
non-coding 

RNA

Review

Deep Learning in LncRNAome: Contribution,
Challenges, and Perspectives

Tanvir Alam 1,* , Hamada R. H. Al-Absi 1 and Sebastian Schmeier 2

1 College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar; halabsi@hbku.edu.qa
2 School of Natural and Computational Sciences, Massey University, Auckland 0632, New Zealand;

S.Schmeier@massey.ac.nz
* Correspondence: talam@hbku.edu.qa

Received: 25 July 2020; Accepted: 6 November 2020; Published: 30 November 2020
����������
�������

Abstract: Long non-coding RNAs (lncRNA), the pervasively transcribed part of the mammalian genome,
have played a significant role in changing our protein-centric view of genomes. The abundance of lncRNAs
and their diverse roles across cell types have opened numerous avenues for the research community
regarding lncRNAome. To discover and understand lncRNAome, many sophisticated computational
techniques have been leveraged. Recently, deep learning (DL)-based modeling techniques have been
successfully used in genomics due to their capacity to handle large amounts of data and produce
relatively better results than traditional machine learning (ML) models. DL-based modeling techniques
have now become a choice for many modeling tasks in the field of lncRNAome as well. In this review
article, we summarized the contribution of DL-based methods in nine different lncRNAome research
areas. We also outlined DL-based techniques leveraged in lncRNAome, highlighting the challenges
computational scientists face while developing DL-based models for lncRNAome. To the best of our
knowledge, this is the first review article that summarizes the role of DL-based techniques in multiple
areas of lncRNAome.

Keywords: long non-coding RNA; lncRNA; lncRNAome; deep learning; machine learning;
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1. Introduction

The transcriptional landscape in eukaryotic organisms (e.g., humans) is now perceived as far
more intricate than was originally thought [1] after the discovery that only about 2% of the genomic
regions in humans encode for proteins, and the remaining sequences are non-coding regions that do
not encode for proteins [2]. Since most of the human genome is transcribed, whether it encodes a
protein or not, a major part of the human genome is pervasively transcribed into non-coding RNAs
(ncRNAs). From this expanded view of ncRNAs, long non-coding RNAs (lncRNAs), which are more
than 200 nucleotides in length, have recently been in the limelight due to evidence of linking mutations
in their sequence to the dysregulation in many human diseases [3]. For example, genome-wide
association studies (GWAS) have discovered that the long non-coding RNA (lncRNA) ANRIL is
significantly associated with susceptibility to type 2 diabetes, intracranial aneurysm, coronary disease,
and several types of cancers [3]. There are several mutations within the ANRIL gene body, as well as in
its surroundings, that are correlated with a propensity for developing the above-mentioned diseases [3].
Another example of an lncRNA is Gas5, which is involved in susceptibility to auto-immune disorders [4]
and could also act as a tumor suppressor in breast cancer [5]. Besides these examples, numerous other
lncRNAs are involved in a multitude of human diseases. Interested readers may refer to the following
articles to get a more detailed picture of the role of lncRNAs in different diseases [3,6–8].
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In the early 1980s, scientists used to consider the hybridization of complementary DNA (cDNA)
for cloning the genes and measuring their expression and tissue-specificity [9]. Initially, the efforts
were focused on genes that were known to produce proteins. Then, the scientific community adopted
the same approach for RNAs without considering their coding potential. Based on this approach,
the first discovered lncRNA in a eukaryotic organism was H19. The intriguing factor about the
discovery of H19 was the absence of being translated even though it had small open reading frame
sequences in the gene body. Surprisingly, the transcripts of H19 showed similar characteristics to
those of messenger RNAs (mRNA) in terms of splicing, polyadenylation, localization in the cytoplasm,
and its transcription by RNA polymerase II [10]. From the roster of the earliest discovered lncRNAs,
X-inactive-specific transcript (XIST) is among the most well-studied lncRNAs due to its role in the
X-chromosome inactivation (XCI) phenomena [11]. The loci of XIST was discovered in the early 1990s,
and it showed very low expression levels in mouse undifferentiated embryonic stem (ES) cells for both
males and females [12,13]. Since the pioneering discoveries of H19 and XIST, the view on non-coding
genes in the scientific community has changed completely and has rejuvenated the efforts to discover
and characterize novel non-coding RNAs. Specifically, studying lncRNAs has increased dramatically.
Additionally, advancement in next-generation-sequencing technology enabled the discovery of many
functional lncRNAs in the non-coding regions of the human genome. LncRNAs, despite being
considered to be junk DNA regions for approximately the last twenty years [14], are now recognized
as being pervasively transcribed, and non-coding RNA transcriptomes (specifically lncRNAs) have
become a major field in biomedical research.

The pervasive nature of the transcriptomes in humans [15] and mice [16] has also been highlighted
by the Functional Annotation of the Mammalian Genome (FANTOM) consortium in the largest
collection of functional lncRNAs, with over 23,000 lncRNA genes [17]. GENCODE [18] v25 provides
a list of ~18,000 human lncRNA genes. MiTranscriptome has collected 58,548 lncRNA genes [19],
however, it is unclear if all of them are functional. From this, we can observe that the discovery
of novel lncRNAs is becoming a regular occurrence, and the catalogue of lncRNAs is constantly
growing. Therefore, it is of interest to analyze this large, versatile, and dynamic collection of lncRNAs
in a systematic fashion using state-of-the-art computational techniques to derive novel hypotheses,
discover unanticipated links, and make proper functional inferences [20]. Machine learning (ML)-based
methods are well suited for lncRNA research, since ML-based techniques can generate insights and
discover new patterns from the growing number of lncRNA repositories.

Though ML-based methods are applicable to different types of data, the performance of ML-based
models depends on the representation of the data. The quality of data representation and the relevance
of the data to a particular problem affect the performance of ML-based models. Deep learning (DL),
a sub-field of ML, can address this issue by embedding the data for the model to yield end-to-end
models [21]. DL, a biology-inspired neural network [22], uses multiple hidden layers and is considered
to be among the best paradigms for classification and prediction in the ML field [23]. In the past ten years,
DL-based models have achieved tremendous success in computer vision [24], machine translation [25],
and speech recognition [26]. The main reason for their success is the unprecedented availability of
massive volumes of data, improvement of computational capacity, and the advancement of sophisticated
algorithms [27,28]. The enormous amount of biological data, which was once considered to be a big
analysis challenge, transformed into an opportunity for biomedical researchers [29]. DL-based methods
have now been successfully applied in the genomics research domain [21].

Considering the functionally diverse role of lncRNA in different human biological processes and
diseases and the extreme capacity of DL to identify informative patterns from big data, we reviewed
how DL has facilitated the discovery of the role of lncRNAs in different human diseases and the
underlying mechanism in a data-driven fashion. To the best of our knowledge, this article is the first to
summarize the contribution of DL in multiple research domains of lncRNAome.

We organized this article in the following way. We first introduce a primer on DL techniques that
were successfully applied in different lncRNAome-related problems. Then, we highlight the DL-based
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methods that have been successfully applied in several lncRNA-related research problems. We continue
by discussing potential issues that might be encountered by researchers while implementing DL-based
solutions for lncRNAome and possible resolutions. Finally, we conclude by discussing the perspectives
of DL methods in lncRNAome research areas.

2. Summary of Deep Learning Techniques That Are Applied in lncRNAome-Related
Research Problems

In this section, we provide a brief description of the deep learning (DL) models that have
successfully been used in the modeling of lncRNAome-related research problems.

2.1. Neural Network

A neural network (NN) comprises multiple processing components, or parts, that are joined
to form a network with adjustable weighting functions for each input. The NN components are
organized in several connected layers. Typically, there are three types of layers in a NN: input layer,
hidden layer(s), and output layer [30]. The input layer considers data to be fixed-size input values and
presents them through the hidden layers inside the network. To propagate from one layer to the next,
a weighted sum of the inputs from the previous layer is passed through a non-linear function. Finally,
a fixed-sized output is generated through the output layer. Currently, the most popular function for
the hidden layers is the rectified linear unit (ReLU) [31]. Depending on whether a task is a binary
or a multi-class classification problem, a Sigmoid or a Softmax function is used at the output layer.
Figure 1 shows a typical NN architecture for vector inputs.

Figure 1. A neural network (NN) with four inputs and two hidden layers (adopted from [32]).
xi represents an input feature for the network, and yi represents an output class label.

2.2. Deep Neural Network

A deep neural network (DNN) is a neural network that has multiple hidden layers. These multiple
learning layers allow for learning representations of data that have many levels of abstraction,
which leads to improvements in model performance in many applications such as object detection,
speech recognition, and many more [31].
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2.3. Deep Belief Network

A deep belief network (DBN) is a network of multiple layers where each layer consists of a
restricted Boltzmann machine (RBM) with a classifier in the last layer [33]. An RBM is a neural
network with two layers where the left layer is the visible layer and the right layer is the hidden layer
(Figure 2) [34]. The visible layer represents a less abstract form of the raw data where the hidden layer
is trained to represent more abstract features [35].

Figure 2. Restricted Boltzmann machine (RBM) (adopted from [34]).

In DBN, learning happens in one layer at a time. When an RBM layer has learned its feature
activation, it is issued as input to the following RBM layer and so on. Repeating the trainin, layer-by-layer
oftentimes leads to a DL model [36]. Figure 3 shows the pretraining of a DBN.

Figure 3. Pretraining of a deep belief network (DBN) (adopted from [36]).

2.4. Convolutional Neural Network

A convolutional neural network (CNN) is a hierarchical model that learns patterns at multiple
layers using a series of 1D, 2D, or 3D convolutional operations [31]. A CNN usually consists of multiple
layers, namely, a convolutional layer, a non-linearity layer, a pooling layer, and a fully-connected (FC)
layer(s) [37]. However, it is important to stress that all of these layers are not mandatory to build a
CNN. Multiple stages of these layers are followed by conventional fully connected layers. A set of
filters is used in the convolutional layer to extract spatial features from the input data and the pooling
layer reduces the dimension of the data after convolution steps. Since FC layers have a large number
of parameters, making it harder to train the network, a new type of layer, global average pooling [38],
can be applied directly to the output of the final convolution layer, eliminating the need for the FC.
Since pooling operations might discard useful information from the input, strided convolution has
recently been researchers’ preference. Figure 4 shows the architecture of a typical CNN.
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Figure 4. An architecture of a convolutional neural network (CNN) (adopted from [39]).

2.5. Graph Convolutional Network

A graph convolutional network (GCN) is a type of convolutional neural network that works on
graphs [40]. A GCN’s input is a graph with labeled nodes, and the output is all the input graph’s
nodes labeled as predictions. Similar to CNNs or multi-layer perceptrons (MLP), for any input, a GCN
learns new features that later become inputs to the classifier over multiple layers. Unlike an MLP,
at the beginning of each layer, a GCN averages the features of each node with feature vectors in the
neighborhood [40]. Figure 5 shows an example of a GCN.

Figure 5. A graph convolutional network (GCN) (adopted from [41]).

2.6. Generative Adversarial Network

A generative adversarial network (GAN) is a model that comprises generative and discriminative
models. Both models are trained in an adversarial manner where the generator generates fake inputs
that seem real, and the discriminative model tries to classify inputs as either real or fake [42]. In this
model, the training process for the generator is to maximize the probability of the discriminator
making a mistake [43]. This model can be used in applications related to data synthesis, classification,
and image super-resolution [42]. Figure 6 shows an architecture of a GAN.
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Figure 6. Architecture of a generative adversarial network (GAN) (adopted from [42]).

2.7. Autoencoder

An autoencoder (AE) is a type of neural network that learns the latent, lower-dimensional
representation of input variables by passing the input variables through a bottleneck layer in the
middle of the network and reconstructing the input variable at the output layer [44]. The loss function
used in training this network penalizes the input reconstruction error. After convergence, the trained
network can be used for input reconstruction with minimal noise [45]. One of the advantages of
an AE is that it can be used in learning a lower-dimensional representation of input data with low
reconstruction error even when it spans a non-linear manifold in a feature space. Figure 7 shows an
architecture of an AE.

Figure 7. Architecture of an autoencoder (AE) (adopted from [45]).

2.8. Recurrent Neural Network

A recurrent neural network (RNN) is made of artificial neurons with one or more feedback loops.
A simple RNN architecture consists of an input layer, multiple recurrent hidden layer(s), and an output
layer [46]. An RNN constructs recurrent connections over a period of time, and activation from time
steps is stored in the internal memory of the network. This makes an RNN suitable for applications
related to time series and sequential data [47]. Figure 8 shows an architecture of an RNN.
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Figure 8. A simple architecture of an RNN.

A long short-term memory (LSTM) is a type of RNN that reduces the effects of vanishing and
exploding gradients (which is a drawback of an RNN that happens during the training of an RNN)
in an RNN. LSTM changes the structure of hidden units from “sigmoid” or “tanh” to memory cells
where gates control inputs and outputs and maintain extracted features from preceding timesteps [48].
Figure 9 shows an LTSM memory block.

Figure 9. A long short-term memory (LTSM) architecture (adopted from [49]).

A bidirectional LSTM (BLSTM) is a variation of an RNN [50] that runs in both forward and
backward directions, where the output from a cell depends on all the previous (forward direction) and
future (backward direction) timesteps. A BLSTM has been found to perform better than a unidirectional
LSTM if the output at a timestep depends on both past and future inputs. Figure 10 shows a typical
BLTSM network structure.
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Figure 10. A bidirectional LSTM (BLTSM) architecture. A and A’ represent an LSTM cell propagating
data dependency in forward and reverse directions, respectively. xt and yt are input and output at
timestep t from each LSTM cell, respectively. S0 and S’0 denote the initial states, whereas Si and S’i
denote the final states.

2.9. Attention Mechanism (AM)

An attention mechanism (AM) is a DL technique that was first introduced for language translation and
performance enhancement that occurs by selecting significant features dynamically [51]. Figure 11 shows
the attention mechanism in CNN that optimizes the weights and the biases to ensure the selection of
important features in each region.

Figure 11. An attention mechanism (AM) (adopted from [51]). Zi, j denotes the output map from the
middle of the convolution layer of a network. The map is propagated to the next layer of the network,
and the AM calculates the weighted average of Zi, j as Ẑ. The fully connected layer calculation is
represented by the straight lines, and the weighted average calculation is represented by dashed lines.
The neural network is utilized by the AM to estimate ai, j and the importance of each Zi, j.
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3. Summary of the lncRNAome Research Domains Where Deep Learning-Based Techniques
Have Made Significant Contributions

Advances in next-generation sequencing techniques have afforded researchers the opportunity
to study a plethora of novel lncRNA transcripts from multiple cells and tissues [17]. The state of
lncRNA discovery and lncRNA annotation is still in its infancy. Several research groups are currently
discovering new lncRNAs and applying different ML-based techniques to study different properties
and functions of lncRNAs. In this section, we highlight different fields in the lncRNA research domain
where DL-based techniques have been successfully used. An overview is given in Table 1.

Table 1. List of deep learning (DL)-based architectures that have been employed to solve key questions
in lncRNA research.

Research Area Proposed DL Based Architecture References

LncRNA Identification

CNN and RNN LncRNAnet [52]

DBN LncADeep [53]

Embedding vector, BLSTM, CNN Liu et al. [54]

DNN DeepLNC [55]

Distinct transcription regulation of lncRNAs CNN DeepCNPP [56], DeePEL [57]

Functional annotation of lncRNAs DNN LncADeep [53]

Localization prediction DNN DeepLncRNA [58]

lncRNA–protein interaction Stacked auto-encoder, Random forest IPminer [59], RPI-SAN [60], BGFE [61]

Stacked auto-encoder, CNN RPITER [62]

LncRNA–miRNA interaction GCN GCLMI [63]

LncRNA–DNA interaction GCN [64]

LncRNA–disease association
GCN and AM GCNLDA [65]

CNN and AM CNNLDA [66]

DNN NNLDA [67]

Cancer type classification MLP, CNN, LSTM, DAE [68]

AM: attention mechanism. BLSTM: bi-directional long short-term memory. CNN: convolutional neural network.
DAE: deep autoencoder. DBN: deep belief network. DNN: deep neural network. GCN: graph convolutional
network. LSTM: long short-term memory. MLP: multi-layer perceptron. RNN: recursive neural network.

3.1. LncRNA Identification

There are many existing methods for recognizing lncRNA transcripts which were developed based
on shallow learning. For example, Lia et al. developed a tool called PLEK to recognize lncRNAs based
on improved k-mer schemes [69]. Sun et al. developed the CNCI tool to distinguish lncRNA transcripts
from protein-coding transcripts using the intrinsic composition of sequences [70]. An updated version
of CNCI, called CNIT, which can provide the same solution with higher accuracy and faster speed has
been produced [71].

Recently, due to the advancement of DL techniques, a lot of work has been published focusing on
the identification of lncRNAs using DL-based techniques. For example, Tripath developed DeepLNC,
a DNN-based network that uses k-mers (k = 1,2,3,4,5) from sequences as a feature set to distinguish
lncRNA transcripts from mRNA transcripts [55]. Baek et al. developed lncRNAnet [52], which can
be considered among the best of the performing models [72] for distinguishing full-length lncRNA
transcripts from protein-coding transcripts. LncRNAnet used an RNN for sequence modeling and
a CNN for the detection of stop codons to capture the open reading frame information. Yang et al.
developed LncADeep, which can identify both partial and full-length lncRNA transcripts [53].
LncADeep incorporates different hand-curated features such as coding sequence (CDS) length,
hexamer score, Fickett nucleotide features, etc. for developing a DBN-based model. In another
recent publication, Liu et al. used k-mer embedding vectors for the sequences as input features
and built the DL-based architecture using BLSTM and CNN [54]. Han et al. proposed an integrated
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platform for lncRNA recognition, which uses a sequence, structure, and physicochemical properties of
sequences [73]. Interested readers may consult the review by Amin et al., which summarizes different
DL-based methods that have been used to classify non-coding RNAs [72]. Table 2 provides a summary
outcome from the articles that considered DL-based techniques to identify lncRNAs in multiple species.

As mentioned at the beginning of this section, many tools such as PLEK [69], CNCI [70], CNIT [71],
etc. exist, and all of them were developed considering hand-curated features using traditional ML
models for non-coding RNA identification. Interestingly, all the DL-based methods highlighted in
Table 2 evaluated their proposed models against the traditional ML models and outperformed them
for lncRNA identification, indicating the superiority of DL-based models over traditional ML models
for this task.

Table 2. Overview of articles for lncRNA identification leveraging DL-based techniques.

LncRNAnet [52] LncADeep [53] Liu et al. [54] DeepLNC [55]

Publication Year 2018 2018 2019 2016

Species Human and Mouse Human and Mouse Human and Mouse Human

Data source used GENCODE 25, Ensembl GENCODE 24, Refseq GENCODE 28, Refseq LNCipedia 3.1, Refseq

Number of lncRNA
considered for training

~21k (~21k) lncRNA
transcripts from
human (mouse)

~66k (~42k) full length
lncRNA transcripts from

human (mouse)

28k (~17k) lncRNA
transcripts from
human (mouse)

~80k lncRNA transcripts
and ~100k mRNA

transcripts

Performance metric SN, SP, ACC,
F1-Score, AUC SN, SP, Hm SN, SP, ACC,

F1-Score, AUC
SN, SP, ACC,

F1-Score, Precision

Metrics for comparison
against traditional ML

based model *
ACC:91.79 # Hm: 97.7 # ACC:96.4 # ACC: 98.07

Intriguing features from
the proposed model ORF length and ratio

ORF length and ratio,
k-mer composition and
hexamer score, position

specific nucleotide
frequency etc.

k-mer embedding Solely based on k-mer
patterns

Source
code/Implementation N/A https://github.com/

cyang235/LncADeep/
N/A http://bioserver.iiita.ac.

in/deeplnc

ACC: accuracy. AUC: area under the receiver operating characteristics curve. Hm: harmonic mean of sensitivity
and specificity. MCC: Matthews correlation coefficient. N/A: not available. ORF: open reading frame. SN: sensitivity.
SP: specificity. * Performance metrics that were highlighted in the original research article for comparing against
traditional machine learning (ML)-based models. #: Performance on humans.

3.2. Transcriptional Regulation of lncRNAs

To date, ML-based techniques have been used to detect underlying patterns in the promoter
regions of lncRNAs and protein-coding genes [56,74,75]. Using an ML-based approach, Alam et al.
showed that there are different sequence-specific patterns in the promoters of lncRNAs compared
to the promoters of protein-coding genes. They also identified the list of transcription factors (TFs)
that are involved in the transcriptional regulatory patterns specific to lncRNAs. Recently, Alam et al.
developed a DL-based architecture, DeepCNPP, to distinguish the promoters of lncRNAs from the
promoters of protein-coding genes ([56,74]. DeepCNPP was built using a CNN-based architecture and
outperformed the existing models used for the same purpose. Alam et al. also developed a model,
DeePEL, to distinguish between the transcription regulatory program of promoter-originated lncRNAs
(p-lncRNA) and enhancer-originated lncRNAs (e-lncRNA) [57]. Table 3 provides a summary outcome
from the articles that considered DL-based techniques to demystify the transcription regulation
program for lncRNAs.

It is important to emphasize that the previous model [75] used for distinguishing the promoter of
protein-coding genes and lncRNA genes incorporated hand-curated features based on the sequence of
promoters, transcription factor binding sites at the promoter regions, CpG islands, repetitive elements,
and epigenetic marks to achieve 81.69% accuracy on the classification task. On the other hand,
the DL-based model, DeepCNPP [56], outperformed the previous model with 83.34% accuracy
considering only the sequence-related information from the promoter of lncRNA genes.

https://github.com/cyang235/LncADeep/
https://github.com/cyang235/LncADeep/
http://bioserver.iiita.ac.in/deeplnc
http://bioserver.iiita.ac.in/deeplnc
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3.3. Functional Annotation of lncRNAs

The functional annotation of lncRNA is a challenging task. There are many knowledge bases that collect
the functionality of lncRNA based on the expression and/or the regulatory elements (transcription factors,
transcription co-factors [76]) that are involved in their transcriptional regulation [20]. Some attempts to
extract the known functionality of lncRNAs by literature mining have also been made [77].

Table 3. Overview of articles for demystifying transcription regulation of lncRNA leveraging
DL-based techniques.

DeepCNPP [56] DeePEL [57]

Publication Year 2019 2019
Species Human Human

Data source used Dataset from [75] FANTOM CAT [17]
Number of lncRNA transcripts or genes considered ~19k lncRNA genes ~7k (~3k) p-lncRNA (e-lncRNA) transcripts

Performance metric SN, SP, ACC SN, SP, MCC, AUC
Metrics for comparison against traditional ML based model * ACC: 83.34 Traditional ML model does not exist for this task

Intriguing features from the proposed model k-mer embedding of promoter regions k-mer embedding of promoter regions,
transcription factor binding sites

* Performance metrics that were highlighted in the original research article for comparing against traditional
ML-based models.

Yang et al. developed LncADeep, a DNN-based architecture to infer the function of a lncRNA
based on its interacting protein partners [53]. In lncADeep, Yang et al. used several sequence-and
structure-related features from both lncRNA and proteins. These features were then fed into a DNN to
predict lncRNA-protein interactions. To infer the function of lncRNAs, the authors used the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [78] and the Reactome [79] pathways enrichment of the
predicted proteins. Since proteins usually work as functional modules [80], the authors also inferred
the functional modules of lncRNAs based on interacting protein partners.

3.4. Predicting lncRNA Subcellular Localization

Cao et al. proposed an ensemble-based classifier to predict the location of lncRNAs in five subcellular
locations: cytoplasm, cytosol, nucleus, ribosome, and exosome, yielding an overall performance accuracy
of 59% [52,81]. Recently, Gudenas and Wang proposed the first DL-based localization predictor for
lncRNAs. A DNN built only from sequence features is used to predict the subcellular localization of
the lncRNAs, distinguishing between lncRNAs located in the nucleus and cytosol [58].

3.5. Predicting lncRNA–Protein Interactions

RNA binding proteins (RBP) play important roles in different biological processes [82] and are
shown to be involved in different diseases, one of which is cancer [83]. With the advancement of
sequencing technologies, RBP can be verified using cross-linking immunoprecipitation sequencing
(CLIP-seq) [84]. However, these experiments are time-consuming and expensive. As an alternative,
we can adopt a fast and affordable in silico approach using ML techniques for predicting RBP [85].

Many state-of-the-art tools for predicting lncRNA-protein interactions exist, such as lncPro [86],
RPI-Pred [87], RPISeq-RF [88], etc., which were developed considering hand-curated features using
traditional ML models. Among these tools, RPISeq-RF performed best for the task of lncRNA–protein
prediction in many benchmark datasets [62]. Recently, DL-based architectures were used to predict
lncRNA–protein interactions. For example, IPminer [59], RPI-SAN [60], and BGFE [61] are the tools
where stacked auto-encoder networks were used to capture the important features of sequences,
and then the learned features from the sequence were fed into random forest models to predict
lncRNA-protein binding. Peng et al. developed a tool, RPITER [62], where they used stacked
autoencoders and CNN to fit the k-mer sequence features and structure information from the RNA
and protein.

Current methods have successfully predicted ncRNA and protein interactions with reasonably
high accuracy, but most of the models were trained and tested on only small benchmark datasets
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mainly derived from ncRNA–protein complexes in a protein–RNA interaction database [89] or
Protein Databank (PDB) [90]. Thus, there is a need for improving the generalization capability
of these models. Interested readers may consult the review by Zhang et al. [91] for more details.
Table 4 provides a summary outcome from the articles that considered DL-based techniques to predict
lncRNA-protein interactions.

For lncRNA-protein interactions, multiple benchmark datasets exist (see Table 4) but there is
no clear winner from the DL models (see Table 4) that performed the best in all benchmark datasets.
For all benchmark datasets, there exists at least one DL-based model that outperformed the traditional
ML-based models for the lncRNA–protein interaction prediction task. From the pool of conventional
ML-based models, RPISeq-RF performed at a similar level of accuracy to the DL-based models in a few
benchmark datasets [62]. Interested readers are encouraged to read the article by Yi et al. for more
details [60].

Table 4. Overview of articles for lncRNA–protein interaction prediction leveraging DL-based techniques.

IPminer [59] RPI-SAN [60] BGFE [61] RPITER [62]

Publication Year 2016 2018 2019 2019

Species Multi-species Multi-species Multi-species Multi-species

Benchmark Data
source used

NPInter 2.0, RPI369,
RPI488, RPI1807,

RPI2241, RPI13254

NPInter 2.0, RPI488,
RPI1807, RPI2241 RPI488, RPI1807, RPI2241 NPInter 2.0, RPI369,

RPI488, RPI1807, RPI2241

Performance metric SN, SP, ACC, Precision,
AUC, MCC

SN, SP, ACC, Precision,
AUC, MCC

SN, SP, ACC, Precision,
AUC, MCC

SN, SP, ACC, Precision,
AUC, MCC

Metrics for comparison
against traditional ML

based model for
different dataset *

NPInter 2.0 (ACC: 95.7) #,
RPI369 (ACC: 75.2),
RPI488 (ACC: 89.1),
RPI1807 (ACC: 98.6),
RPI2241 (ACC: 82.4),
RPI13254 (ACC: 94.5)

NPInter 2.0 (ACC: 99.33) #,
RPI488 (ACC: 89.7),

RPI1807 (ACC: 96.1),
RPI2241 (ACC: 90.77)

RPI488 (ACC: 88.68),
RPI1807 (ACC: 96.0),
RPI2241 (ACC: 91.30)

NPInter 2.0 (ACC: 95.5) #,
RPI369 (ACC: 72.8),
RPI488 (ACC: 89.3),

RPI1807 (ACC: 96.8),
RPI2241 (ACC: 89.0)

Intriguing features from
the proposed model

Sequence composition
features, specifically 3-mer

and 4-mer from protein
and RNA sequences,

respectively

k-mer sparse matrix from
RNA sequences and PSSM

from protein sequences

k-mer sparse matrix from
RNA sequences and PSSM

from protein sequences.
Stacked auto-encoder was

employed to get
high accuracy

k-mer frequency of
sequence and two types of

structural information
(bracket and dot) from

RNA. k-mer frequency of
sequence and three types
of structural information
(α-helix, β-sheet and coil)

from protein

Source
code/Implementation

https://github.com/
xypan1232/IPMiner;

http://www.csbio.sjtu.edu.
cn/bioinf/IPMiner

N/A N/A https://github.com/
Pengeace/RPITER

PSSM: position-specific scoring matrix.* Performance metrics that were highlighted in the original research article
for comparing against traditional machine learning (ML)-based models. #: Performance on humans.

3.6. Predicting lncRNA–miRNA Interactions

LncRNAs and microRNAs (miRNAs) interact with each other to form a complex regulatory
network for controlling gene expression. Through this multi-level gene regulation (either transcriptional,
post-transcriptional, or post-translational level), these two families of non-coding RNAs (miRNA and
lncRNA) are involved in multiple aspects of cell cycles (e.g., cell division, cell differentiation, apoptosis).
Recently, we witnessed an exponential growth of expression profiling of lncRNAs in different diseases
and conditions, but information regarding lncRNA–miRNA interactions is still rare [92,93]. Huang et al.
proposed the first large-scale lncRNA–miRNA predictive model using a network diffusion method on
sequence information, expression profiles, and biological function ([93,94]). Similarly, Huang et al.
proposed GCN-based model, graph convolution for novel lncRNA–miRNA interactions (GCLMI),
to predict lncRNA–miRNA interactions [63]. Based on the proposed model, which combines graph
convolution and an auto-encoder, Huang et al. found that the area under the curve (AUC) for the
predictor was around 0.85, indicating that DL-based methods are important contributors in this
research field.

https://github.com/xypan1232/IPMiner
https://github.com/xypan1232/IPMiner
http://www.csbio.sjtu.edu.cn/bioinf/IPMiner
http://www.csbio.sjtu.edu.cn/bioinf/IPMiner
https://github.com/Pengeace/RPITER
https://github.com/Pengeace/RPITER
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3.7. Predicting lncRNA–DNA Binding

Prediction of lncRNA and DNA binding is a relatively new field of research. Until now,
computational prediction of lncRNA–DNA interactions has received relatively little attention from
the scientific community working in lncRNAome [95]. We did find several tools that assessed the
triple helix formation of RNA–DNA interactions, namely Triplex [96], Triplex Domain Finder [97],
Triplexator [98], Triplex-Inspector [99], and LongTarget [100].

Recently, Wang et al. proposed a DL-based model using different combinations of CNN and LSTM
to predict the genome-wide DNA binding sites for twelve lncRNAs based on ChIRP-seq experimental
data [64]. In that study, Wang et al. considered the best performing model to have two CNN layers
and 32 kernels in each layer. The authors also concluded that LSTM-based models did not perform
well, since long-range dependence along sequences is not necessary for lncRNA-DNA binding.

3.8. Predicting lncRNA-Disease Associations

There are many existing methods (e.g., Ping’s method [101], LDAP [102], SIMCLDA [103],
MFLDA [104]) that have incorporated hand-curated features into traditional ML-based models to infer
lncRNA–disease associations. Ping’s method and LDAP both consider similarity measures between
lncRNAs and diseases to infer lncRNA-related diseases. Ping’s method also incorporates the topological
information from the bipartite graph of the lncRNA–disease network to achieve better results than
LDAP. On the other hand, SIMCLDA incorporates features from lncRNAs based on the Gaussian
interaction profile kernels from lncRNA–disease interactions. SIMCLDA also incorporates features
from diseases based on the Jaccard similarity of ontologies associated with diseases. Ping’s method
and LDAP both performed better than SIMCLDA in benchmark datasets for multiple diseases [65].
MFLDA introduced a matrix factorization-based fusion model to predict lncRNA–disease associations.
However, the performance of MFLDA was not as high compared to Ping’s method, LDAP, or SIMCLDA,
as similarities between lncRNA and diseases were not incorporated into MFLDA [66].

Recently, Xuan et al. published a DL-based model called CNNLDA, a dual CNN with attention
mechanisms for predicting lncRNA–disease associations [66]. CNNLDA integrates multiple sources
of data considering similarities between diseases, similarities between lncRNAs, lncRNA–disease
associations, disease–miRNA associations, and lncRNA–miRNA interactions under a single platform
to outperform many of the state-of-the-art methods for predicting disease-related lncRNAs. Xual et al.
also proposed another deep architecture, GCNLDA, which combines GCN and CNN to infer
lncRNA–disease associations [65]. Hu et al. proposed NNLDA, a CNN-based DL architecture, that is
used to predict the role of lncRNA in different diseases [67]. According to the authors, NNLDA was
the first algorithm that considered deep neural networks for predicting lncRNA–disease associations.
Table 5 provides a summary outcome from the articles that considered DL-based techniques to predict
lncRNA–disease associations.

Compared to the traditional ML-based models (e.g., Ping’s method [101], LDAP [102],
SIMCLDA [103], and MFLDA [104]), the DL-based models in Table 5 hugely improved the prediction of
lncRNA–disease association. For example, CNNLDA outperformed Ping’s method, LDAP, SIMCLDA,
and MFLDA by 8.05%, 8.85%, 20.6%, and 32.6%, respectively, in terms of AUC [66]. This clearly
indicates the major contribution that DL-based models have made in the prediction of lncRNA–diseases
associations.
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Table 5. Overview of articles for lncRNA–disease association prediction leveraging DL-based techniques.

GCNLDA [65] CNNLDA [66] NNLDA [67]

Publication Year 2019 2019 2019
Data source used LncRNADisease, Lnc2cancer, GeneRIF LncRNADisease, Lnc2cancer, GeneRIF LncRNADisease

Number of lncRNA considered 240 240 19166
Number of diseases considered 402 402 529

Performance metric AUC, AUPRC, Precision, Recall AUC, AUPRC, Precision, Recall
HR(k): Probability for the

predicted samples to appear in
top-k ranked list

Metrics for comparison against
traditional ML based models

AUC $: 0.959
AUPRC $: 0.223

AUC $: 0.952
AUPRC $: 0.251

HR(k); k = 1.10

Intriguing features from the
proposed model *

For ncRNA-lncRNA similarity Chen’s
method was applied [105]. For

disease-disease similarity Wang’s
method was applied [106]

For ncRNA-lncRNA similarity Chen’s
method was applied [105]. For

disease-disease similarity Wang’s
method was applied [106]

Matrix factorization method was
modified in two aspects to fit into
this model: (a) cross-entropy was
used as a loss function; (b) only
one batch data per round was

used to minimize loss

Source code/Implementation N/A N/A https://github.com/gao793583308/
NNLDA

AUPRC: area under the precision-recall curve. HR(k): hit ratio, the probability for the predicted samples to appear
in a top k ranked list. * Performance metrics that were highlighted in the original research article for comparing
against traditional ML -based models. $: Average over 402 diseases.

3.9. Cancer Lassification

Mamun and Mondal proposed DL-based approaches to classify eight different cancer types using
lncRNA expression profiles (RNA-seq) [68]. The authors discovered lncRNA expression to be a better
signature compared to mRNA expression for classifying cancer types. Using four different types
of deep neural networks (MLP, LSTM, CNN, and deep autoencoder (DAE)), the proposed models
achieved an accuracy ranging from 94% to 98%.

4. Challenges for Deep Learning in lncRNA Research

In this section, we highlight some of the frequently encountered problems when building DL-based
models for lncRNAome. We also briefly describe the problems and provide some recommendations to
circumvent the issues.

4.1. Required Data Set Sizes

DL-based methods are most successful in supervised learning setups, where a sufficient number
of samples are available for training the deep network. As a criterion, the number of training samples
is expected to be as high as the number of total model parameters, although some regularization
techniques can be used to avoid overfitting in cases of data scarcity [107]. LncRNAs are notoriously
difficult to analyze, since their expression is low and cell-specific, making the number of lncRNAs from
different cells and tissues available generally low. For image-based analysis, the training set can be
augmented by different techniques such as rotation, scaling, or cropping [24]. However, for genomic
sequences, the techniques are of a different type. For example, in the lncRNA–DNA binding prediction
problem, Want et al. augmented the data by applying a random shift of genomic sequences either in
the left or the right direction within a base pair range of 10 to 40 [64].

4.2. Imbalanced Datasets

Biological data are mostly imbalanced for training ML-based models [108]. There are many
bioinformatics research problems where there is a need for handling such imbalanced data carefully,
such as splice site predictions [109], poly (A) site predictions [110], protein–protein interaction motif
findings [108], etc. Using imbalanced data for training DL-based models may result in undesirable
or misleading results. To handle this issue, we need to follow specific criteria. First, we need to
avoid using accuracy as an evaluation metric for models because accuracy is a misleading parameter
for evaluating the performance of a model that uses imbalanced data. Instead of accuracy, we may
use the area under the precision-recall curve (AUPRC), Matthews correlation coefficient (MCC),
or F1-measure as a criterion for model evaluation. For example, in DeePEL, the DL-based model used

https://github.com/gao793583308/NNLDA
https://github.com/gao793583308/NNLDA
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to differentiate the transcription regulatory program between promoter-originated lncRNA (p-lncRNA)
and enhancer-originated lncRNA (e-lncRNA), the authors mainly relied upon MCC as an evaluation
metric since the dataset was imbalanced [57]. Additionally, instead of using cross-entropy loss, we may
use weighted entropy loss, which penalizes the model for the misclassification of samples from the
smaller class.

4.3. Interpreting and Visualizing Convolutional Networks

The interpretation of DL-based models is difficult [111]. Usually, DL-based models perform
better than traditional ML-based models in terms of different evaluation metrics, which indicates that
meaningful representations of data are learned by DL-based models. In terms of model explainability,
the lowest-level (the level closest to the input data) representations are relatively simple to explain,
but the higher-level features learned by different layers of DL-based models are difficult to interpret
and can be considered to be a black box [112]. Opening this black box to interpret the high-level learned
features will have a real impact on understanding the underlying biology of lncRNAs.

Feature importance scores can be used for the purpose of identifying the parts of an
input that significantly contributed to achieving the result of the models. This can be done
using two different methods: perturbation-based methods [113,114] and backpropagation-based
methods [115,116]. For perturbation-based methods in sequence-based models, the input sequence is
changed systematically (e.g., single-nucleotide substitution) to observe its impact on model performance.
The main limitation of this approach is the high computational cost since we need to exhaustively
search the perturbation. In backpropagation-based methods, the output signal is propagated backward
from the output layer of the neural network to the input layer to check the contribution of different
parts of the network. This approach is computationally more efficient and requires less time. For a
more comprehensive discussion on model interpretability, readers may consult [117,118].

4.4. Model Selection and Model Building

There are many different types of DL architecture, and model selection is not a trivial task.
The most commonly used network architectures are based on CNN and/or RNN. CNN architectures are
mainly suited for high-dimensional data such as 2D images, 3D images, or higher numbers of genomic
sequence data. RNN-based models can capture long-range dependencies from varying lengths of
genomic sequence data. Sophisticated models can be developed by integrating multiple architectures
into a novel architecture [109].

Determining the optimal structure of a deep network is also challenging. The optimal number of
hidden layers and hidden units are problem-specific, and validation sets should be used to determine
the optimal setup. More layers and hidden units in the neural network increase model complexity
(number of representable functions), and discovering the local optimum becomes less prone to weight
initialization [119].

Training a deep network is far more complex and difficult than a shallow network [112].
Overfitting is a major challenge for training deep networks that result from using a model too
complex for the data size of training sets. To avoid overfitting problems, the change of loss can be
evaluated as a function of the number of epochs in the training phase. Depending on the learning rate
value, the learning curve may change slowly or abruptly (Figure 12). Extreme learning rate values
may result in a fluctuating learning curve [107]. Along with the loss function, monitoring the target
performance parameter (e.g., accuracy, F1-score, etc.) is crucial for avoiding overfitting in both training
sets and validation sets.
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Figure 12. Loss function and performance metric over epoch to avoid the overfitting problem of deep
networks. When the model performance of a validation set diminishes relative to the performance of a
training set, an overfitting scenario may be indicated.

4.5. Confidence Score of the Prediction

In ML classification tasks, our main focus always revolves around the performance metric of
the model. However, for real-life healthcare-related problems, we not only prefer a high prediction
capability but also need to measure how confident the model is about its prediction, which enables us
to evaluate the reliability of the model in clinical decision support systems, for example [120]. It is
recommended that post-scaling be applied to Softmax output values from deep networks, as they
are usually not on the right scale. Several methods have been proposed for the post-scaling purpose,
such as temperate scaling [121], Platt scaling [122], isotonic regression [123], etc.

4.6. Catastrophic Forgetting

Catastrophic forgetting is a tendency of DL-based models to forget previously learned knowledge
upon learning information from a new dataset [124]. Despite this, the integration of new lncRNA-related
information is quite common, since new lncRNAs are constantly discovered and the information about
known lncRNAs is increasing. For example, GENCODE release 21, published in 2014, contained
15,877 lncRNA genes. In 2019, this number increased to 17,904 lncRNA genes in GENCODE release 31.
DL-based models that were developed based on earlier versions of data may not perform at the same
level for newly released data. Training new models with new datasets are computationally exhaustive
and time-consuming as well. There are different off-the-shelf solutions that may be used for this
scenario such as dynamic neural networks with rehearsal training methods (e.g., Incremental Classifier
and Representation Learning iCaRL [125]) and dual-memory-based learning systems [126].

5. Future Perspectives for Deep Learning in lncRNAome Research

DL-based methods are already extensively used in lncRNAs. However, to date, the most common
DL architectures used in lnRNA-related research are CNN and RNN (see Table 1). Despite this, there are
some other emerging architectures that may have applications in lncRNA-related research.

Di Lena et al. [127] applied deep spatio-temporal neural networks (DST-NNs) [128] using spatial
features (e.g., protein secondary structures, orientation probabilities, and alignment probabilities)
to determine protein structure predictions. Baldi et al. [129] applied multidimensional recurrent
neural networks (MD-RNNs) [130] to amino acid sequences, the correlated profiles, and the secondary
structures of proteins. Convolutional auto-encoders (CAEs) are designed to capitalize on the advantages
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of both CNN and AE to learn the hierarchical representation of data [131]. To the best of our knowledge,
CAEs, MD-RNNs, and DST-NNs have not yet been used in the lncRNA domain.

Graph convolutional networks (GCN) have been successfully used in predicting different molecular
attributes such as solubility, drug efficacy, etc. Recently, GCN and attention-based mechanisms have
been used in lncRNA–disease prediction [65]. However, GCN, or attention-based mechanisms,
have not been used in lncRNA–protein predictions thus far, and this might be an interesting area for
further research.

GAN belongs to unsupervised learning methods, where the goal is to discover the underlying
patterns from the data. GAN can also generate new sample data (e.g., sequences) with some variations.
To date, the application of GAN is mainly focused on image processing [43]. However, as a relatively
new method, the application of GAN is extremely limited in genomics. GAN models have been used
to generate protein-coding DNA sequences [132] as well as for designing DNA probes for protein
binding microarrays but have not been used in lncRNA research.

Capsule network models are a relatively new invention in the DL domain [133]. These models
attempt to mimic the hierarchical representation of the human brain. Recently, capsule network models
have been successfully used to classify brain tumor images [134]. However, capsule networks have not
been used in any significant application in the lncRNA domain. LncRNAome might be an interesting
area for capsule network-based research.

6. Conclusions

In this article, we summarized the contribution of DL in nine different lncRNAome research
areas and highlighted the challenges DL-based researchers may face while developing models for
lncRNAome. Comparative results from DL- and ML-based models highlight DL-based models’
superiority in different lncRNAome prediction tasks. Specifically, in the study of lncRNA identification,
the distinction of transcription regulation programs for lncRNA, lncRNA–protein interaction prediction,
and lncRNA–disease association prediction, DL-based models have outperformed the traditional
ML-based models. Based on these results, there is significant potential for the application of DL-based
techniques in lncRNAome. Unfortunately, only a few DL-based models for the task of lncRNA
localization prediction, lncRNA–DNA interaction prediction, and the distinction of transcription
regulation program for lncRNA exist. Researchers should consider focusing on developing new
DL-based models in these areas which have received relatively little attention from the scientific
community. However, the development of DL-based models for lncRNAome is a daunting task. Due to
the low expression level and cell-/tissue-specific nature of lncRNA, DL-based model development
may need to overcome the challenges of utilizing a relatively smaller dataset while building
cell-/tissue-specific models. Additionally, the evolving annotations of lncRNAs from multiple research
groups orchestrate another layer of complication in integrating newly discovered lncRNA into
existing models. Thus, in spite of DL-based models achieving high-level prediction accuracy thus far,
huge challenges in applying DL-based models in lncRNAome still exist. Leveraging state-of-the-art
DL-based techniques while improving the existing ones, we expect to gain a better insight into
lncRNAome in the near future.
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