Next Issue
Volume 3, December
Previous Issue
Volume 3, June
 
 

C, Volume 3, Issue 3 (September 2017) – 8 articles

Cover Story (view full-size image): Electrochemical biosensing, involving fullerenes and derivatives: state of the art, key aspects, challenges and future directions. Updated overview, through selected illustrative applications, of the main strategies reported for functionalization of fullerenes and derivatives to perform electrochemical catalytic and affinity biosensing, including their use as electrode modifiers, nanocarriers or redox nanoprobes. View Paper here
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
2687 KiB  
Article
The Ultraviolet-Induced Functionalization of Multi-Walled Carbon Nanotubes with Polymer Radicals Generated from Polyvinyl Benzoate Derivatives
by Tomoya Takada, Yuya Nishioka and Takuma Baba
C 2017, 3(3), 28; https://doi.org/10.3390/c3030028 - 11 Sep 2017
Cited by 3 | Viewed by 5191
Abstract
In order to develop a novel technique for the fabrication of hybrid materials containing polymers and nanocarbons, we examined the surface modification of pristine multi-walled carbon nanotubes (MWCNTs) with benzyl-type polymer side chain radicals generated through photolysis of 4-(chloromethyl)benzoate moieties. The polymer with [...] Read more.
In order to develop a novel technique for the fabrication of hybrid materials containing polymers and nanocarbons, we examined the surface modification of pristine multi-walled carbon nanotubes (MWCNTs) with benzyl-type polymer side chain radicals generated through photolysis of 4-(chloromethyl)benzoate moieties. The polymer with a 4-(chloromethyl)benzoate side chain was prepared by the esterification of polyvinyl alcohol (PVA) with corresponding acid chloride. The synthesized polymer and MWCNTs were mixed in N-methylpyrrolidone and irradiated with ultraviolet (UV) light. Structural changes of the polymer and MWCNTs were observed by means of X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The XPS results revealed that scission of the C–Cl bonds of the chloromethyl groups and benzyl-type radical formation occurred. The incremental surface defects of the MWCNTs caused by UV irradiation were confirmed by means of Raman spectroscopy. These results support the covalent bond formation between the polymer side chain and MWCNT sidewalls by radical addition reaction. The photothermal conversion characteristics of the prepared materials were also evaluated. Full article
(This article belongs to the Special Issue Carbon Nanotube and Applications)
Show Figures

Graphical abstract

4630 KiB  
Article
Investigation of Mechanical, Chemical and Adsorptive Properties of Novel Silicon-Based Adsorbents with Activated Carbon Structure
by Christian Bläker, Stefanie Heib, Christoph Pasel, Burak Atakan and Dieter Bathen
C 2017, 3(3), 27; https://doi.org/10.3390/c3030027 - 27 Aug 2017
Cited by 2 | Viewed by 4330
Abstract
In this article, for the first time the chemical and mechanical properties of novel adsorbents based on the coating of activated carbons with silicon carbide are reported. The adsorbents are prepared by chemical vapor infiltration (CVI) of activated carbons with tetramethylsilane (TMS) as [...] Read more.
In this article, for the first time the chemical and mechanical properties of novel adsorbents based on the coating of activated carbons with silicon carbide are reported. The adsorbents are prepared by chemical vapor infiltration (CVI) of activated carbons with tetramethylsilane (TMS) as a precursor. A comparison of two different modified types of activated carbon, C40/4 Extra and A35/4 Extra, each infiltrated with 25%-mass at infiltration temperatures of 973.15 and 1098.15 K, respectively, is presented. Adsorption properties were characterized by measuring nitrogen isotherms and volatile organic compounds (VOC) isotherms in gas phase and excess isotherms in liquid phase. In addition, the physico-chemical properties including the bulk density, ash content, particle hardness, abrasion, conductivity, water-soluble components, and pH value were determined. Furthermore, the first experiments in a fluidized bed adsorber are presented. The results show that the adsorption properties of the modified adsorbents are mainly maintained. The particle hardness and the abrasion resistance increases with increasing infiltration temperature, which leads to an overall increasing of mechanical stability. A modification of the chemical stability as a result of the infiltration experiments is not observed. Full article
Show Figures

Graphical abstract

6894 KiB  
Article
Meltblown Solvated Mesophase Pitch-Based Carbon Fibers: Fiber Evolution and Characteristics
by Zhongren Yue, Chang Liu and Ahmad Vakili
C 2017, 3(3), 26; https://doi.org/10.3390/c3030026 - 08 Aug 2017
Cited by 3 | Viewed by 7273
Abstract
Potentially low-cost continuous carbon fibers are produced from solvated mesophase pitch through a patented meltblowing process. The structural evolution and properties of the fibers are characterized by various analytical methods. The meltblown fibers are continuous fibers which are collected into a fibrous web [...] Read more.
Potentially low-cost continuous carbon fibers are produced from solvated mesophase pitch through a patented meltblowing process. The structural evolution and properties of the fibers are characterized by various analytical methods. The meltblown fibers are continuous fibers which are collected into a fibrous web form, and the diameter of the filaments is attenuated by the flow rate of air streams. The spun fibers can be rapidly stabilized in air due to the high melting mesogens and the removable solvent. The carbonized fibers show a high carbon yield of 75 wt % (or 86 wt % if the solvents are neglected) and a mean diameter of 8–22 μm with typical fiber diameter distribution and variation. The evolution of the fiber structure depends not only on the processing temperature but also on the fiber diameter. The processed carbon fibers retain the same form as the spun fibers and have a low packing density and reasonable mechanical properties. Full article
(This article belongs to the Special Issue Carbon Fiber)
Show Figures

Graphical abstract

6266 KiB  
Article
Orange-Peel-Derived Carbon: Designing Sustainable and High-Performance Supercapacitor Electrodes
by C. K. Ranaweera, P. K. Kahol, M. Ghimire, S. R. Mishra and Ram K. Gupta
C 2017, 3(3), 25; https://doi.org/10.3390/c3030025 - 08 Aug 2017
Cited by 55 | Viewed by 9538
Abstract
Interconnected hollow-structured carbon was successfully prepared from a readily available bio-waste precursor (orange peel) by pyrolysis and chemical activation (using KOH), and demonstrated its potential as a high-performing electrode material for energy storage. The surface area and pore size of carbon were controlled [...] Read more.
Interconnected hollow-structured carbon was successfully prepared from a readily available bio-waste precursor (orange peel) by pyrolysis and chemical activation (using KOH), and demonstrated its potential as a high-performing electrode material for energy storage. The surface area and pore size of carbon were controlled by varying the precursor carbon to KOH mass ratio. The specific surface area significantly increased with the increasing amount of KOH, reaching a specific surface area of 2521 m2/g for a 1:3 mass ratio of precursor carbon/KOH. However, a 1:1 mass ratio of precursor carbon/KOH displayed the optimum charge storage capacitance of 407 F/g, owing to the ideal combination of micro- and mesopores and a higher degree of graphitization. The capacitive performance varied with the electrolyte employed. The orange-peel-derived electrode in KOH electrolyte displayed the maximum capacitance and optimum rate capability. The orange-peel-derived electrode maintained above 100% capacitance retention during 5000 cyclic tests and identical charge storage over different bending status. The fabricated supercapacitor device delivered high energy density (100.4 µWh/cm2) and power density (6.87 mW/cm2), along with improved performance at elevated temperatures. Our study demonstrates that bio-waste can be easily converted into a high-performance and efficient energy storage device by employing a carefully architected electrode–electrolyte system. Full article
Show Figures

Graphical abstract

4581 KiB  
Article
Functionalized Graphene–Polyoxometalate Nanodots Assembly as “Organic–Inorganic” Hybrid Supercapacitors and Insights into Electrode/Electrolyte Interfacial Processes
by Sanju Gupta, Bryce Aberg and Sara B. Carrizosa
C 2017, 3(3), 24; https://doi.org/10.3390/c3030024 - 28 Jul 2017
Cited by 11 | Viewed by 5557
Abstract
The stable high-performance electrochemical electrodes consisting of supercapacitive reduced graphene oxide (rGO) nanosheets decorated with pseudocapacitive polyoxometalates (phosphomolybdate acid-H3PMo12O40 (POM) and phosphotungstic acid-H3PW12O40 (POW)) nanodots/nanoclusters are hydrothermally synthesized. The interactions between rGO and [...] Read more.
The stable high-performance electrochemical electrodes consisting of supercapacitive reduced graphene oxide (rGO) nanosheets decorated with pseudocapacitive polyoxometalates (phosphomolybdate acid-H3PMo12O40 (POM) and phosphotungstic acid-H3PW12O40 (POW)) nanodots/nanoclusters are hydrothermally synthesized. The interactions between rGO and POM (and POW) components create emergent “organic–inorganic” hybrids with desirable physicochemical properties (specific surface area, mechanical strength, diffusion, facile electron and ion transport) enabled by molecularly bridged (covalently and electrostatically) tailored interfaces for electrical energy storage. The synergistic hybridization between two electrochemical energy storage mechanisms, electrochemical double-layer from rGO and redox activity (faradaic) of nanoscale POM (and POW) nanodots, and the superior operating voltage due to high overpotential yielded converge yielding a significantly improved electrochemical performance. They include increase in specific capacitance from 70 F·g−1 for rGO to 350 F·g−1 for hybrid material with aqueous electrolyte (0.4 M sodium sulfate), higher current carrying capacity (>10 A·g−1) and excellent retention (94%) resulting higher specific energy and specific power density. We performed scanning electrochemical microscopy to gain insights into physicochemical processes and quantitatively determine associated parameters (diffusion coefficient (D) and heterogeneous electron transfer rate (kET)) at electrode/electrolyte interface besides mapping electrochemical (re)activity and electro-active site distribution. The experimental findings are attributed to: (1) mesoporous network and topologically multiplexed conductive pathways; (2) higher density of graphene edge plane sites; and (3) localized pockets of re-hybridized orbital engineered modulated band structure provided by polyoxometalates anchored chemically on functionalized graphene nanosheets, contribute toward higher interfacial charge transfer, rapid ion conduction, enhanced storage capacity and improved electroactivity. Full article
(This article belongs to the Special Issue Carbon Hybrid Materials)
Show Figures

Figure 1

1072 KiB  
Article
Diamond-Like Carbon Nanofoam from Low-Temperature Hydrothermal Carbonization of a Sucrose/Naphthalene Precursor Solution
by Natalie Frese, Shelby Taylor Mitchell, Amanda Bowers, Armin Gölzhäuser and Klaus Sattler
C 2017, 3(3), 23; https://doi.org/10.3390/c3030023 - 06 Jul 2017
Cited by 8 | Viewed by 6996
Abstract
Unusual structure of low-density carbon nanofoam, different from the commonly observed micropearl morphology, was obtained by hydrothermal carbonization (HTC) of a sucrose solution where a specific small amount of naphthalene had been added. Helium-ion microscopy (HIM) was used to obtain images of the [...] Read more.
Unusual structure of low-density carbon nanofoam, different from the commonly observed micropearl morphology, was obtained by hydrothermal carbonization (HTC) of a sucrose solution where a specific small amount of naphthalene had been added. Helium-ion microscopy (HIM) was used to obtain images of the foam yielding micron-sized, but non-spherical particles as structural units with a smooth foam surface. Raman spectroscopy shows a predominant sp2 peak, which results from the graphitic internal structure. A strong sp3 peak is seen in X-ray photoelectron spectroscopy (XPS). Electrons in XPS are emitted from the near surface region which implies that the graphitic microparticles have a diamond-like foam surface layer. The occurrence of separated sp2 and sp3 regions is uncommon for carbon nanofoams and reveals an interesting bulk-surface structure of the compositional units. Full article
Show Figures

Graphical abstract

5791 KiB  
Article
Evaluation of Carbon-Coated Graphite as a Negative Electrode Material for Li-Ion Batteries
by Varvara Sharova, Arianna Moretti, Guinevere A. Giffin, Diogo Vieira Carvalho and Stefano Passerini
C 2017, 3(3), 22; https://doi.org/10.3390/c3030022 - 04 Jul 2017
Cited by 23 | Viewed by 11150
Abstract
Low-cost and environmentally-friendly materials are investigated as carbon-coating precursors to modify the surface of commercial graphite for Li-ion battery anodes. The coating procedure and final carbon content are tuned to study the influence of the precursors on the electrochemical performance of graphite. Thermogravimetric [...] Read more.
Low-cost and environmentally-friendly materials are investigated as carbon-coating precursors to modify the surface of commercial graphite for Li-ion battery anodes. The coating procedure and final carbon content are tuned to study the influence of the precursors on the electrochemical performance of graphite. Thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) surface area analysis are used to characterize the carbon coating content and the surface area, respectively, whereas X-ray diffraction (XRD) and Raman spectroscopy allow tracking of the graphite’s structural changes and surface amorphization. In general, the coating reduces the first cycle coulombic efficiency by 3%–10% compared to pristine graphite due to the increase of the surface area available for the continuous electrolyte decomposition. However, the use of citric acid as a carbon source (5 wt %) improves the rate capability of graphite, resulting in the specific delithiation capacity at 3C of 228 mAh g−1 vs. 211 mAh g−1 for the uncoated graphite. The attempt to reduce the coating amount from 5 wt % to 2 wt % results in a lower rate capability, but the first cycle coulombic efficiency is similar to that of pristine graphite. Full article
(This article belongs to the Special Issue Batteries: Recent Advances in Carbon Materials 2017)
Show Figures

Graphical abstract

17377 KiB  
Review
Fullerenes in Electrochemical Catalytic and Affinity Biosensing: A Review
by Paloma Yáñez-Sedeño, Susana Campuzano and José M. Pingarrón
C 2017, 3(3), 21; https://doi.org/10.3390/c3030021 - 28 Jun 2017
Cited by 24 | Viewed by 7923
Abstract
Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of electrochemical biosensors can be greatly improved by the integration of nanomaterials into their construction. In this sense, carbon nanomaterials have been widely used for preparation of biosensors due [...] Read more.
Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of electrochemical biosensors can be greatly improved by the integration of nanomaterials into their construction. In this sense, carbon nanomaterials have been widely used for preparation of biosensors due to their ability to enhance electron-transfer kinetics, high surface-to-volume ratios, and biocompatibility. Fullerenes are a very promising family of carbon nanomaterials and have attracted great interest in recent years in the design of novel biosensing systems due to fullerenes’ exceptional properties. These include multiple redox states, stability in many redox forms, easy functionalization and signal mediation. This paper outlines the state-of-the-art and future directions in the use and functionalization of fullerene-C60 and its derivatives, both as electrode modifiers and advanced labels in electrochemical catalytic and affinity biosensors through selected applications. Full article
(This article belongs to the Special Issue Smart Carbon Materials in Catalysis)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop