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Abstract: We report a novel atomistic model of carbide-derived carbons (CDCs), which are
nanoporous carbons with high specific surface areas, synthesis-dependent degrees of graphitization,
and well-ordered, tunable porosities. These properties make CDCs viable substrates in several
energy-relevant applications, such as gas storage media, electrochemical capacitors, and catalytic
supports. These materials are heterogenous, non-ideal structures and include several important
parameters that govern their performance. Therefore, a realistic model of the CDC structure
is needed in order to study these systems and their nanoscale and macroscale properties with
molecular simulation. We report the use of the ReaxFF reactive force field in a quenched molecular
dynamics routine to generate atomistic CDC models. The pair distribution function, pore size
distribution, and adsorptive properties of this model are reported and corroborated with experimental
data. Simulations demonstrate that compressing the system after quenching changes the pore size
distribution to better match the experimental target. Ring size distributions of this model demonstrate
the prevalence of non-hexagonal carbon rings in CDCs. These effects may contrast the properties
of CDCs against those of activated carbons with similar pore size distributions and explain higher
energy densities of CDC-based supercapacitors.

Keywords: nanoporous carbon; carbide-derived carbon; reactive molecular dynamics

1. Introduction

Carbide-derived carbons (CDCs) are a class of porous carbons with well-ordered porosities
and heterogeneous, short-range graphitic ordering [1]. The most common synthesis approach uses
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halogen gas (typically Cl2) to selectively etch out the metal phase of a metal carbide (e.g., TiC [2],
Mo2C, [3] or TiAlC2 [4]) at high temperatures 200 ◦C–1200 ◦C [5]. They have high surface areas
(typically 1000–2000 m2/g) and a tunable pore size distributions in the microporous and mesoporous
regimes [2,6–8]. These properties, in addition to the chemical, thermal, and electrical stability of carbon,
make CDCs an appealing electrode material for electrochemical energy storage [2,9–12] and substrate
for gas [2,13–15] and protein [16,17] separation and storage.

Carbide precursor, particle size [18], and synthesis conditions influence the resulting porosities,
carbon bonding and graphitic defects, and surface chemistries of CDCs [19]. Low-temperature synthesis
typically yields micropores with narrow pore diameter distributions. In particular, 600 ◦C–800 ◦C Cl2
etching of SiC and TiC yield predominantly subnanometer pores [11]; their dimensions match the sizes
of electrosorbed ions and yield exceptionally high energy densities as electrochemical capacitors [20].
Different carbide precursors and pore diameters yield slit or cylindrical pore shapes with different
curvatures [6]. While most carbon ordering in CDCs is a heterogeneous mixture of short-ranged sp2

and sp3 bonding, graphitization (and resulting electron transport properties) directly depends on
synthesis temperature [21]. Thermal treatment above 1000 ◦C typically increases the prevalence of
graphitic features, such as ribbons, barrels, and nanotubes [7]. These features define concentrations of
structural defects (vacancies, Stone–Wales transformations, etc. [22]), pore topography and geometrical
roughness [23], and degree of long-range ordering in the [100] and [002] (sheet stacking) directions [24].
In turn, these properties govern the contribution and relative influence of quantum capacitance on total
charge storage densities of these materials as electrodes [25]. Finally, post-Cl2 treatment methods (H2 or
NH3 600 ◦C annealing) and exposure to air introduces various functional groups on pore surfaces [26].
These moieties also influence electrosorption dynamics [27] and capacitance [28,29]. Many of these
properties are convoluted and difficult to quantify in experimental systems. Therefore, subsequent
optimization of these materials requires a detailed computational model.

Even though nanoporous carbons have non-uniform structure, they are often modeled as slit
pores directly in contact with a bulk fluid or electrolyte. Additional models also consider cylindrical,
spherical, and other morphologies [30–33]. Nonetheless, the slit pore model remains common for
the study of porous systems, even for studying advanced properties such as gas adsorption [34,35]
and separation [36], capacitance [23], and the structure and dynamics of confined ions [37,38] and
molecules [39]. In such model systems, parallel sheets of graphene are separated by the characteristic
widths of the nanopores found in experiment, typically defined as the peak in the pore size distribution.
These models capture, to a first approximation, the effect of confinement on fluid behavior, but leave
out many other effects. CDCs and other nanoporous materials have structural heterogeneities such as
surface curvature and a distribution of pore widths, which have qualitative and quantitative effects on
the performance of CDCs as electrodes in supercapacitors [40,41] or as adsorbents of gas molecules [42].
Furthermore, direct exposure of a nanopore to a bulk fluid ignores entrance effects and dynamics
associated with transport through a complex pore architecture [43]. Therefore, to better understand
the fundamentals of gas sorption, electric double layer structure, and electrolyte dynamics in CDCs,
a structurally valid model for CDCs that captures these effects is needed.

Reverse Monte Carlo (RMC) [44,45] is one approach that has been used to create structurally
relevant nanoporous models [46–49]. These models are created in an iterative process of fitting
simulated radial distribution functions (RDFs) to those obtained from scattering experiments. While
CDC structures have been generated that reproduce experimental RDFs, fits of empirical information
to an RDF with an RMC routine have inherent limitations. Structural features on the order of a few
nanometers, particularly porosity and surface curvature, are not typically well-captured with RDFs,
which usually decay to unity in a few angstroms. Additionally, while RMC is capable of producing
robust fits to experimental data, many unique three-dimensional models may be generated from
a single, one-dimensional RDF. Subsequently, results derived using RMC cannot formally be considered
unique [50–52]. Furthermore, as with many Monte Carlo-based methods, accessible system size may
be limited due to the challenges of deploying algorithms to parallel computing architectures. Small
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systems on the order of a few hundred or thousand atoms are sufficient for capturing short-range
features such as bonding, ring formations, and a small number of structural features and pores. Larger
system sizes on the order of tens or hundreds of thousands of atoms are needed to better sample
a range of structural heterogeneities and pore size distributions.

As an alternative approach, quenched molecular dynamics (QMD) has viably reproduced
atomistic models of amorphous and/or porous carbons [53–55], silica [56–58], and metals [59,60].
QMD generates metastable structures by lowering the temperature of a system over the course of
a simulation. Although this process lacks a direct physical analog (i.e., in practice, CDCs are typically
formed via chemical etching), QMD is, nonetheless, capable of generating realistic atomistic models
of porous materials. This technique allows quench rate and initial and final temperatures to be
modulated in order to control some of the structural properties of the CDC, such as porosities and
RDFs. The inherent parallel nature of molecular dynamics simulations allows them to explore large
system sizes. Previous QMD results have used force fields such as the Adaptive Intermolecular Reactive
Empirical Bond Order (AIREBO) [61], the Environment-Dependent Interatomic Potential (EDIP) [62],
the Reactive Summation State (RSS) [53], and the Tersoff potential [63] to generate nanoporous carbon
structures for use in molecular simulation. While many impactful studies [49,52,54,55,64–66] have
been done with these forcefields, the generated structures have often failed to accurately reproduce
experimental pore size distributions and always depend, at least in part, on the accuracy of the force
field itself. Carbon-based materials, and CDCs in particular, present a unique challenge for these
forcefields because of their nanoscale heterogeneity. Individual forcefields can sufficiently describe
specific structural moeities, such as short-range graphitization at low density [67], but are often not
sufficient to capture the full range of non-ideal features observed in CDCs [68].

One possible way to increase the accuracy of computationally derived CDC structures is to
employ sophisticated reactive forcefields, such as ReaxFF [69,70]. ReaxFF uniquely includes three- and
four-body, non-bonded van der Waals, and electrostatic interactions in conjunction with a long-range
bond order concept, where parameter sets are trained to reproduce a range of first-principles data
describing reaction energies as well as reaction barriers. This allows ReaxFF to largely approach the
accuracy of first-principles calculations, but at significantly (several orders of magnitude) reduced
computational cost, although, we note more costly than other reactive and non-reactive force fields [52].
The use of ReaxFF for the formation of CDC structures is limited, with only a single recent study [71]
examining the formation of amorphous carbon structures using QMD. This study examined the carbon
hybridization, ring formation, and pore size distribution as a function of density and quench rate,
and demonstrated the potential that ReaxFF could be effective in generating model CDCs; however,
the study was not explicitly focused on the formation of experimentally relevant CDCs. EDIP, which
has been shown to exhibit similar behavior to ReaxFF at low density [67], has been used to generate
CDCs via removal of metal atoms from a carbide lattice and subsequent annealing at the target density,
showing close agreement with experimental pore size distributions.

Here, we further explore the use of the ReaxFF force field to develop novel, structurally relevant
atomistic models of CDCs. Our combined computational and experimental approach directly compares
experimentally-derived structural information to properties of models derived from simulation. Here,
we examine the effects of quench rate on CDC structure, including a slower rate than was used
in prior ReaxFF studies [71]. We also investigate the role of a novel post-quenching compression
step as a means to adjust pore size distribution. CDC structure is examined, including pore size
distributions, pair distribution functions, and ring sizes. These analyses make comparisons to X-ray
scattering, nitrogen sorption, and electron microscopy results. We demonstrate close agreement
between experiment and simulation, including pore size distributions, for our approach.
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2. Computational Details

2.1. Quenched Molecular Dynamics Simulations

Reactive molecular dynamics simulations were performed using the ReaxFF [69,72,73] force
field implemented in the LAMMPS [74] simulation package (Version 27-Jul-2013, Sandia National
Laboratory, Albuquerque, NM, USA). ReaxFF is a reactive potential that models the breaking and
formation of chemical bonds through bond order, which is calculated from interatomic distances and
used in calculating a bond energy. Three- and four-body, non-bonded van der Waals, and electrostatic
interactions are also included. Parameter sets are developed by fitting to structural and thermodynamic
properties to quantum density functional theory (DFT) data. The specific ReaxFF parameter set used
in this study was optimized for modeling carbon materials [70].

Initial configurations were generated by assigning 20,000 carbon atoms to random positions in
a periodic simulation cell of length 7.488 nm. This corresponded to a bulk density near 0.95 g/cm3,
consistent with previous studies [49,55]. In an attempt to mitigate biases arising from an ordered
initial state, random positions give the system a fluid-like initial state. Quenched molecular dynamics
simulations were performed from an initial temperature of 3500 K to a final temperature of 3000 K.
The use of temperature ranges higher than used in experiment is a common approach in ReaxFF
studies to bring reaction kinetics into a time scale accessible in molecular simulation [70,75,76].
This temperature range is near the phase transition from liquid carbon to graphite at low pressures
reported by experiment [77,78]. While the melting point was not rigorously examined with this force
field, the transition appears to occur within the range expected from experiment. In simulations of
the lengths considered here, major structural changes do not occur after the system has condensed
from a fluid to solid state, so additional quenching below 3000 K was not considered. In order to
explore the effects of quench rate, simulations varied from 5 ps to 500 ps in length, giving quench
rates between 1 and 100 k/ps. These rates are studied for their effects on the structures and are not to
be interpreted physically or compared directly to synthesis parameters. Temperature was controlled
using a Nosé–Hoover thermostat with a damping constant of 10 fs. All quenching simulations were
performed in the canonical (NVT) ensemble and a 0.5 fs time step was used throughout. This is a larger
timestep than what is normally used in ReaxFF studies (0.25 fs); however, these systems include only
carbon atoms and therefore lack any O-H or C-H vibrations, which are much faster than C-C vibrations.

For select samples, an additional compression step was applied after the quenching step using
the NPT ensemble. The NPT integrator follows the work of Shinoda et al. [79], combining the work
of Martyna et al. [80] and Parrinello and Rahman [81], as implemented in LAMMPS. The ReaxFF
force field was again applied with a time step of 0.5 fs. Isothermal temperature control and isobaric
pressure control at 3000 K and 20,000 atm were used with damping constants of 10 fs and 100 fs,
respectively. Selection of this pressure is discussed in the Supplementary Material, including the
relationship between system density and compression pressure in Figure S1. Like the quenching step,
there is no direct physical analog to this step, but it was used to drive structural properties toward the
experimental target. Effects of the post-quenching compression step are discussed in context below.
For both compressed and non-compressed samples, no additional structural relaxation was performed.

2.2. Grand Canonical Monte Carlo Simulations

In order to study the properties of QMD-generated CDC models as adsorbent materials, grand
canonical Monte Carlo (GCMC) simulations of nitrogen isotherms were performed with LAMMPS.
A single-site nitrogen model was utilized as the fluid and both fluid–fluid and fluid–solid interactions
were described with 12–6 Lennard–Jones potentials. A cut-off distance of 15 Å was used with no
long-range corrections. Carbon and nitrogen atoms were described using εC = 28.0 K, εN = 95.2 K,
σC = 3.4 Å, and σN = 3.75 Å. Lorentz–Berthelot mixing rules were used, giving εC/N = 51.6 K and
σC/N = 3.575 Å. The carbon substrate was fixed in position; only moves involving nitrogen sites
were considered. Construction of simulated isotherms for each carbon structure involved many
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short simulations of 2× 106 translation attempts and 2× 106 insertion/deletion attempts. At a fixed
temperature of 77 K, a range of 40 pressures ranging from 1× 10−6 atm to 1 atm for the bulk fluid
were considered. Beginning with a bare carbon structure at the minimum pressure of 1× 10−6 atm,
the aforementioned short simulations were repeated at the same pressure until changes in the number
of nitrogen atoms in the system were sufficiently close to zero to be considered at equilibrium.
Subsequent pressure values incremented by a small amount and this process repeated until all pressures
in the prescribed range were considered.

3. Experimental Methods

3.1. CDC Synthesis and Annealing

Porous CDC particles were synthesized using a previously described procedure [5]. Silicon
carbide (SiC) particles (1.0 µm–5.0 µm diameter, 99.1+ % purity, Alfa Aesar, Haverhill, MA, USA) were
placed into a quartz boat and loaded into a tube furnace. The furnace ramped up to 900 ◦C under
flowing Ar gas. Once the system reached this temperature, pure Cl2 gas flowed over the furnace at a
rate of 0.5 L min−1 for 4 h and etched away the metal carbide using the following reaction [82]:

2 Cl2(g) + SiC(s) −−→ SiCl4(g) + C(s).

Subsequently, the system cooled down to 600 ◦C and H2 gas annealed the leftover carbon particles
for 2 h [26]. Finally, the material cooled down to room temperature under flowing Ar.

The material was placed into a graphite crucible and loaded into a vacuum furnace (Solar
Atmospheres, Souderton, PA, USA). The furnace outgassed for 24 h until a high vacuum (1× 10−6 torr)
was reached [7]. Under continuously pulled vacuum, the furnace ramped up at a 10 ◦C min−1 rate up to
700 ◦C, held at that isothermal condition for 11 h, and, subsequently, cooled to room temperature [83].
This step removed all non-carbon functional groups, impurities, and moieties (adsorbed from air
exposure or byproducts of CDC synthesis) from the CDC surface.

3.2. Gas Sorption and Porosimetry

Gas sorption measurements were carried out using Quadrasorb sorption analyzer (Quantachrome
Instruments, Boynton Beach, FL, USA). Samples (0.050 g–0.075 g) were loaded into glass cells and
outgassed at 120 ◦C for 24 h prior to analysis. The instrument collected gas adsorption and desorption
isotherms (adsorbed volume vs. relative pressure) using N2 adsorbate gas in the 0.00075 P

P0
–0.9995 P

P0
range (P0 = 760 torr). Measurements were collected at a 77 K isothermal condition using a liquid N2
coolant bath. The Brunauer–Emmett–Teller equation (BET) was used to calculate the BET specific
surface area (SSA) of the CDCs [84]. The equation was calculated using a linear regression for
0.05–0.30 P

P0
values and normalized by the sample mass to obtain m2 g−1 values.

Quenched Solid Density Functional Theory (QSDFT) data reduction analysis provided
information on a secondary (DFT-derived) SSA value, cumulative pore volume cm3 g−1 values),
and pore size distributions (PSDs, pore diameter vs. dV

dr plots) [30]. The data reduction used only the
adsorption isotherms and assumed slit pore configurations [85]. Quantachrome’s Quadrawin software
(Version 5, Quantachrome Instruments, Boynton Beach, FL, USA) provided all BET calculations and
DFT data modeling kernels and computational analysis.

3.3. Ex Situ X-Ray Total Scattering

Synchrotron X-ray total scattering data were collected at the 11-ID-B beamline at the Advanced
Photon Source (APS) at Argonne National Laboratory (Lemont, IL, USA). Ground powder samples
were loaded into polyimide capillaries (1 mm inner diameter) and measured in transmission mode
at ambient conditions (photon energy 58.65 keV, 0.2114 Å) using an amorphous silicon image plate
detector (Perkin Elmer, Fremont, CA, USA). Scattering data of a CDCs annealed at 700 ◦C were collected
for a total of 15 min and parasitic scattering from an empty polyimide container (duplicating the
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assembly without a sample) and an Ni powder standard (99.99%, Sigma Aldrich, Saint Louis, MO,
USA) were collected using the same setup. The program Fit2D [86] was used to calibrate the sample to
detector distance and detector alignment with data from a CeO2 powder standard. Raw scattering data
was integrated into Q-space spectra, applying a mask and polarization correction during integration.
The normalized total scattering patterns, S(Q) were produced in PDFgetX2[87] (Version 1.0, Michigan
State University, East Lansing, MI, USA) by subtracting polyimide container scattering, utilizing the
appropriate sample composition, and applying standard corrections for the area detector setup [88].
Pair distribution function patterns, PDF G(r), were calculated via Fourier transformation of the total

scattering data utilizing a Q range of 1.0 Å
−1

(Qmin) to 26.0 Å
−1

(Qmax) for the Ni dataset, and was fit
in PDFgui [89] in the range 1 Å–50 Å to calibrate the instrument Qdamp = 0.038(1) and Qbroad = 0.021(1)
effects on real-space data. The same Q range was used for sample data. Because the diffractometer
is only capable of capturing a small portion of such pore signals with the limitation of Qmin near

0.5 Å
−1

, a Fourier transform with Qmin of 0.5 Å
−1

will thus result in a weak oscillating signal with
a wavelength of approximately 13 Å in the real-space domain from the 2π

Q inverse relationship. For the
purpose of comparing PDFs to QMD-generated models without complications arising from incomplete
measurements of pore structures, a Qmin value of 1.0 Å was selected.

3.4. Abberation Corrected Scanning Transmission Electron Microscopy

The structure of the CDC was characterized using an abberation corrected Nion UltraSTEM (Nion
Company, Kirkland, WA, USA) operating at 60 kV. Scanning transmission electron microscopy (STEM)
imaging provides [90,91] atomic resolution characterization of the overall CDC morphology following
the chlorine heat treatment and subsequent vacuum annealing.

4. Results and Discussion

A quenched molecular dynamics routine was used to generate atomistic models for CDCs. Images
provide qualitative analyses of sample morphology and structural properties, while quantitative
characterization includes pair distribution functions, pore size distributions, ring size distributions,
and ring neighbor correlations. Comparisons of QMD-generated CDC models to experimental results
are made in appropriate corresponding discussions.

A summary of the models is listed in Table 1. Throughout, models generated through simulation
named ‘QMD-x’ where ‘x’ is the quench rate used to produce it (in units of 1 K ps−1–100 K ps−1). A ‘c’
is appended to the name if a post-quench compression step was included. The experimental sample is
referred to as ‘Expt.’.

Table 1. Summary of sample structures. Models are named ‘QMD-x’ where ‘x’ is the quench rate
used to produce it (in units of 1 K ps−1–100 K ps−1). A ‘c’ is appended to the name if a post-quench
compression step was included. Q: Quench rate, K ps−1; p̄: mean pore size, nm; L: Box length, nm; ρ:
Particle density, g cm−3.

Sample Q, K ps −1 p̄, nm L, nm ρ, g cm −3 Compression

QMD-100 100 0.50 7.488 0.950 No
QMD-10 10 0.97 7.488 0.950 No
QMD-10c 10 0.56 6.489 1.467 Yes
QMD-1 1 1.40 7.488 0.950 No
QMD-1c 1 0.91 6.733 1.311 Yes

4.1. Imaging and Spectroscopy of CDC Structures

Before evaluating QMD-generated CDC structures, we first consider imaging of these structures
from experiments. Figure 1 shows representative annular dark-field (ADF) STEM images of the CDC
structure. They reveal that the CDC structure is composed primarily of high curvature graphene sheets.
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The STEM images also show regions where the graphene sheets come together along their edges to
form slit-like geometrical configuration. Moreover, due to the atomic-scale chemical sensitivity of ADF
STEM imaging, single atoms with an atomic number greater than carbon are clearly visible in the CDC.
Shown in Figure S2, Electron Energy Loss Spectroscopy (EELS) measurements from these brighter
atoms confirm that these are silicon atoms, likely the result of incomplete chlorine treatment. Raman
spectra were also collected on the experimental CDC sample and presented in Figure S3. Prominent D
and G bands, characteristic of disordered carbon, are observed.

Figure 1. Representative Annular Dark-Field (ADF) Abberation-Corrected Scanning Transmission
Electron Microscopy (STEM) images of carbide-derived carbons (CDCs) from experiment. CDC samples
were subjected to heat treatment at 700 ◦C for 11 h. (Left) regions of highly-curved graphene sheets;
(Right) regions where the graphene sheets form slit-like configurations. The bright atoms with the CDC
structure are residual silicon atoms as confirmed through Electron Energy Loss Spectroscopy (EELS).

4.2. QMD-Generated CDC Structures

Snapshots of final-state structures produced with QMD are shown in Figure 2 and can be
compared to representative STEM images of experimental samples shown in Figure 1. Simulation
boxes are cubic with characteristic lengths near 7 nm. Therefore, while mesoscale features cannot
be analyzed, properties on the order of few Å can be considered. In particular, we focus on the
aggregation of hexagonal and non-hexagonal rings into sheet-like networks and the size distribution
of pores. These properties are quantified in Figures 3–5.

Clear trends with respect to quench rate are observed: faster quenches produce more amorphous
structures and slower quenches produce more ordered structures. This is in agreement with prior QMD
studies of amorphous carbons [53,55,71]. Shown in Figure 2a, a quench rate of 100 K ps−1 generates
a highly amorphous structure with many stringy domains and few rings. Only a small number of rings
are found, as quantified in Figure 4, and no specific ring size dominates the distributions. This low
quantity prevents the formation of large sheets with graphitic features, which had been observed in
CDCs synthesized at high temperature and that had exhibited prominent graphitic domains. The pore
size distribution (Figure 3) shows that all porosity is below 1 nm and most pores are approximately
0.5 nm. Despite this, the observed nature of the carbon bonding indicates that these nanopores are not
necessarily directly representative of those found in synthesized CDCs.

Slowing the quench rate gives more time for rings to form, as seen in Figure 2b, and some
networks begin to reach the size of several rings and resemble small graphene-like sheets. Rings are
mostly hexagonal, but a number of Stone–Wales and similar defects are observed. Stringy domains are
not eliminated but appear at notably smaller frequency. The overall structure remains amorphous,
but the greater quality of ring networks generates pores of greater definition. These pores are also
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larger, as seen in Figure 3. Many pores are sub-nanometer, but there is also a broad shoulder between
1 and 2 nm.

As shown in Figure 2c, further reducing the quench rate by a factor of 10 to 1 K ps−1 generates
a more ordered structure. Most carbon atoms assemble into hexagonal rings, which aggregate into
large, curved sheets that enclose nanopores. Some sheets collapse onto each other and form domains
reminiscent of [002] stacking in graphite, but most sheets are single-layer and comprise pore walls.
These pores exhibit a wider size distribution. While a fraction of pores is in the subnanometer diameter
range, Figure 3 shows similar quantities of pores up to 2.5 nm in size. This emergence of larger pores
with decreasing quench rate has been observed in previous QMD studies [55,71,92]. It bears repeating
that quench rate in simulation lacks a direct physical analog; therefore, this trend cannot directly
be attributed to any features of synthesis via halogen etching despite how physically realistic the
generated structures may be.

(a) QMD-100 (b) QMD-10 (c) QMD-1

(d) QMD-10c (e) QMD-1c

Figure 2. Sample structures produced via quenched molecular dynamics (QMD) at quench rates and
comparison to STEM of Si-CDC from experiment. Simulation boxes are between 6.5 and 7.5 nm in
length and include 20,000 atoms. Each scale bar is 10 Å or 1 nm long.

In summary, slower quenches produce structures with physically realistic carbon bonding but
larger pores. Because the small pore size of CDCs gives rise to many important physical properties,
it is worth attempting to modify the structures generated from slow quenches to have smaller pores.
To this end, we applied a post-quench compression step to the QMD-10 and QMD-1 structures via
NPT simulations at 20,000 atm and 3000 K, generating structures QMD-10c (Figure 2d) and QMD-1c
(Figure 2e).

Comparisons between Figure 2b,d and Figure 2c,e shows that the compression step qualitatively
decreases pore sizes, particularly of larger pores. Some rearrangement is observed in Figure 2d, but for
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the most part, and particularly in Figure 2e, pores are modified without collapsing existing pores
and/or forming new ones. Qualitative visual observations do not show any alterations of ring bonding.
Thus, the combination of ReaxFF with a post-compression step results in pore size distributions that
more closely match experiments as well as a recent study that generated CDCs using the EDIP force
field and, rather than QMD, annealing of a system after removal of metal atoms from a carbide
lattice [65]. Specifically, this compression step combines properties of QMD-generated models at
different quench rates: the local bonding structure is dominated by six-membered rings, but the pore
size distribution does not largely extend in the mesoporous regime.
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Figure 5. Neighbor–neighbor relationships between 5- and 7-membered rings in QMD-generated
models. Solid lines connect data from simulations without post-quenching compression and dashed
lines connect data from simulations with post-quenching compression.

4.2.1. Pore Size Distribution

Pore size distributions of QMD samples are shown in Figure 3. Consistent with previous QMD
studies [55,92], the pore size and dispersity increase with slower quench rates. The compression steps
(samples QMD-10c and QMD-1c) are shown to quantitatively increase the population of sub-nanometer
pores and, to a lesser extent, decrease the dispersity. Although the post-quenching compression step
fails to fully reach the monodisperse sub-nanometer target, agreement with the experimental pore size
distribution is improved, most notably for QMD-10c.

We note that, while experimental characterization results demonstrate a strong predominance
of sub-nanometer pores, a small shoulder at 1–1.5 nm and a small peak between 2.0 and 2.5 nm are
observed. As such, the larger pore size distributions observed in some of our or systems may indeed
be realistic. However, they may form in higher frequency than in experimentally produced CDCs.

4.2.2. Ring Size Distributions

Although a robust quantification of the number of non-hexagonal rings is not currently accessible
via empirical characterization of experimental systems, it can be quantified in simulation. The relative
quantities of rings of sizes 4 through 8 in QMD-generated structures are shown in Figure 4. Ring counts
are normalized to the number of hexagonal rings in a fully graphitic sample of the same size
(10,000 rings in these 20,000 atom systems). By comparing compressed and non-compressed samples,
the compression step is shown to have a small impact on the number of rings but little impact on the
distribution. On the left are ring size distributions from samples produced by QMD alone and on the
right are ring size distributions from samples that also underwent a post-quench compression step.

The quench rate is shown to have a significant impact on the quantity of ring formation and type
of rings formed. At the fastest quench rate, few rings are formed with no particular size dominating the
distribution. At the slowest quench rate, the total number of rings approaches the graphitic limit and
hexagonal rings are the most common. The ring size distribution for the samples of medium quench
rate mixes properties of the limits: the total number of rings is large and hexagonal rings are the most
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common, but not by a large margin. For all QMD-generated structures, the number of four-membered
rings is negligible and the number of eight-membered rings is non-zero but not significant. For all
quench rates, the number of five- and seven-membered rings is similar, indicating that their existence
may be structurally coupled.

To further investigate the relationships between non-hexagonal rings, neighbor–neighbor
correlations of non-hexagonal rings were analyzed and shown in Figure 5. For example, the number of
7-membered rings neighboring a 5-membered rings was counted and shown as a ‘5-7’ neighbor type.
With slower quench rate, 5-7 and 7-7 neighbor types increased in quantity while 5-5 neighbor types
decreased in quantity. This trend is consistent with common graphene defects such as the Stone–Wales
55-77 defect [93] and the 555-777 divacancy [41]. Other common non-hexagonal defects found in
graphene follow a consistent theme of 7-membered rings neighboring each other and 5-membered
rings, but rarely 5-membered rings neighboring each other [94].

4.3. Sorptive Loading

Nitrogen isotherms generated from GCMC simulation are shown in Figure 6 and compared to
a representative experimental isotherm. Characteristic Type I isotherms are observed: most loading
occurs at low relative pressures and little change in loading occurs at moderate relative pressures.
A partial condensation phase transition is only observed in the QMD-1 sample, which is expected to
be the result of mesopores. The loading spikes in experimental samples near P = Pvap are the result
of larger non-porous features formed from the packing of the CDC nanoparticle and not the result
of mesopores found in bulk CDC phases. The lower loadings in compressed samples compared to
non-compressed samples is a result of an artificially high density, although the shapes of the isotherms
are not noticeably affected.
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Figure 6. Nitrogen isotherms generated from grand canonical Monte Carlo (GCMC) simulation in
comparison to experimental isotherms.

4.4. X-Ray Total Scattering

Further structural analysis relies on a synchrotron X-ray source for total scattering/pair
distribution function analysis. The S(Q) of an annealed CDC sample is shown in Figure 7 and
compared to simulated data of an ideal graphene sheet of 10× 10 unit cells. We note here that the large
intensity uptake observed in the low Q region arises from the surface scattering and pore structures
present in the CDCs. Comparisons to QMD-generated structures in real space are discussed below.
Most of the peaks observed in the experimental sample correspond well to the diffraction pattern of
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the graphene structure, the exceptions being peaks at 1.4(1)Å
−1

and 1.83(2)Å
−1

(∼3.43 Å and ∼4.5 Å

in real space). The 1.83(2)Å
−1

peak corresponds to graphite (002) reflection typically observed at
26 deg 2θ with Cu-Kα radiation. This peak, however, is not completely resolved and sits alongside a

broad diffuse peak centered at 1.4(1)Å
−1

. Such features suggest the presence of poorly coordinated
graphene sheets, to which this peak is attributed. In addition, as mentioned in the experimental section,

the large intensity uptake at Q < 1 Å
−1

by surface and/or pore structure scattering is omitted for
subsequent PDF analysis.

The PDF G(r) is related to the RDF g(r) as

G(r) = 4πrρ(g(r)− 1); (1)

therefore, a PDF, unlike an RDF, may fall below zero for some values of r. The length scale over which
PDFs provide strong resolution (a few Å), corresponds to carbon atoms separated by a small number
of bonds.
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Figure 7. Comparison between experimental structure factor of CDC and simulated data of single
graphene layer (10 × 10 unit cells).

Pair distribution functions from QMD-generated structures are shown in Figure 8. The software
package DISCUS [95] (Version 4.2, Michigan State University, East Lansing, MI, USA) used in these
calculations in order to include the effects of some biases in the experimental apparatus, including
Qmax, Qdamp, and Qbroad. For the local carbon bonding comparisons, only a small isotropic thermal

displacement factor is introduced (Biso = 0.2 Å
2
, approximately 0.05 Å mean-square displacement)

because the QMD-generated structures are large enough to contain the desired static disorder.
The overall intensity scale factor is also adjusted to compare with observed PDF. To maintain
consistency, all simulated PDFs used the same parameters.

The peaks of these PDFs correspond well to the distances between carbons in an idealized
graphene-like structure and follows previous interpretation in which no strong correlation can be
observed between different sheets and/or pore walls [96,97]. The first three peaks at 1.43(2), 2.45(2)
and 2.83(2)Å correspond to neighbors in a hexagonal ring and peaks at 3.75(5), 4.28(5) and 4.97(8)Å
correspond to the location of carbon atoms in neighboring rings. The well-ordered nature of these
peaks indicates, as expected, that hexagonal rings are favored. However, significant peak asymmetry
and broadening observed at the third and further peaks do indicate the presence of non-hexagonal
rings and the resulting sheet curvature effects. Together, these define the extent of structural coherence
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(approximately 15 Å) in the experimental PDF data. Compared to simulated PDFs, slower quenches
provide better agreement with experiment, though QMD-1 is not able to totally capture graphitic
ordering at distances greater than ∼5 Å. Consistent in both experimental and simulated PDFs is the
general feature in peak broadening and the lack of graphite [002] correlation near 3.43 Å, the latter
indicating a lack of sheet–sheet stacking despite other graphitic properties.
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Figure 8. Experimental and simulated pair distributed functions (PDFs) for three QMD-generated
structures. Corrections used in the DISCUS software result in some noise in the region of r < 1 nm,
whereas a corresponding radial distribution function (RDF) would have only zero values.

4.5. Effects of Initial Density

We consider the effects of initial density on the final structure. The QMD-10c sample, which
has an initial density of 0.95 g cm−3, was considered as a reference. Simulations were performed
with identical inputs with the exception of the initial density. Values of 0.8 and 0.9 g cm−3 were
considered. After compression, these two systems reached densities of 1.56 and 1.55 g cm−3,
respectively, as compared to 1.467 g cm−3 for the system originally at 0.95 g cm−3.

The pore size distributions of each of sample, before and after compression at 20,000 atm,
are shown in Figure 9. Pore size distributions of samples compressed at other pressures are shown in
Figure S4. For all un-compressed samples, the distribution is broad, covering the range 0.3 nm–2.0 nm.
There is also a small increase in the mean pore size as the density decreases. The compressed samples,
however, exhibit similar pore size distributions. Each has a peak near 0.5 nm and a shoulder that
disappears near 1.0 nm. The uniformity of these distributions suggested that the initial density does
not strongly impact the porosity of the structure after compression, for these relatively high density
systems, as quench rate is likely to be the dominant factor for structural evolution.

We also consider the pair distribution functions of these samples, shown in Figure 10. For samples
with a range of initial densities, compression has a small impact. Peak heights are not noticeably
changed, but compression shifts each peak slightly to the left. This is attributed to the high pressure
needed to increase the density of each sample and not differences in the nature of the carbon bonds.
Comparisons of samples before and after compression show that density has no noticeable impact on
the pair distribution functions. In summary, compression is shown to have negligibly small impacts
on short-range carbon interactions while driving most of the pore size distribution below 1 nm.

We should note, however, that they are still quite small compared to experiments.
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Figure 9. Pore size distributions of samples with decreased initial density, before and after compression.
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Figure 10. Pair distribution functions of samples with decreased initial density, before and after compression.

As shown in Figure 1, experimental samples include a variety of highly amorphous domains
and features such as graphitic slit pores and single, isolated graphene sheets, in addition to other
heterogeneous nanoscale domains. As a result, experimental samples will show localized variation in
structure and density. Furthermore, experimental CDC samples could be thought of as a collection
of individual structures comprising larger particles. The models generated here represent a separate
collection of structures that may overlap with those found in experiments. Thus, prudent studies of
the behavior of CDCs should consider the collective behavior of a range of nanoscale structures to
better understand the resulting physical properties observed in experiments.



C 2017, 3, 32 15 of 19

5. Conclusions

The use of the ReaxFF reactive force field in generating an atomistic model for carbide-derived
carbons was explored using a quenched molecular dynamics (QMD) scheme. The effects of quench rate
and system compression were explored. Comparisons were made to an experimental carbide-derived
carbon (CDC) material with similar structural properties. These models that use ReaxFF and employ
a post-quenching compression step provide clear improvement upon prior CDC models generated
using QMD in terms of local bonding and pore size distribution and also closely match those
recently published using a process involving removal of metal atoms from a carbide and subsequent
annealing [65].

Slower quench rates and a compression step yield good agreement with experimental pore size
distributions (PSDs), pair distribution functions (PDFs), and qualitative morphological features in
abberation-corrected scanning transmission electron microscopy (STEM) images. The sorptive behavior
closely matches CDCs and typical nanoporous adsorbents. The prevalence of non-hexagonal rings and
their neighbor correlations are also explored. System compression, after the quenching step, is shown
to decrease average pore size toward a sub-nanometer distribution without disrupting short-range
features such as ring size. Overall, QMD-10c and QMD-1c are presented as viable atomistic models
for CDCs.

Future approaches may further improve the quality of this model. Specifically, an effort that
combines a QMD routine with a reverse Monte Carlo stage could improve fits to PDFs and, if a suitable
error norm can be constructed, also generate more realistic PSDs. The development of highly
parallelized Monte Carlo software would greatly aid in this, as the computational cost of ReaxFF or
other complex potentials necessitates parallelization. If future experimental probes more accurately
quantify the distribution of ring sizes, they will provide another set of target data to which a simulation
routine could be tuned.

This work provides the framework for use of these structures as model adsorbents and electrodes
in molecular simulation of adsorption and electrochemical capacitors, respectively. Specifically,
use of these models introduces non-idealities such as pore size dispersity, surface curvature,
and non-hexagonal rings.

Supplementary Materials: The following are available online at http://www.mdpi.com/2311-5629/3/4/32/s1.
Figure S1: System densities over the length of compression simulations with different reference pressures; Figure
S2: ADF STEM image and EEL spectra collected on a SiC-CDC sample after vacuum annealing at 700 ◦C; Figure
S3: Raman spectrum of experimental sample; Figure S4: Pore size distributions resulting from the use of barostats
with high reference pressure.
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