retinoic acid (ATRA) has been used to treat children with
neuroblastoma; however, no information is available describing how T-UCRs play a role in neuroblastoma
chemotherapy responses. Watters et al. investigated the differential regulation of T-UCR expression in
three neuroblastoma cells (SH-SY5Y, SK-N-BE, and LAN-5) followed by ATRA-mediated differentiation
for seven days [44], which resulted in differential expression of 32 T-UCR transcripts, including 16
up-regulated and 16 down-regulated in each of the cell lines. Two T-UCRs (uc.324 and uc.300A) were
randomly chosen for validation experiments. The first, uc.324, was slightly up-regulated following
treatment, whereas uc.300A was found to be down-regulated significantly following treatment. The
knockdown of uc.300A leads to decreased cell viability due to the down-regulation of cell proliferation
and cell invasiveness, suggesting a tumor-supportive role in neuroblastoma. These studies indicate
that T-UCRs may play an essential role in mediating an ATRA-induced differentiation pathway, which
could be through the regulation of T-UCR specific genes or miRNAs. Nevertheless, future studies will
be needed to find the precise role of T-UCRs in cancer and normal cellular development.

5. Transcribed-Ultra Conserved Regions in Other Cancers

5.1. T-UCRs in Hepatocellular Carcinoma (HCC)

A group led by Patel et al. found an oncogenic role for uc.338 in hepatocellular carcinoma through
the regulation of genes involved in transcription, cell cycle, ubiquitin cycle, and cell division [45].
This group also showed that uc.338 is also associated with a molecular functional classification, such
as ligase activity, binding of proteins, nucleotides, and ATP, thus potentiating the cell growth in
hepatocellular carcinoma (HCC) [45]. Furthermore, the presence of uc.339 in extracellular vesicles,
such as exosomes and microvesicles, was discovered, providing a mechanism of uc.338 transfer from
one cell to another within the tumor microenvironment, which could potentiate the progression of
hepatocellular cancer [46]. This was the first study describing the presence of T-UCRs in exosomes [46].
Another study has shown that the Wnt pathway is involved in the progression of liver cancer through
uc.158 [47]. In addition, during macrophage polarization, uc.306 was shown to be expressed in low
levels, serving as a potential biomarker in hepatitis B-induced HCC [48].
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5.2. T-UCRs in Bladder Cancer

Polycomb protein, Yin Yang 1 (YY1), mediates the interaction between uc.8 and miR-596 through
protein-RNA binding, providing an additional layer of regulation in bladder cancer cells [49]. In a
gastric cancer model, uc.416A acts as an oncogene by targeting miR-153 expression [23]. In bladder
cancer, uc.8+ has been shown to be involved in bladder cancer progression through the stabilization of
MMP9 by targeting miR-596 [20].

5.3. T-UCRs in Pancreatic, Lung, Prostate, and Breast Cancers

Activation of the oncogenic pathway by uc.190, uc.233, and uc.270, has been found in pancreatic
adenocarcinoma [50]. Recently, we showed that uc.339 acts as an oncogene by decoying tumor
suppressive miR-339-3p, miR-663b-3p, and miR-95-5p, leading to the activation of Cyclin E2 in
non-small cell lung cancer patients [51]. Overexpression of uc.63 is involved in the progression of
castration-resistant prostate cancer through MMP2 by regulating the expression of miR-130b [52].
In breast cancer patients (luminal A subtype), uc.63 promotes the survival of cancer cells [53].

5.4. T-UCRs in Gastric and Colon Cancers

Methylation in the promoter region was associated with lower levels of uc.160, suggesting a
tumor suppressive role in gastric cancer [54]. Higher expression of uc.261 is implicated in damaging
the lining of the digestive tract in Crohn’s disease, a chronic inflammatory bowel disease [55].
The tumor-suppressive activity of uc.160 was found through PTEN stabilization by targeting oncogenic
miR-155 in gastric cancer [56]. By reducing primary miRNA-195 levels through direct binding, uc.173
has been shown to be involved in stimulating the renewal of intestinal epithelium [57]. Gut permeability
is regulated by uc.173 by decreasing the levels of miR-29b that target claudin-1 mRNA [58]. Methylation
of uc160 and uc346 was found in the plasma of colorectal cancer patients [59]. Studies have shown the
diagnostic and prognostic potential of uc.73 and uc.388 in colorectal cancer patients [60].

5.5. T-UCRs in Other Cancers

One T-UCR, uc.283, is abundantly expressed in pluripotent embryonic stem cells, as well as
in a variety of solid cancers, including gliomas [61]. A specific T-UCR signature (up-regulation of
uc.58, uc.202, and uc.207, along with down-regulation of uc.214) is currently known to be involved in
the progression of Barrett’s esophagus to esophageal adenocarcinoma [62]. The tumor suppressive
role of uc.38, targeting pre-B-cell leukemia homeobox 1 (PBX1) protein, has been found in breast
cancer [63]. Furthermore, T-UCRs were also involved in the development of the nervous system [64].
An upregulation of uc.416 has been found to be involved in promoting the epithelial-to-mesenchymal
transition through miR-153 in renal cell carcinoma [65]. These studies suggest that T-UCRs are involved,
not only in neuroblastoma, but also in other cancers.

6. Therapeutic Approaches in Targeting Transcribed-Ultra Conserved Regions

T-UCRs are involved in a wide variety of diseases, including, but not limited to, various solid
cancers, hematological malignancies, neuronal development, Crohn’s disease, hepatitis B infection,
and the renewal of intestinal epithelium. Therapeutic strategies targeting T-UCRs are limited at
present; therefore, future studies are required to explore this exciting opportunity. In a vast majority
of cancers, T-UCRs are found to be upregulated. There are several ways to target over-expressed
oncogenic microRNAs, including the use of anti-sense oligonucleotides. Further research is required
in order to investigate where a similar method may be applied to T-UCRs. Silencing RNAs (siRNA)
are also involved in reducing the levels of long non-coding RNAs, not only in cancer, but also in
other diseases such as Alzheimer’s disease. Approximately 20 clinical trials have been conducted
using siRNA- and/or miRNA-based therapies, including one using a compound called SPC3649 that
inhibits miRNA-122 function. There are more than 10 patents in the United States and European Union
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related to miRNAs and siRNAs [66]. Similar to miRNA sponges, T-UCRs can also be targeted. Finally,
DNA methylation agents have been shown to restore the expression of tumor-suppressive T-UCRs in
experimental systems and should be considered for another potential avenue.

7. Conclusions and Future Prospective

Dis-regulation of T-UCR expression is involved in the biology of neuroblastoma. Although
the discovery of T-UCRs occurred over a decade ago, the progress on the functional aspects of cell
homeostasis has remained limited. The role of T-UCRs in the normal development of the central nervous
system has proved to be difficult to understand. Several mechanistic aspects on progression, metastasis,
and therapy resistance by T-UCRs are missing in the literature. Recently, the presence of T-UCRs in
exosomes has been discovered, but their potential role in influencing the tumor microenvironment is
not yet known. Research on the role of T-UCRs in neuroblastoma is rapidly increasing. This unique
relationship is essential to understanding the development of chemotherapeutic and immunotherapeutic
resistance, as well as uncovering novel therapeutic avenues in neuroblastoma.
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