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Abstract: Abstract: RationaleMicroRNAs have been independently associated with asthma and
COPD; however, it is unclear if microRNA associations will overlap when evaluating retrospective
acute exacerbations. Objective: We hypothesized that peripheral blood microRNAs would be
associated with retrospective acute asthma exacerbations in a pediatric asthma cohort and that such
associations may also be relevant to acute COPD exacerbations. Methods: We conducted small-RNA
sequencing on 374 whole-blood samples from children with asthma ages 6–14 years who participated
in the Genetics of Asthma in Costa Rica Study (GACRS) and 450 current and former adult smokers
with and without COPD who participated in the COPDGene study. Measurements and Main
Results: After QC, we had 351 samples and 649 microRNAs for Differential Expression (DE) analysis
between the frequent (n = 183) and no or infrequent exacerbation (n = 168) groups in GACRS. Fifteen
upregulated miRs had odds ratios (OR) between 1.22 and 1.59 for a doubling of miR counts, while
five downregulated miRs had ORs between 0.57 and 0.8. These were assessed for generalization in
COPDGene, where three of the upregulated miRs (miR-532-3p, miR-296-5p, and miR-766-3p) and
two of the downregulated miRs (miR-7-5p and miR-451b) replicated. Pathway enrichment analysis
showed MAPK and PI3K-Akt signaling pathways were strongly enriched for target genes of DE
miRNAs and miRNAs generalizing to COPD exacerbations, as well as infection response pathways
to various pathogens. Conclusion: miRs (451b; 7-5p; 532-3p; 296-5p and 766-3p) associated with both
childhood asthma and adult COPD exacerbations may play a vital role in airflow obstruction and
exacerbations and point to shared genomic regulatory machinery underlying exacerbations in both
diseases.

Keywords: asthma; COPD; miRNA; exacerbations; GACRS; differential expression; MAPK

1. Introduction

Asthma is a disease characterized by airflow obstruction that is often, but not always,
reversible. Asthma exacerbations, defined by hospitalizations, or emergency department
visits for asthma, cause substantial healthcare costs and morbidity. Similarly, severe Chronic
Obstructive Pulmonary Disease (COPD) exacerbations are costly [1] and accelerate the rate
of irreversible pulmonary function decline [2]. While a genetic (or genomic) link between
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asthma and COPD was postulated in the Dutch Hypothesis [3], there has been modest
genetic overlap found between asthma and COPD, and little work focused on shared omics
determinants of exacerbations. Recent results show that looking to regulatory genomics,
such as mRNA repression by microRNAs, can identify common genomic elements of
asthma and COPD [4].

MicroRNAs (miRNAs) are small non-coding RNAs that regulate their target mRNAs
post-transcriptionally through degradation or translational repression. Approximately 60%
of mRNAs may be the targets of miRNAs [4,5]. miRNAs have been shown to regulate
immune and inflammatory responses in various tissues, thus emerging as key molecules in
asthma and COPD [6]. Previous studies of miRNAs in asthma focused mainly on asthma per
se, including studies of circulating miRNA expression in children with asthma compared to
healthy controls, regulation of IL-5 expression by miRNA differential expression in serum
of asthmatics and healthy controls, and differential expression of miRNA in epithelial
and airway cells [7–10]. Recent work on miRNA sequencing in induced sputum has
identified miRs associated with asthma severity and with a history of exacerbations, and
specific miRs associated with neutrophilic signaling pathways [11]. However, the role
of peripheral whole-blood miRNAs (distinct from circulating, cell-free miRs in serum) in
asthma exacerbations has not been previously investigated.

Asthma exacerbations are typically due to airway inflammation that results from
viral infection, bacterial infection, or other environmental exposures, such as allergens. In
children, asthma usually results from eosinophilic inflammation (“T2-high asthma”), but
neutrophilic inflammation (“T2-low asthma”) occurs in some cases and can be more severe
or difficult to treat. Systemic inflammation often coexists with airway inflammation, and
some studies have shown genomic signatures of asthma exacerbations in mononuclear
cells [12] or whole blood [13–15]. Moreover, whole-blood gene expression signatures have
been associated with poor asthma control [16], a risk factor for exacerbations. As is the case
in asthma, peripheral blood gene expression signatures have been demonstrated in COPD,
where exacerbations mechanisms are related to neutrophils, eosinophils, macrophages,
and Th1 CD4 lymphocytes [17,18]. Studying whole blood is therefore a natural place to
look for shared regulatory mechanisms between eosinophilic and neutrophilic airway
diseases. We hypothesized that whole-blood miRNA would be associated with immune
and inflammatory responses predisposing for asthma exacerbations in the year prior to
ascertainment and that these would at least partially replicate in COPD exacerbations.

2. Methods
2.1. Study Population

Subject recruitment and study procedures for the Genetics of Asthma in Costa Rica
Study (GACRS) have been described in detail elsewhere [19,20]. In brief, the GACRS
included 1165 Costa Rican children ages 6 to 14 years with asthma, who were recruited
from February 2001 to July 2011. Asthma was defined as at least two respiratory symptoms
(wheezing, cough, or dyspnea) or a history of asthma attacks in the previous year and a
high probability of having at least six great-grandparents born in the Central Valley of Costa
Rica, as determined by a genealogist based on the paternal and maternal last names of each
of the child’s parents. Study participants completed a protocol including a questionnaire
on respiratory and general health, slightly modified from the questionnaire used in the
Collaborative Study on the Genetics of Asthma [21] and translated into Spanish. Spirometry
was conducted with a Survey Tach Spirometer (Warren E. Collins, Braintree, MA, USA)
following American Thoracic Society recommendations. The study was approved by
the Institutional Review Boards of the Hospital Nacional de Niños (San José, Costa Rica)
and Brigham and Women’s Hospital (Boston, MA, USA). The current work is covered by
Brigham and Women’s Hospital IRB# 2017P001799.
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2.2. Generalization Population

The COPDGene study (ClinicaTrials.gov—NCT00608764) has been described in detail
previously [22]. In brief, COPDGene is a prospective study of current and former smokers
with at least 10 pack-years of smoking, with and without spirometry-defined COPD. We
used available peripheral whole blood collected from the COPDGene 5-year follow-up visit
(conducted from 2012 to 2017) and performed small-RNA sequencing in 450 participants.
Institutional review board (IRB) approval was obtained at each of the participating study
centers (see details of COPDGene study centers in the Supplement) prior to study initiation.
All participants provided written informed consent.

2.3. Primary Outcome

In the GACRS, an asthma exacerbation was defined as a visit to the emergency depart-
ment or urgent care for asthma, or a hospitalization for asthma, in the previous year. Our
primary outcome was having had at least three vs. less than three asthma exacerbations in
the year prior to the study, a threshold based on patterns of care utilization.

Self-reported retrospective exacerbations were determined in the COPDGene study by
asking study participants at the five-year follow-up visit if they experienced a “flare-up of
chest trouble” requiring treatment in the 12 months preceding the study questionnaire [23].
Additionally, we defined severe COPD exacerbations as any exacerbation in the previous
12 months requiring a visit to an emergency department or a hospitalization. Severe
exacerbations were dichotomized according to whether study participants reported zero or
at least one severe exacerbation in the previous 12 months, a threshold chosen to maximize
power. We limited our exacerbations analysis to participants with a history of moderate to
severe COPD, spirometrically defined as a forced expiratory volume in 1 s (FEV1) less than
80% of predicted and an FEV1-to-forced vital capacity (FEV1/FVC) ratio < 0.7. Prior work
on exacerbations in COPDGene has discussed this in greater detail [23].

2.4. Sample Sequencing and Quality Control

We performed small RNA sequencing on all available whole-blood samples (n = 374)
from GACRS and separately on 450 whole-blood samples from COPDGene at Mass General
Brigham Personalized Medicine core. GACRS blood samples were acquired at the time
of phenotype assessment, between 2001 and 2005, and were stored at -80 degrees C until
sequencing began in 2019. Small RNA-seq libraries were prepared using the NEXTflex
Small RNA-Seq Kit v3 (PerkinElmer’s, Waltham, MA, USA), which has a maximum input of
10 uL (10 ng to 250 ng). First, adapters were ligated to the 3′ and 5′ ends of the RNA. Reverse
transcription was then carried out to generate cDNA from the ligated RNA. Following
reverse transcription, cDNA yield was amplified by PCR, utilizing a distinct barcoded PCR
primer for each sample. Finally, the PCR product entered size selection using magnetic
beads for libraries in the range of 140–160 bp, resulting in the isolation of the indexed
miRNA libraries. Libraries were then pooled and sequenced on an Illumina NextSeq
550 high output flow cell, with run length 75 bp single reads, to generate ~10 M reads
per sample. We used blockers for hemolysis-associated miRNAs hsa-miR-486-5p, hsa-
miR-92a, and hsa-miR-451a (PerkinElmer, Waltham, MA, USA), which were added to the
input sample prior to library preparation [24]. The COMPSRA pipeline [25] and BCBio
smallRNA-seq (https://github.com/bcbio/bcbio-nextgen, accessed on 12 September 2019)
pipelines were employed for quality control (QC) of the RNA-seq data. miRNAs with less
than five mapped reads in at least 50% of subjects were removed. We used the guided
Principal Component Analysis (gPCA) [26] package for the identification of batch effects in
GACRS. PCA of COPDGene samples showed an extreme outlier batch, which was removed
from further analysis.

2.5. Identification of Differentially Expressed miRNAs

Differentially Expressed miRNAs (upregulated and downregulated miRNAs) between
frequent and no or infrequent exacerbation conditions were identified using DESeq2 [27]

ClinicaTrials.gov
https://github.com/bcbio/bcbio-nextgen
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version 1.30.0 (R version 4.0.3), which uses negative binomial regression, with a Benjamini–
Hochberg false discovery rate (FDR) correction for multiple testing. A significance threshold
of 10% FDR was used. The analysis was performed with adjustment for age, sex, use of
inhaled corticosteroids (ICS) in the previous year, and sequencing batch. Logistic regression
was used to obtain estimates of effect size (betas and Odds Ratios) for a doubling of miR
counts.

Top DE miRNAs were assessed for association with COPD exacerbations using DESeq2
and adjusted for age, sex, smoking history (current vs. former), pack-years of cigarette
smoking, race, and sequencing batch.

Associations of miRNA levels with IgE was performed using linear regression, and
miRNA associations with high or low eosinophil counts (more or less than 300 per mi-
croliter) were performed using logistic regression. Both were adjusted as stated above.
Clinical and demographic features were compared using a Chi-square test for dichotomous
variables and a t-test for continuous variables.

2.6. Functional Annotation of Differentially Expressed miRNAs

Target mRNA transcripts were identified for 20 DE miR between frequent and no and
infrequent asthma exacerbation and 5 replicated miR separately using the Micro T-CDS [28],
TarBase [29], and Target Scan [30] databases using the default thresholds through multiMiR
package version 1.12 [31] (Supplemental Figure S1A,B). The union of targets of each miR
were used for Kyoto Encyclopedia of Genes and Genomes (KEGG) [32] pathway analyses
through the clusterProfiler package version 3.18.1 [33]. We considered an adjusted p-value
threshold of ≤0.05 and a gene count of 3 or more to indicate significant enrichment of
targeted genes for a pathway.

The web-based platform miRNet 2.0 [34] was used for the construction of miRNA-
target gene network and enrichment analysis for the 5 replicated miRNAs. miRNet uses
the list of DE miRNAs and retrieves the predicted and validated putative gene targets
from Tarbase-8.0 and miRTarBase-8.0 for network construction. The KEGG database with a
hypergeometric test was used for functional enrichment, with an FDR threshold of 0.05
considered significant. The clusterProfiler package was used for enrichment analysis and
dot plot.

For the protein–protein interaction (PPI) network we used putative targets of the 5
replicated miRNAs, which were built and visualized by using the STRING version 11.0 [35]
online database and the Cystoscope v3.7.2 visualization tool [36].

3. Results
3.1. Cohort Characteristics

Of 1165 children with asthma from the GACRS, peripheral whole-blood samples were
available for 365 children (31.33%). Of these, 351 GACRS participants (96%) had sufficient
exacerbation data to be classified in to two groups: no or infrequent (<=2) exacerbations
(n = 168); and frequent (>2) exacerbations (n = 183) (Table 1).

Children with frequent exacerbations were younger (8.9 vs. 9.4 years) and weighed
less (31.4 vs. 34.2 kg) than those with no or infrequent exacerbations, although there was
no difference in height. Differences in BMI showed a trend toward higher exacerbations
with lower BMI (p = 0.063), although this did not reach statistical significance. Children
with frequent exacerbations were more likely to have used ICS in the previous year and
had a statistically significant improvement in bronchodilator response (6.4% vs. 4.4%) but
a lower FEV1/FVC pre- and post-bronchodilator response (85.6% vs. 87.5% and 88.2% vs.
89.9%, respectively) than those with no or infrequent exacerbations.

Characteristics of subjects undergoing small RNA sequencing in COPDGene are
shown in Table 2.
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Table 1. Baseline Epidemiologic and Clinical Characteristics of the GACRS.

Non-Exacerbation
(N = 168)

Exacerbation
(N = 183) p -Value

Gender
Male 73 (43.5%) 69 (37.7%) 0.324
Female 95 (56.5%) 114 (62.3%)

Age (years)
Mean (SD) 9.40 (1.83) 8.89 (1.88) 0.0109
Median [Min, Max] 9.29 [4.50, 13.3] 8.65 [0.271, 13.0]

Height (cm)
Mean (SD) 133 (15.7) 131 (11.7) 0.161
Median [Min, Max] 133 [0, 163] 129 [108, 167]

Weight (kg)
Mean (SD) 34.2 (12.2) 31.4 (11.1) 0.0245
Median [Min, Max] 30.9 [15.0, 71.7] 27.9 [17.0, 81.6]

BMI
Mean (SD) 18.6 (4.35) 17.8 (3.56) 0.0634
Median [Min, Max] 17.2 [11.3, 41.4] 16.8 [12.7, 34.0]

% Predicted Pre-BD FEV1
Mean (SD) 98.6 (15.1) 100 (17.1) 0.423
Median [Min, Max] 97.5 [53.1, 144] 99.6 [46.2, 180]

% Predicted Pre-BD FVC
Mean (SD) 101 (15.3) 104 (16.0) 0.0662
Median [Min, Max] 99.0 [52.5, 151] 102 [54.6, 174]

FEV1/FVC
pre-bronchodilator

Mean (SD) 87.5 (7.60) 85.6 (7.99) 0.0283
Median [Min, Max] 87.5 [65.3,100] 86.0 [61.8,99.9]

FEV1/FVC
post-bronchodilator

Mean (SD) 89.9 (6.02) 88.2 (7.07) 0.0179
Median [Min, Max] 89.4 [67.0,100] 89.2 [66.4,100]

Bronchodilator Response
as % of baseline FEV1

Mean (SD) 4.38 (8.47) 6.37 (9.57) 0.0405
Median [Min, Max] 2.88 [−15.3,48.6] 5.10 [−16.3,47.2]

Inhaled Steroids
No 88 (52.4%) 70 (38.3%) 0.0108
Yes 80 (47.6%) 113 (61.7%)

Total IgE
Mean (SD) 1.79 (0.408) 1.81 (0.391) 0.596
Median [Min, Max] 2.00 [1.00,2.00] 2.00 [1.00,2.00]

Eosinophil Count
Mean (SD) 1.40 (0.491) 1.51 (0.501) 0.0444
Median [Min, Max] 1.00 [1.00,2.00] 2.00 [1.00,2.00]

% predicted Pre-BD FEV1: Percent predicted pre-bronchodilator forced expiratory volume in one second. %
predicted Pre-BD FVC: Percent predicted pre-bronchodilator forced vital capacity. % predicted FEV1/FVC
post-BD: Percent predicted post-bronchodilator FEV1/FVC ratio. BD Response: Bronchodilator response as a
percentage of pre-bronchodilator FEV1. Inhaled steroids: respondents indicating use of inhaled corticosteroids in
previous year.

3.2. miRNA Sequencing

Small-RNA sequencing was completed on 365 samples from Costa Rica. On av-
erage, these resulted in 12.4 million total reads (+/−0.9 million) per sample. Of these
1.0 +/− 0.2 million were deemed poor quality by FRED score <20. Another 405 thousand
+/− 420 thousand were dropped for other reasons (poor 3′ or 5′ end reads). Of the re-
maining high-quality reads, 8.3 million +/− 0.74 million per sample were mapped to one
of 4694 human miRNAs in miRBase version 22 [37]. An average of 2.7 +/− 1.9 million
reads per sample were unmapped to human miRNAs. Eight samples with less than 100 k
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mapped reads were considered failed and removed, as well as one sample with more than
70 M mapped reads.

Table 2. Baseline Epidemiologic and Clinical Characteristics of COPDGene.

No Exacerbations
(N = 122)

Severe Exacerbations
(N = 24) p-Value

Gender
Male 54 (44.3%) 10 (42.7%) 0.99
Female 68 (55.7%) 14 (58.3%)

Age (years)
Mean (SD) 68.6 (8.8) 69.5 (9.16) 0.64

Race (% African American) 27 (22.1) 7 (29.2) 0.63
Current Smoking (%) 46 (37.7) 8 (33.3) 0.86
Pack Years Smoking

Mean (SD) 51.7 (26.6) 51.9 (28.8) 0.97
% predicted FEV1

Mean (SD) 53.9 (16.5) 53.2 (17.6) 0.85
FEV1/FVC

Mean (SD) 0.52 (0.12) 0.52 (0.11) 0.95
Asthma Diagnosed before
Age 40 (%) 15 (12.3) 5 (20.8) 0.26

% predicted FEV1: Percent predicted forced expiratory volume in one second.

Oligonucleotide blockers were used to reduce the number of hemolysis-associated
miRNAs 486-5p, 92a-3p, and 451a; these miRNAs were removed from analysis. Even with
efforts to reduce their prevalence, these miRNAs made up 10.6%, 3.0%, and 9.1% of mapped
reads per sample. Finally, miRNAs with less than five reads in 50% of passed samples were
dropped.

3.3. Identification of Differentially Expressed miRNAs

After quality control, filtering, and normalization, we had 351 samples and 649 miR-
NAs for DE analysis between the groups with frequent (n = 183) and no or infrequent
(n = 168) asthma exacerbations. We found 15 miRNAs showing higher expression and
5 miRNAs showing lower expression in subjects with frequent exacerbations (Table 3;
Figure 1A). Effect estimates were computed and upregulated miRs had ORs between 1.22
and 1.59 for a doubling of miR counts, whereas downregulated miRs had ORs between
0.57 and 0.8 (Table 3). A clustered heat map of the 20 differentially expressed miRNAs is
shown in Figure 1B. These 20 miRNAs were then tested for association with severe COPD
exacerbations, in which miR-532-3p, miR-296-5p, and miR-766-3p were upregulated and
miR-7-5p and miR-451b were downregulated (p < 0.05) in subjects with severe exacerba-
tions (n = 24) compared to those without severe exacerbations (n = 122) in COPDGene
(Table 4) (Supplemental Table S1). These five miRNAs therefore showed the same direction
of effect with exacerbations in both the GACRS and COPDGene studies.

These five miRs were then tested for association with total Immunoglobulin E (IgE)
and eosinophil counts (Tables 5 and 6). Two miRs, miR-451b (p = 0.023), and miR-532-3p
(p = 0.039) were significantly associated with IgE levels, while no miRs were significantly
associated with eosinophils in GACRS.
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Table 3. Significant up and downregulated miRNAs between no or infrequent exacerbators and
frequent exacerbators in the GACRS. Base Mean: normalized mean counts in reference group. Log2FC:
base-2 fold change from no or infrequent to frequent exacerbators. p-value: computed with DESeq2.
Beta and Odds Ratio from logistic regression are for a doubling of miR counts.

Base Mean log2FC Beta Odds Ratio p-Value FDR

hsa-miR-451b 18.29 −0.524 −0.065 0.57 1.88 × 10−4 2.65 × 10−2

hsa-miR-142-5p 1550.70 −0.485 −0.057 0.62 5.76× 10−4 4.15× 10−2

hsa-miR-6739-3p 11.14 −0.458 −0.063 0.64 8.29× 10−4 4.50× 10−2

hsa-miR-7-5p 1811.60 −0.344 −0.041 0.80 3.02× 10−3 9.80× 10−2

hsa-miR-4433b-5p 1759.78 −0.308 −0.059 0.80 2.36× 10−3 9.00× 10−2

hsa-miR-93-3p 8737.45 0.234 0.105 1.22 2.32×10−3 9.00× 10−2

hsa-miR-766-3p 294.18 0.246 0.065 1.31 2.80× 10−3 9.56× 10−2

hsa-miR-331-3p 1098.62 0.249 0.052 1.19 2.64× 10−3 9.53× 10−2

hsa-miR-532-3p 4142.15 0.27 0.102 1.25 9.33× 10−4 4.50× 10−2

hsa-miR-664b-3p 66.08 0.274 0.074 1.27 1.04× 10−3 4.50× 10−2

hsa-miR-296-5p 452.86 0.381 0.063 1.35 9.60× 10−4 4.50× 10−2

hsa-miR-6515-3p 19.91 0.385 0.064 1.43 4.79× 10−4 4.15× 10−2

hsa-miR-4286 42.35 0.392 0.049 1.37 9.82× 10−4 4.50× 10−2

hsa-miR-1296-5p 31.37 0.411 0.038 1.31 9.00× 10−4 4.50× 10−2

hsa-miR-29b-2-5p 84.16 0.421 0.081 1.48 5.79× 10−5 2.65× 10−2

hsa-miR-500b-5p 193.56 0.425 0.072 1.59 1.48× 10−4 2.65× 10−2

hsa-miR-500a-5p 197.54 0.431 0.072 1.59 1.20× 10−4 2.65× 10−2

hsa-miR-642a-5p 39.54 0.471 0.045 1.44 5.20× 10−4 4.15× 10−2

hsa-miR-103a-2-5p 79.21 0.507 0.043 1.50 2.04× 10−4 2.65× 10−2

hsa-miR-550a-3p 1953.34 0.55 0.045 1.40 3.17× 10−4 3.43× 10−2

Table 4. List of replicated up and downregulated miRNAs without exacerbations and those experi-
encing severe exacerbators in COPDGene.

log2FC p-Value

hsa-miR-451b −0.636 0.054
hsa-miR-7-5p −0.524 0.064
hsa-miR-532-3p 0.311 0.02
hsa-miR-296-5p 0.391 0.021
hsa-miR-766-3p 0.289 0.036

Table 5. List of replicated up and downregulated miRNAs and association with total IgE. p-value:
computed with DESeq2. Beta and Odds Ratio (OR) from logistic regression are for a doubling of miR
counts. 2.50%: lower bound of 95% confidence interval of odds ratio. 97.50%: upper bound of 95%
confidence interval of odds ratio.

p-Value Beta OR 2.50% 97.50%

hsa-miR-7-5p 0.094 0.031 0.031 −0.005 0.068
hsa-miR-451b 0.023 0.033 0.033 0.004 0.062
hsa-miR-296-5p 0.909 0.002 0.002 −0.036 0.041
hsa-miR-532-3p 0.039 −0.060 −0.060 −0.118 −0.003
hsa-miR-766-3p 0.962 0.001 0.001 −0.041 0.043
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Figure 1. (A) Differential expression of miRNA between frequent and no or infrequent exacerbations
in the GACRS. Green and red color circles indicate up and downregulated miRs, respectively. Mean
expression shown in log2 scale. (B) Clustered heat map of all 20 differentially expressed miRs across
conditions in the GACRS. DESeq-2 normalized expression counts (shifted logarithm transformation)
were used. Unsupervised hierarchical clustering was used to generate the heat map and Pearson
correlation was used as the distance metric.

Table 6. List of replicated up and downregulated miRNAs and association with total Eosinophil
count. p-value: computed with DESeq2. Beta and Odds Ratio (OR) from logistic regression are for a
doubling of miR counts. 2.50%: lower bound of 95% confidence interval of odds ratio. 97.50%: upper
bound of 95% confidence interval of odds ratio.

p-Value Beta OR 2.50% 97.50%

hsa-miR-7-5p 0.325 0.023 0.023 −0.023 0.071
hsa-miR-451b 0.904 0.002 0.002 −0.034 0.039
hsa-miR-296-5p 0.516 0.016 0.016 −0.033 0.066
hsa-miR-532-3p 0.449 −0.028 −0.028 −0.103 0.045
hsa-miR-766-3p 0.183 0.036 0.036 −0.017 0.090
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3.4. Identification of Putative Targets and Functional Assessment of Differentially Expressed
miRNAs

We performed an enrichment analysis of putative gene targets of the 20 DE miRNAs
using the clusterProfiler package [33] (Figure 2A). Phosphatidylinositol 3-kinase (PI3K)—
protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways
were among the top four most enriched pathways. We also separately considered the
targets of only the five miRNAs that were also associated with severe exacerbations of
COPD, where PI3K-Akt and MAPK signaling pathways were among the top five most
enriched pathways (Figure 2B). The targets of these five miRNAs are shown in Figure 3,
with highlighting for genes participating in enriched pathways previously associated
with asthma. In general, this shows that the five miRNAs generalizing to severe COPD
exacerbations show enrichment for established asthma pathways, with miR-7-5p mediating
several signaling pathways and miR-766-3p mediating cell growth and morphology.
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Figure 2. KEGG pathways enriched for DE miR target genes. (A) Pathways enriched for target
genes of 20 DE miRs in the GACRS. Gene targets for miRs were identified using microT-CDS Diana,
Target Scan & TarBase databases. (B) Pathways enriched for target genes from miRNet of 5 DE miRs
generalizing to severe exacerbations in COPDGene.
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3.5. Protein–Protein Interaction Network

From among the putative target genes of the 5 miRNAs generalizing to severe COPD
exacerbations, 20 nodes with high degree were considered hub proteins: UBA52, EGFR,
MAPK1, JUN, ACTB, VEGFA, CDH1, HSPA8, MDM2, MTOR, SMARCA4, GSK3B, PIK3R1,
FBXL19, EIF4E, H2AFV, HNRNPA1, CDK2, ATG7, and RELA (Supplemental Table S2).
Mapping these genes to the protein–protein interaction network (Figure 4) revealed three
general clusters. KEGG pathway analysis of the genes in these modules showed that they
were primarily enriched in the ErbB, RAS, PI3K-Akt, Wnt, vascular endothelial growth
factor (VEGF), MAPK, FoxO signaling pathways, focal adhesion, epidermal growth factor
receptor (EGFR) tyrosine kinase inhibitor resistance pathways and signaling pathways
regulating pluripotency of stem cells. Cluster 2 was composed of hub genes with roles
in a variety of asthma-related signaling pathways. Among these three clusters most of
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the cluster 2 genes showed the greatest enrichment for known asthma-related signaling
pathways, followed by cluster 3 and then cluster 1.
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4. Discussion

We report that 20 miRNAs are significantly associated retrospectively with frequent
asthma exacerbations in a study of Costa Rican children with asthma (the GACRS). Of these
20 miRNAs, 15 were upregulated and 5 were downregulated in subjects with frequent
asthma exacerbations. Of these miRNAs, three (miR-532-3p, 296-5p, 766-3p) were upregu-
lated and two were downregulated (7-5p and 451b) retrospectively in subjects with severe
COPD exacerbations in the COPDGene study. miRs 451b and 532-3p were also associated
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with total IgE, a marker of inflammation and allergic response. These 20 miRs may be
indicative of a general biological state that predisposes to more frequent exacerbations.

The five miRNAs that were differentially expressed between frequent and no or in-
frequent childhood asthma exacerbators, as well as between subjects with and without
severe COPD exacerbations, have been previously associated with inflammation, though
the weight of evidence varies for each miR. miR-296-5p has been associated with airway
hyper-responsiveness in childhood asthma [38], and additionally linked to the MAPK, Wnt,
and transforming growth factor beta (TGFB) signaling pathways, three key regulatory path-
ways in asthma pathogenesis [39]. Wnt [40] and TGFB [41] pathways have also been linked
to COPD. miR-532-3p was shown to inhibit nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) in vitro in response to corticosteroid treatment and was predictive
of FEV1 gain on inhaled corticosteroid treatment in children with asthma [42]. In another
study, miR-532-3p was part of an 11-miR signature that could distinguish ulcerative colitis
from Crohn’s disease, providing evidence of its broad effect on inflammation. miR-766-3p
has been associated with inflammation in rheumatoid arthritis, where this miR reduced
NF-kB activation [43]. Of less relevance to asthma and COPD, miR-451b has been related to
inflammation in lung cancer [44] and regulates cell proliferation, invasion, and apoptosis
in many different conditions [45]. miR-7-5p was one of 55 miRNAs DE in an in vitro study
of asthmatic airway epithelial cells, making it the miR with the least existing evidence
linking it to asthma and COPD, although our network analysis showed gene targets of
miR-7-5p to be enriched for a variety of asthma-related pathways (Figure 3). Our study
adds substantially to this evidence by its large sample size and generalization to related
exacerbation type.

Among children with asthma, Kho et al. [10] recently reported that 12 serum miRNAs
were significantly associated with a milder type of asthma exacerbation (need for treatment
with oral steroids) during one year of follow-up. Those 12 miRNAs are different from
the 20 DE miRNAs in the current report. Those authors’ study design differs from ours
in that they did miRNA profiling of serum from 160 children with asthma on inhaled
corticosteroids from the United States and Canada using TaqMan arrays, while we used
small-RNA sequencing in peripheral whole blood in 365 children from Costa Rica. Such
differences likely account for the discrepant results between our two studies.

Both gene targets of the 20 DE miRNAs and gene targets of the 5 miRNAs affecting both
asthma and COPD exacerbations were enriched in MAPK PI3K-Akt and FoxO signaling
pathways, which have been previously linked to asthma. MAPK signaling can contribute to
both Th2-high eosinophilic asthma and Th2-low neutrophilic asthma, as well as COPD [46].
In Th2-high asthma, MAPK promotes Th2 cells to release IL-4, IL-5, and IL-13, stimulating
IgE production, eosinophil recruitment, and airway hyperresponsiveness [47]. Cigarette
smoke can trigger the MAPK pathway in small airway epithelial cells, causing a release of
inflammatory cytokines and chemokines [48]. This type of activation can lead to airway
remodeling in COPD and in Th2-low neutrophilic asthma, in turn leading to reduced
lung function and greater risk of exacerbation [49]. In children with allergic asthma,
Hu et al. (2020) discovered a link between indoleamine 2,3-dioxygenase (IDO) activity
and Th17/regulatory T cells (Treg) imbalance. IDO may stimulate IL-10 synthesis while
suppressing IL-6 expression, thus increasing Treg numbers. As a result, IDO could represent
a molecular switch that leads to the conversion of Th17 cells to Tregs, thereby protecting
against asthma etiology [50].

The PI3K-Akt pathway has a regulatory role in allergic asthma [51]. Activation of
PI3K-Akt causes downstream activation of further signaling molecules, including NF-kB,
itself a proinflammatory transcription factor. Inhibition of PI3K-Akt reduces expression
of proinflammatory cytokines IL-4, IL-6, and IL-8, as well as Tumor Necrosis Factor alpha
(TNF-a) and Immunoglobulin E (IgE); additionally, this pathway has been shown to be
regulated by other miRNAs [52]. PI3K-Akt has also been implicated in inflammation
in COPD and has been suggested as a possible therapeutic target in COPD [53]. The
transcription factors fork-head box proteins O (FoxO) are involved in a variety of biological
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functions, including cell growth, metabolism, survival, and inflammation. FoxOs can
serve as transcriptional activators and/or repressors when they are present in the nucleus
and interact directly with DNA binding sites that have the FoxO consensus motif. The
FoxO subclass in mammals is made up of four members: FoxO1, FoxO3, FoxO4, and
FoxO6. Various chronic inflammatory diseases, such as rheumatoid arthritis and pulmonary
hypertension, are linked to deregulation of FoxO1-mediated signalling in certain cell
populations. FoxO signalling, presumably in the airways, is required to cope with very
stressful situations, such as severe hypoxia. In addition, activated FoxO3A has been seen in
airway epithelial cells of patients with COPD, cystic fibrosis, or ARDS (acute respiratory
distress syndrome) pneumonia. In contrast, a different study discovered lower amounts of
activated FoxO3A in COPD patients’ airway epithelial cells [54].

Apart from signalling pathways, PGD2 is a proinflammatory mediator produced by
the cyclooxygenase-2 (COX-2) pathway and is derived from arachidonic acid. PGD2 is
released during inflammatory reactions by activated immune cells, especially mast cells,
and interacts with two receptors, PGD2 receptor 1 and 2 (DP1 and DP2), which can trigger
thromboxane receptors at very low concentrations. DP2 is a G-protein-coupled receptor
that is expressed on the membrane surface of Th2 cells, mast cells, and eosinophils. It is
also known as the chemoattractant receptor homologous molecule expressed on Th2 cells
(CRTH2). The binding of PGD2 to the DP2 receptor activates and migrates Th2 cells and
eosinophils to the inflammatory sites in asthma, resulting in proinflammatory downstream
signalling cascades [55].

The role of miRNAs in the control of epithelial pathobiology in asthma has been
underlined in several recent studies. In vivo research in mice with OVA- or HDM-induced
AAI, ex vivo/in vitro experiments involving luciferase reporter assays and stimulation–
expression analysis, miRNA/mRNA microarrays, and in silico techniques were used by
Bartel et al. (2017) [56]. The transcription factor cAMP-responsive element binding protein
(Creb1) and its transcriptional coactivators (Crtc1-3) were identified as targets using this
combined technique. They discovered that IL-13 treatment reduced the expression of Sec14-
like 3 (Sec14l3), a possible Creb1 target, in both AAI models and primary normal human
BECs, implying that miRNA-regulated Crtc1-3 and Sec14l3 play a role in early epithelial
responses to type 2 stimuli. Extracellular vesicles (EVs) that transmit miRNAs across cells
have recently been found as a unique intercellular communication method. It is worth
noting that the extracellular miRNA pool in mice’s lungs was extremely comparable to that
of the airway epithelium, with 80% of the discovered EVs being epithelial in origin [57].

Several of the top six or seven pathways enriched for targets of DE and generalizing
miRNAs are responses to infection; while none of these specific pathways are related to
respiratory infection, respiratory infections are a risk factor for asthma development and a
proximate cause of asthma and COPD exacerbations. It may be that miRNAs regulating
response to infection are key in asthma and COPD exacerbations, which are frequently
caused by infections [58], particularly if dysregulation in these miRs establishes an in vivo
environment predisposing to exacerbation.

We recognize our study has several limitations. We attempted to generalize our asthma
exacerbation microRNA associations to individuals with COPD, for which asthma is a
strong risk factor; however, the pathobiology of asthma and COPD exacerbations are not
wholly overlapping, with both including substantial environmental and socio-economic
risk factors. Five of twenty asthma exacerbation miRNAs showed generalization to severe
COPD exacerbations, a separate but related phenotype, in a cohort of adult current and
former smokers with moderate to severe COPD. Differences in cohort demographics,
environmental exposures, and the pathology of asthma vs. COPD exacerbations may have
predisposed to the null result of no miRNAs generalizing across conditions. Our analysis
was cross-sectional and retrospective, so we cannot establish a firm temporal relationship
between exacerbations and associated miRNAs; at best we could hypothesize these miRNAs
lead to moderate systemic changes which may predispose to greater exacerbation frequency.
One of the miRNAs, 451b, is structurally similar to a hemolysis-associated miR, which was
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blocked with an oligonucleotide. Although other studies have reported off-target effects of
blockers on miR-451b [59], our own investigation has shown that to be unlikely with the
particular blocker we used [24]. Asthma was characterized clinically in the GACRS cohort,
which may have led to some misreporting or misdiagnosis.

5. Conclusions

20 DE miRNAs were associated with frequent asthma exacerbation in children. Five
miRNAs, miR-532-3p, 296-5p, 766-3p, 7-5p and 451b, generalized to severe COPD exacerba-
tions. Targets of these miRNAs were significantly enriched in a number of known asthma-
and COPD-related pathways, including PI3-AKT and MAPK signaling. These results point
to possible shared genomic regulatory mechanisms partly underlying exacerbations in
these two diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ncrna8020027/s1, Figure S1: Number of putative targets retrieved from microT-CDS, TarBase
and TargetScan (A) for 20 DE miRNAs. (B) 5 replicated miRNAs frequent and infrequent severe
exacerbations; Table S1: t List of all up- and down-regulated miRNAs between subjects without
exacerbations and those experiencing severe exacerbators in COPDGene; Table S2: List of 20 hub
proteins from STRING; COPDGene Phase 3.
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