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Abstract: Carbon nanomaterials such as carbon blacks are intrinsically hydrophobic with limited
wettability in aqueous media, thus restricting their potential applications. To improve their
hydrophilicity, common methods tend to utilize harmful chemicals and conditions, such as a mixture
of KMnO4 and H2SO4 or a complex and expensive synthesis setup. In our work, we report a simple
method to improve the wettability of these materials by a mechanochemical treatment completed
within 1 h at room-temperature utilizing a NH3 solution. Besides increasing the specific surface area
of the carbon black from 67 m2·g−1 up to 307 m2·g−1, our process also incorporates nitrogen- and
oxygen-containing functional groups into the carbon. This reduces the contact angle from 80◦ to 30◦,
confirming an enhanced wettability. Our work presents an easy, fast, and straightforward pathway
towards the functionalization of carbon nanomaterials and can be of use in various applications
where aqueous wettability is advantageous.

Keywords: carbon black; hydrophilization; functionalization; mechanochemistry; one-pot synthesis;
room temperature

1. Introduction

The application of carbon materials is enormously widespread, ranging from catalysis [1],
sorption, and separation [2,3], to energy storage in batteries [4], supercapacitors [5], and fuel cells [6].
The requirements carbons have to meet are strongly dependent on their applications. As electrode
materials they have to provide high conductivities and high specific surface areas [7], as support
materials in catalysis they have to ensure strong interaction between the surface and the active
species [8], and in adsorptive applications such as wastewater purification they have to remove
chemicals like heavy metal ions [9] or pharmaceuticals [10] rapidly and to a large extent. Therefore,
the porosity and the surface polarity of carbons are key and need to be specifically tailored to the
corresponding application. While many synthesis concepts exist for adjusting porosity in carbons,
the surface remains mostly non-polar [11]. For many of the abovementioned applications, however,
an increase of the surface polarity is required to improve the affinity for metal ions [12] or the
wettability [13].
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Different methods have been reported concerning the introduction of functionalities like amino
groups or oxygen-containing groups. Classically, the Brodie and Staudenmaier method utilizes strong
oxidizing chemicals like KClO3 and fuming nitric acid [14,15], while the Hummers method uses a
mixture of KMnO4 and H2SO4 [16,17]. Carbons can also be functionalized by thermal treatment with
oxidizing acids such as HNO3 and H2SO4 [18,19]. On the one hand, these methods require cautious
handling due to the highly exothermic reaction, high temperatures, and hazardous chemicals, and they
often require extensive washing steps. On the other hand, milder methods like plasma treatment are
also commonly applied. In this way, carbon nanotubes, graphite, and porous carbons are surface
functionalized, either by O2 plasma [20], above-solution plasma [21], or Ar plasma [22], respectively.
Nevertheless, plasma treatment also exhibits environmental issues as a result of the high power input
and the extensive technical equipment required.

An alternative method that is prone to introduce functionalities and heteroatoms into a carbon
network is based on mechanochemistry [23–26]. Due to the collision of milling balls inside a
planetary ball mill, mechanical energies can be utilized to easily break and build chemical bonds [27].
Moreover, mechanochemistry has been shown to enable unexpected reactions, like the dimerization of
fullerenes [28]. In addition, reactions can take place within a few minutes, with low technical effort [29]
and without the presence of solvents [30,31]. The latter displays a major economic and ecological
advantage, since a lot of waste can be avoided [32]. For all of these reasons, the potential use of
mechanical energy to economize chemical syntheses should be considered in all disciplines.

In this work, ball milling is utilized as a powerful tool to tailor the porosity and the surface
functionalities of carbon black (CB) (Figure 1). CB is a class of graphitic material, which impresses
with its high electrical conductivity [33] and low production costs [34]. It is often utilized as a
conductive additive in electrodes or functional materials. Nevertheless, the material lacks in wettability
and porosity, which compromises its use in aqueous media, especially as an adsorbent for water
purification [12] or an additive in polar plastics [35]. Our goal is to quickly and easily functionalize CB
under environmentally friendly conditions, i.e., at room temperature in a ball mill without an excess of
harmful chemicals. By this treatment, the porosity and the surface polarity are increased. With this
study, the range of possible applications of CB is extended and the synthesis of functionalized CB
is economized.
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2. Results and Discussion

2.1. Impact of Mechanochemical Treatment on the Textural Properties of Pristine CB

First, the impact of dry milling on the porosity, the carbon content, and the graphitization of
non-functionalized CB powder is investigated. If not stated otherwise, ZrO2 milling balls with a
diameter of 10 mm are used. An asterisk indicates that milling balls with a diameter of 15 mm are
used. By milling the powder for 30 min (CB-0.5), the specific surface area of CB is increased from
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67 m2·g−1 to 307 m2·g−1 (Figure 2a and Table 1). Prolonging the milling time to 1 h (CB-1) and
2 h (CB-2) reduces the specific surface area to 63 m2·g−1 and 64 m2·g−1, respectively (Figure 2a,
ESI (Electronic supporting information) Table S1). It is assumed that, first, carbon bonds are broken
by the introduced milling energy, forming oxygen functionalities at the fracture sites, resulting in an
enlargement of the surface area due to the wedging of the fragments. However, with an extended
energy input, these functionalities lead to new bonding and a collapsing of the porous structure and,
in turn, a decrease of the specific surface area. Similar observations have been made by Jeon and
coworkers when graphene sheets were milled in the presence of dry ice [24]. By milling the pristine
CB powder for 0.5 h with milling balls exhibiting a larger diameter of 15 mm (CB-0.5*), the overall
energy input is increased in a similar way, consequently leading to the same reduction of the specific
surface area as observed for CB milled over longer time periods.
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Table 1. Porosity, composition data, and zeta potential of the samples.

Sample 1 SSABET
2/

(m2·g−1)
VN2,total

3/
(cm3·g−1)

VN2,micro
4/

(cm3·g−1)
VN2,meso

5/
(cm3·g−1)

VH2O,total
3/

(cm3·g−1)
N-Content 6/

wt %
Zeta Potential 7/

mV

CB 67 0.11 0.01 0.10 0.03 n. d. −5.5
CB-0.5 307 0.24 0.09 0.15 0.21 n. d. −16.4
CB-1 63 0.09 0.01 0.08 - - -
CB-2 64 0.09 0.00 0.09 - - -

NCB-0.51 308 0.40 0.07 0.33 0.33 2.0 −34.1
NCB-11 216 0.30 0.05 0.25 - 2.9 -
NCB-21 163 0.12 0.04 0.08 - 2.3 -
NCB-41 7 n. d. n. d. n. d. - 2.2 -

NCB-0.52 275 0.22 0.07 0.15 - 2.7 -
NCB-0.53 267 0.29 0.06 0.23 - 2.3 -

1 Sample code is composed as follows: CB-X, where X stands for milling time in hours; NCB-Xy, where X stands
for milling time and y describes the volume of NH3 added: 1 = 1 mL, 2 = 0.5 mL, 3 = 1.5 mL; 2 determined at
p/p0 = 0.05 − 0.2; 3 determined at p/p0 = 0.94; 4 calculated by the cumulative pore volume determined by QSDFT
(Quenched solid state density functional theory) with pores smaller than 2 nm; 5 calculated as Vtotal − Vmicro;
6 determined by elemental analysis; 7 determined at pH 7.

To scrutinize structural changes in the carbon network, we conducted Raman spectroscopy
(Figure 2b). The spectra show two vibrations typical for carbon materials. The vibration at 1360 cm−1

(D band) is caused by the disordered parts in the carbon network, while the vibration at 1560 cm−1

(G band), is due to the graphitic carbon parts [36]. The decrease in intensity of these vibrations with an
extension of the grinding time is clearly visible. The D/G band ratio is increased from 1.09 (CB) to
1.63 (CB-0.5) during milling, revealing that the graphitic domains are destroyed and disordered parts
are formed. With longer milling time, the D/G ratio decreases again and a broadening of both bands
(increase in FWHM (full width at half maximum)) can be observed. A similar observation was also
made by Posudievsky and coworkers synthesizing graphene oxide by a mechanochemical treatment
of graphite [37]. Corresponding to the work of Xing and coworkers, who investigated the disorder of
graphite caused by mechanochemistry under an inert atmosphere, we assume that the disordering of
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CB under air is more pronounced and takes already place with shorter milling time of 2 h [38]. This
leads to the broadening of the D and G bands. A detailed table with all D/G band ratios can be found
in the supplementary information (Table S1).

A closer look at the functional groups formed during milling was conducted exemplarily for
sample CB-0.5 using X-ray photoelectron spectroscopy (XPS). The measurement reveals the presence
of C–O–C groups and an oxygen content of 8.7 wt % (ESI, Tables S2 and S3, Figure S1). This supports
the assumption that carbon bonds are broken due to the milling procedure and oxygen is incorporated
at the fractured sites. Another effect of the mechanochemical treatment is the modification of the
carbon particles’ shape (ESI, Figure S6). Counterintuitively, the pristine CB powder with the lower BET
surface area consists of small spherical particles, whereas the milled sample CB-0.5 exhibits bulkier
agglomerates due to the agglomeration of the smaller particles. We assume that the reason for this is
the condensation of the particles due to the presence of oxygen-containing surface groups, leading to a
more compact macroscopic shape.

2.2. Mechanochemical Functionalization of CB

The next target was to functionalize the surface of CB mechanochemically. The sample code
has to be read as follows: NCB-Xy, where NCB stands for nitrogen-functionalized carbon black,
X stands for the milling duration, and y describes the added NH3 volume. First, 1 mL of NH3

solution (1.4 mol·L−1) (NCB-0.51) was added to the milling procedure. The specific surface area
remains almost unaltered with a value of 308 m2·g−1 compared to the dry milled sample CB-0.5
(Figure 3a). The total pore volume increases from 0.11 cm3·g−1 up to 0.40 cm3·g−1, which is assigned
to the formation of mesopores (Table 1). We assume that the incorporation of nitrogen-containing
surface functionalities like amino groups leads to condensation reactions caused by the input of
mechanochemical energy. For this purpose, the elemental composition of the sample NCB-0.51 was
investigated by elemental analysis to determine the doping with nitrogen. NCB-0.51 shows a nitrogen
content of 2 wt %, whereas the nitrogen content of samples CB and CB-0.5 are below the detection
limit of 1 wt % (Table 1). The oxygen doping, as well as the identification of the functional groups
was done by XPS measurements, showing the presence of amine groups besides pyridinic groups for
NCB-0.51 (ESI, 1.1). The presence of pyridine-N-oxide groups in sample NCB-0.51 clearly supports
the assumption that additional mesopores are formed due to the condensation reaction between the
incorporated surface functionalities. XPS measurements also indicate an abrasion of milling material
(ZrO2) of approximately 5 wt % (ESI, Table S2).
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The functionalization with heteroatoms such as nitrogen and oxygen influences the hydrophilicity
of the carbon material, which we further investigated by contact angle measurements (Figure 4),
H2O physisorption (Figure 3b), and measurement of the Zeta potential (Table 1). The mechanochemical
treatments, in particular the pure grinding and NH3-assisted grinding, lead to the reduction of the
Zeta potential from −5.5 mV to at least −34.1 mV evoked by the NH3 treatment. In general, the carbon
particles show a negative Zeta potential, according to the pyridine-N-oxidic functionalities and other
negatively charged surface functionalities [39]. Furthermore, a dispersion is considered to be stable
with a Zeta potential below −30 mV [40]. Thus, NH3 functionalization results in a carbon material
with good aqueous wettability.

This assumption is further confirmed by the contact angle measurement (Figure 3d), showing that
NCB-0.51 exhibits the lowest contact angle of 30◦ while the untreated CB has a contact angle of 80◦.
Also, the pure grinding (CB-0.5) leads to a better dispersible carbon material with a contact angle of
35◦ and a Zeta potential of −16.4 mV. The better wetting due to the surface functionalization is already
visible when the samples are dispersed in pure water (Figure 3c).

Furthermore, for an evaluation of the affinity for water, water adsorption experiments were carried
out (Figure 3c). The mechanochemically treated samples CB-0.5 and NCB-0.51 show type V isotherms.
The isotherm of the untreated CB indicates no interaction with water, leading to a low water uptake.
NCB-0.51 and CB-0.5 show a comparable initial water uptake, whereas the initial uptake of sample
NCB-0.51 is slightly shifted to lower relative pressures compared to CB-0.5. Regarding the adsorbed
amount of water at the full saturation at p/p0 = 0.95, NCB-0.51 has the highest water adsorption
capacity, attributed to the increased pore volume estimated by nitrogen physisorption experiments
(Table 1).

As NCB-0.51 has the highest surface area and nitrogen content, the influence of two selected
milling parameters on these properties were examined in particular. The two varied milling parameters,
namely the milling time and the volume of added NH3, influence the overall energy input into the
carbon material during the mechanochemical treatment [41]. Nitrogen physisorption experiments
show that the extension of the milling time also leads to a reduction of the specific surface area
(Figure 4a). This can be attributed to the destruction of previously formed mesopores during the
treatment, what clearly follows the findings of the milling without NH3 solution (see Section 2.1).
It can be assumed that prolonging the milling time is disadvantageous to the porosity and does not
increase the nitrogen content significantly.
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different durations and (b) Raman spectra; as well as (c) nitrogen physisorption isotherms of the
NH3-functionalized carbon black with different volumes of NH3 solution.

Contrary to the samples that were milled without any additive (CB-0.5, CB-1, and CB-2),
the FWHM of the two characteristic vibrations at 1360 cm−1 and 1560 cm−1 for the NCB samples do
not change with a longer milling time (Figure 4b). This is caused by the milder milling conditions
of the liquid-assisted approach [41]. The variation of the amount of NH3 added to the CB powder
leads to a minor reduction of the specific surface area from 307 m2·g−1 to 225 m2·g−1 and 267 m2·g−1
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for NCB-0.52 and NCB-0.53, respectively (Table 1 and Figure 4c). By changing the amount of liquid,
the content of incorporated nitrogen is not altered, staying constant at around 2.5 wt %, which is
proven by elemental analysis (Table 1 and Figure S6). Thus, the most promising combination of a high
specific surface area and a nitrogen content of 2 wt % was achieved by treating CB for 30 min with
10 mm ZrO2 balls and the addition of 1 mL NH3 solution (NCB-0.51).

3. Materials and Methods

3.1. General Techniques

Ammonium hydroxide solution (NH3, 25 Vol %, purity: pro analysis) was purchased from
Sigma-Aldrich (St. Louis, MO, USA). Carbon black (acetylene black, CB, purity: 99.9%) was purchased
from abcr GmbH (Karlsruhe, Germany).

Elemental analysis was carried out on a vario MICRO cube Elemental Analyzer by Elementar
Analysatorsysteme GmbH in the CHNS mode. The samples were activated at 200 ◦C prior to
the measurement.

Nitrogen physisorption experiments were executed with a Quadrasorb EVO/SI from
Quantachrome (Odelzhausen, Germany) at −196 ◦C. Prior to the measurements, the samples were
degassed for at least 24 h at 150 ◦C under vacuum. The specific surface area was calculated in a
relative pressure range of 0.05–0.2 according to the Brunauer-Emmett-Teller theory. Total pore volumes
were determined at a relative pressure of 0.94. Pore size distributions were determined by applying
the quenched solid state density functional theory (QSDFT) adsorption model for slit-, cylindrical-,
and spherical-shaped pores at −196 ◦C. Micropore volumes were calculated from the cumulative pore
volume at 2 nm by QSDFT as well.

Water vapor adsorption was carried out at 25 ◦C using an Autosorb iQ from Quantachrome after
vacuum drying at 150 ◦C for 24 h.

Raman spectra were carried out with a RM-2000 from Renishaw (Wotton-under-Edge, UK) with a
50× objective (NA = 0.75) and a wavelength of 532 nm.

Scanning electron microscope images were taken with an SU8020 from Hitachi (Chiyoda, Japan)
at an acceleration voltage of 2 kV.

Zeta potentials were measured with a Zetasizer nano from Malvern instruments (Malvern, UK) at
a pH value of 7 with the electrophoreses technique.

XPS experiments were performed on a Physical Electronics PHI 5600 CI with monochromated Al
Kα radiation (1486.7 eV) at 350 W in an energy range of 0–1200 eV. The spectrometer was equipped with
a hemispherical analyzer allowing high-sensitivity and high-resolution experiments. Energy scale and
binding energy were calibrated with Cu and Au foils at the binding energies of Cu 2p3/2 (932.67 eV)
and Au 4f7/2 (84.00 eV), respectively. Base pressure was realized at 1 × 10−9 – 1 × 10−8 mbar.
The survey spectra (wide scans) were collected with a pass energy of 90 eV and a step size of 0.4 eV.
High-resolution spectra (narrow scans) were taken with a pass energy of 29 eV and a step size of 0.1 eV.
For all experiments powder samples were used as received. Elemental concentrations were calculated
from the survey and high-resolution spectra by use of corrected relative element sensitivity factors.
Fits were performed with the PHI Multipak software package (version 9.3, ULVAC-PHI, Chanhassen,
MN, USA) by applying a Shirley background algorithm on the non-normalized spectra. Batch fit mode
was applied for all carbon and oxygen HR spectra, as well as for CB-0.5 and NCB-0.51.

3.2. Synthesis

For all samples, 1.2 g carbon black were first milled in a 45-mL zirconium oxide milling cup for
30 min at 800 rpm in a Fritsch Pulverisette 7 premium line planetary ball mill. Twenty ZrO2 balls with
a diameter of 10 mm were used. The sample obtained after the dry milling was CB-0.5. Adding 1 mL
of NH3-solution (1.47 mol·L−1) and milling for further 30 min under the abovementioned conditions
led to NCB-0.51. After the mechanochemical treatment, the obtained carbon was washed at least three
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times with water until the sample was pH-neutral and centrifuged. The carbon was then washed with
ethanol once and dried at 80 ◦C overnight.

4. Conclusions

In this work, a straightforward mechanochemical pathway is described for improving the porosity
and wettability of a carbon black material. By grinding, oxygen-containing surface functionalities can
be introduced directly and the surface area can be increased from 67 m2·g−1 to 307 m2·g−1. In order
to introduce nitrogen-containing groups into the carbon, a simple method was shown where the
material was milled in the presence of ammonia, resulting in a nitrogen content of 2.5 wt %. By XPS
measurements, the added surface functionalities were identified as amine and pyridine-N-oxide
groups, leading to a better wettability of the carbon material regarding a small contact angle of 30◦ and
a Zeta potential of −34.1 mV in neutral pH. This approach significantly broadens the applicability of
carbon blacks and additionally economizes the post-synthetic modification compared to well-known
state of the art methods.

Supplementary Materials: The following are available online at www.mdpi.com/2311-5629/4/1/14/s1, Table S1.
Ratio of the vibrations of the D and G Band calculated as the ratio of the peak areas fitted as Gaussian; Table
S2. Element concentrations from the high resolution spectra; Table S3. The signal-contributing carbon species
calculated from the C 1s high resolution spectra; Figure S1. (a) Fitted C 1s spectrum of CB and (b) fitted C 1s
spectrum of CB-0.5. Blue = C-C; green = C-O; dark yellow = O-C-O; turquois = O-C=O; magenta = π-π*; Figure S2.
Fitted C 1s spectrum of NCB-0.51. Blue = C-C; green = C-O; dark yellow = O-C-O; turquois = O-C=O; magenta =
π-π*; Table S4. The signal-contributing oxygen species calculated from the O 1s high resolution spectra; Figure S3.
(a) O 1s signal of CB and (b) O 1s signal of CB-0.5. Blue = C=O; green = C-OH/C-O-C; dark yellow = shake-up
satellite; Figure S4. O 1s signal of NCB-0.5. Blue = C=O; green = C-OH/C-O-C; dark yellow = shake-up satellite;
Table S5. The signal-contributing nitrogen species calculated from the N 1s high resolution spectra; Figure S5.
(a) N 1s signal of CB-0.5 and (b) N 1s signal of NCB-0.5. Green = pyridinic groups; blue = imine/amide/amine
groups; dark yellow = pyridin-N-oxide; Table S6. Elemental composition determined by elemental analysis;
Figure S6. Content of incorporated nitrogen correlated with the volume of added NH3; Figure S7. SEM images of
the sample CB, CB-0.5 and NCB-0.51.
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