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Abstract: Calcium phosphate and derivatives have been known for decades as bone compatible
biomaterials. In this work, the chemical composition, microtexture, and structure of calcium
phosphate deposits on carbon cloths were investigated. Three main types of deposits, obtained
through variation of current density in using the sono-electrodeposition technique, were elaborated.
At low current densities, the deposit consists in a biomimetic, plate-like, carbonated calcium-deficient
hydroxyapatite (CDA), likely resulting from the in situ hydrolysis of plate-like octacalcium phosphate
(OCP), while at higher current densities the synthesis leads to a needle-like carbonated CDA.
At intermediate current densities, a mixture of plate-like and needle-like carbonated CDA is deposited.
This established that sono-electrodeposition is a versatile process that allows the coating of the carbon
scaffold with biomimetic calcium phosphate while tuning the morphology and chemical composition
of the deposited particles, thereby bringing new insights in the development of new biomaterials for
bone repair.

Keywords: carbon scaffold; electrodeposition; calcium phosphates; carbonated calcium-deficient
hydroxyapatite; carbon biomaterial

1. Introduction

Due to their mechanical properties, i.e., flexural and fatigue strength, and high strength to weight
ratio, carbon fibers have previously been considered for hard and soft tissue engineering. However,
their poor biological activity limits their extensive use in medical applications and therefore needs
to be enhanced [1–3]. Conversely, owing to high biocompatibility, bioactivity, and osteoconductivity,
calcium orthophosphate (CaP) ceramics, such as hydroxyapatite (HAP), have received much attention
in the field of tissue engineering and have been clinically employed either as coating or as scaffold
in orthopaedics and dentistry [3–5]. In this context, CaP-coated carbon fibers or cloth, combining the
high biocompatibility of CaP with the properties of carbon fiber, appear as promising biomaterials for
bone repair and regeneration [2,3,6].

In the past decades, several methods including plasma spray, radio-frequency sputtering, pulsed
laser-deposition, sol-gel routes, electrophoretic methods, and electrochemical deposition have been
reported for CaP deposition onto implant surfaces [5,7–9]. Among these, the electrochemical technique
is particularly attractive for efficiently coating highly irregular materials at ambient temperatures and
has been already applied for metal substrates or porous carbon composites [1–3,10–13]. Additionally,
the thickness of the coating and its chemical composition can be well controlled by setting adequate
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parameters [1,2,6,12–14]. The purpose of this present study is to demonstrate the effect of current
density on thickness, morphology, microtexture, and chemical composition of the CaP phases deposited
on carbon cloths in order to modulate these features according to desired application.

2. Materials and Methods

The substrate of the biomaterial is made of an activated carbon cloth (ACC). It is referred to as
KIP1200 and was provided by Dacarb® (Asnières-sur-Seine, France).

CaP coating on the ACC is performed using a sono-electrochemical deposition method [1,15].
The electrolyte consisted of a calcium nitrate tetrahydrate Ca(NO3)2, 4H2O, and ammonium
dihydrogenophosphate NH4H2PO4 mixture maintaining a Ca/P ratio of 1.67 with [Ca2+] = 5.10−3 mol/L.
Hg/Hg2SO4 was used as reference electrode, and a (cd) ranging from 25 to 500 mA/g for 6 h. Sonication
was applied during polarization in order to obtain a uniform and homogenous coating on the carbon
fibers [16].

XRD was performed on an INEL diffractometer (CSP120) equipped with a curve detector (angular
instrumental resolution of 0.05◦) in transmission mode at copper wavelength (0, 154, 056 nm) with
Si (111) monochromator. For the measurements, the samples were introduced in 0.6 mm diameter
capillary glass tube. Scanning electron microscopy (SEM-Hitachi S4500, Tokyo, Japan), transmission
electron microscopy (TEM-Philips CM20 working at 200 kV) associated with EDX analysis (EDAX
detector, Eindhoven, The Netherlands), elemental analysis (Flash 2000, Thermo Scientific France,
Courtabœuf, France), and N2 and CO2 adsorption, respectively, at 77 and 273 K (Autosorb-1,
Quantachrome France, Bailleau le Pin, France), were performed to characterize the carbon cloth
substrate along with the chemical composition, morphology, microtexture, and structure of the
CaP deposits.

3. Results

3.1. Characteristics of Carbon Fiber Scaffold

The carbon fiber scaffold is made of 10 µm diameters woven fibers as seen on SEM image
(Figure 1a).
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Figure 1. SEM micrographs of (a) pristine activated carbon fiber cloth; (b) CaP coated carbon cloth 
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coverage of the fibers. Insets are given higher magnifications of the carbon fibers. 

Elemental analysis of the carbon cloth was performed to determine the proportion of elemental 
atoms (mass %). It contains 92.4% of carbon, 1.6% of oxygen, 0.6% of hydrogen, and about 5% of 
ashes. The material is rather hydrophobic, since it presents a low amount of oxygen, and 
consequently of oxygenated surface groups, and its zero charge pH is basic, equal to 9.4. 

The activated carbon fiber cloth possesses a highly developed surface area (Table 1). Its porous 
network consists of micropores (7–20 Å) and ultramicropores (<7 Å). The material presents a narrow 
pore size distribution centered at 10–12 Å (Figure 2). 

Figure 1. SEM micrographs of (a) pristine activated carbon fiber cloth; (b) CaP coated carbon cloth
with homogeneous (as an example at 75 mA/g); and (c) heterogeneous (as an example at 25 mA/g)
coverage of the fibers. Insets are given higher magnifications of the carbon fibers.

Elemental analysis of the carbon cloth was performed to determine the proportion of elemental
atoms (mass %). It contains 92.4% of carbon, 1.6% of oxygen, 0.6% of hydrogen, and about 5% of ashes.
The material is rather hydrophobic, since it presents a low amount of oxygen, and consequently of
oxygenated surface groups, and its zero charge pH is basic, equal to 9.4.

The activated carbon fiber cloth possesses a highly developed surface area (Table 1). Its porous
network consists of micropores (7–20 Å) and ultramicropores (<7 Å). The material presents a narrow
pore size distribution centered at 10–12 Å (Figure 2).
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Table 1. Microtextural and nanotextural KIP1200 characteristics.

SBET (m2/g) Vtotal (cm3/g) Vmicro
1 (cm3/g) Vultramicro

2 (cm3/g) Vmeso
1 (cm3/g)

1693 0.68 0.51 0.52 0.09
1 Measured by N2 adsorption at 77 K, using the density functional theory (DFT) method. 2 Measured by CO2
adsorption at 273 K, using the Dubinin-Radushkevich (DR) theory.

C 2018, 4, x FOR PEER REVIEW  3 of 8 

Table 1. Microtextural and nanotextural KIP1200 characteristics. 

SBET (m2/g) Vtotal (cm3/g) Vmicro 1 (cm3/g) Vultramicro 2 (cm3/g) Vmeso 1 (cm3/g) 
1693 0.68 0.51 0.52 0.09 

1 Measured by N2 adsorption at 77 K, using the density functional theory (DFT) method. 2 Measured 
by CO2 adsorption at 273 K, using the Dubinin-Radushkevich (DR) theory. 

 
Figure 2. Pore size distribution of KIP1200 activated carbon cloth (N2 adsorption at 77 K). 

3.2. Homogeneity of the CaP Deposits 

The variation of the mass uptake as a function of the applied current density is reported in Figure 
3. A 13% maximum mass uptake is reached at 150 mA/g. The deposit thickness was measured after 
fracture of the fibers under liquid nitrogen. The homogeneity vs heterogeneity of the coating was 
determined on transversal sections of carbon fibers observed at higher magnification in SEM (see 
insets in Figure 1).  

For current densities in order of 75 mA/g, the CaP deposit appears rather homogeneous (see 
inset in Figure 1b) with a thickness ranging from 250 to 600 nm. At other current densities, CaP 
coverage of the fibers is heterogeneous. At low current densities (25 and 50 mA/g) (see inset in Figure 
1c), the deposit is irregular, and its thickness is smaller than 100 nm, whereas for higher current 
densities (100 and 270 mA/g), the deposit is highly heterogeneous and its thickness ranges from 600 
nm to 2 µm. 

 
Figure 3. Variation of the mass uptake as a function of applied current density. Error bars are 
calculated according to student test with five experimental points. 

The amount and homogeneity of the CaP deposits thus showed a strong dependency on the 
water electrolysis regime, governed by the current density applied at the negative electrode. The 
water electrolysis regime is −0.94 V at pH of 4.8. Water reduction occurring at the carbon cathode 
surface enhances hydroxyl anions production according to reaction (1): 

0 -100 -200 -300 -400 -500
0

5

10

15

20

M
as

s 
up

ta
ke

 (%
)

Current density (mA/g)

Overlaying

Heterogeneous

Homogeneous

Figure 2. Pore size distribution of KIP1200 activated carbon cloth (N2 adsorption at 77 K).

3.2. Homogeneity of the CaP Deposits

The variation of the mass uptake as a function of the applied current density is reported in
Figure 3. A 13% maximum mass uptake is reached at 150 mA/g. The deposit thickness was measured
after fracture of the fibers under liquid nitrogen. The homogeneity vs heterogeneity of the coating was
determined on transversal sections of carbon fibers observed at higher magnification in SEM (see insets
in Figure 1).
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Figure 3. Variation of the mass uptake as a function of applied current density. Error bars are calculated
according to student test with five experimental points.

For current densities in order of 75 mA/g, the CaP deposit appears rather homogeneous (see inset
in Figure 1b) with a thickness ranging from 250 to 600 nm. At other current densities, CaP coverage
of the fibers is heterogeneous. At low current densities (25 and 50 mA/g) (see inset in Figure 1c), the
deposit is irregular, and its thickness is smaller than 100 nm, whereas for higher current densities
(100 and 270 mA/g), the deposit is highly heterogeneous and its thickness ranges from 600 nm to 2 µm.

The amount and homogeneity of the CaP deposits thus showed a strong dependency on the
water electrolysis regime, governed by the current density applied at the negative electrode. The water
electrolysis regime is −0.94 V at pH of 4.8. Water reduction occurring at the carbon cathode surface
enhances hydroxyl anions production according to reaction (1):
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2 H2O + 2e− → H2 + 2 OH− (1)

The mass uptake and the homogeneity of the deposit then depend on the proportion of H2 (g) and
OH− production. While below 150 mA/g the amount of deposit increases gradually with the OH−

production, the formation of H2 bubbles in the carbon porosity for higher current densities reduces the
surface contact between the carbon electrode and the electrolyte and avoids the CaP deposit formation.
Consequently, a decrease of the deposit mass uptake is observed for current densities higher than
150 mA/g (Figure 3), associated with a heterogeneous and uncomplete CaP coverage on overlaying
fibers, as seen on SEM image (Figure 1c and inset).

3.3. Microtexture of the CaP Deposits

TEM characterization shows that the microtexture of the deposit also depends on the applied
current density. Below 50 mA/g, a plate-like microtexture is observed (Figure 4a), while for current
densities above 100 mA/g, the deposits display a needle-like microtexture y (Figure 4c). At 75 mA/g,
both microtextures were observed simultaneously (Figure 4b). These results clearly indicate that
depending on the current density, CaP deposits with two different types of microtextures could
be obtained.
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Figure 4. TEM micrographs of CaP deposits: (a) plate-like microtexture obtained at cd ≤ 50 mA/g;
(b) mixture between plate-like and needle-like microtextures obtained at 75 mA/g; and (c) only
needle-like microtexture obtained at cd ≥ 100 mA/g (magnification ×20,000).

Because the current density governs the water electrolysis regime, it governs the microtexture of
the CaP deposits. At high current densities (100 and 270 mA/g), the fast water electrolysis rate induces
a strong pH increase, which favours PO4

3− species and a direct precipitation of CaP deposits having a
needle-like microtexture. At lower current densities (25 and 50 mA/g), the slow water electrolysis
rate leads to a weak pH increase, which allows the simultaneous existence of HPO4

2− and PO4
3− ions.

In this case, the deposit consists mainly in CaP deposits with a plate-like microtexture.

3.4. Chemical Composition of the CaP Deposits

In order to analyze the chemical composition of deposits, Ca/P atomic ratios were determined
from EDX-TEM analysis at each current density (Figure 5).

Average Ca/P ratios are (1.40 ± 0.08), (1.44 ± 0.04), (1.68 ± 0.14), and (1.62 ± 0.11) at, respectively,
25, 50, 75, and 100 mA/g. At 270 mA/g, two distinct Ca/P ratios are observed: (1.71 ± 0.08) and
(2.3 ± 0.3). From 25 to 270 mA/g, the Ca/P ratios increase. At 25 mA/g, Ca/P ratios are close
to octacalcium phosphate (OCP) one (1.33) [17], which is coherent with the plate-like morphology
observed at this current density. From 75 to 270 mA/g, CaP ratios increase from 1.44 to 1.71. It is
worthwhile noticing that Ca/P ratio is 1.67 for stoichiometric hydroxyapatite (HAP) and ranges from
1.5 to 1.67 for calcium-deficient hydroxyapatite (CDA) [17], which is coherent with a needle-like
morphology. Intermediate ratios observed at 50 mA/g can be explained by a mixture between OCP
and HAP phases. The second Ca/P ratio of 2.3 obtained at 270 mA/g is explained by the mixture
between HAP and calcite CaCO3 observed by XRD (Figure 6).
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3.5. Identification of the CaP Phases

X-ray diffraction was performed to identify the crystallographic structure of the CaP deposits
(Figure 6). XRD patterns of deposits obtained from 50 to 270 mA/g show broad main peaks located at
2θ = 25.9◦, 32.9◦, close to reflexions of stoichiometric hydroxyapatite (JCPDS 74-0566). They correspond
to (002), (211), and (300) reflexions and are typical of a calcium-deficient hydroxyapatite (CDA) [18].
Broad peaks are due to a crystalline disorder induced by the partial substitution of phosphate and
hydroxyls ions by carbonate ions [18] and by the nanometric size of crystallites. Only at 270 mA/g
current density several other peaks are observed at 29.4◦ 36.0◦ and 39.4◦, which are characteristics of
calcite allotropic form (JCPDS 05-0586).

To characterize the nature of the formed CaP phases present in the deposits, FTIR analyses were
also performed (Figure 7a).

For current densities ranging from 50 to 270 mA/g, the FTIR spectra are clearly characteristic of
carbonated calcium-deficient hydroxyapatite (CDA) [19].

The stretching band at 3540 cm−1 and the bending band at 633 cm−1 are associated with apatitic
OH− groups. The most intense and broad band centred at 1036 cm−1 with the shoulder at 1094 cm−1

and the double-band at 566 and 603 cm−1 with the shoulder at 580 cm−1 are characteristic of the
υ3 and υ4 bending mode of apatitic PO4

3− tetrahedra, respectively. The presence of carbonates is
indicated by the υ3 bands of the C–O bond in the 1410–1460 cm−1 region. The band at 871 cm−1 is
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assigned either to υ2 vibrations of C–O in CO3
2− or to HPO4

2− groups [2]. Finally, the broad bands in
the ranges 1600–1800 and 2500–3700 cm−1 on all spectra are attributed to adsorbed water molecules
in the carbonated CDA [19,20]. At a current density of 25 mA/g, the υ3 PO4

3− most intense peak
centred at 1036 cm−1 shows a splitting with the appearance of bands at 916, 1025, and 1193 cm−1

characteristic of octacalcium phosphate (OCP) [19] (Figure 7b). The signature of carbonates is present
in the 1410–1460 cm−1 region. Since carbonated OCP is unlikely to occur [21], this suggests that the
deposit is a mixture of OCP and carbonated CDA. Carbonates ions are provided by atmospheric CO2

solubilized in the electrolyte. Under sonication, a slight increase of the electrolyte temperature takes
place (up to ~44 ◦C), which promotes the reaction of carbon dioxide and water molecules to form
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4. Discussion

All the results demonstrate that, at high current densities (100 and 270 mA/g), the fast water
electrolysis rate induces a strong pH increase that favours PO4

3− species and gives rise to a direct
precipitation of carbonated calcium-deficient hydroxyapatite (CDA) with needle-like morphology.
In contrast, at lower current densities (25 and 50 mA/g), the slow water electrolysis rate only leads to
a weak pH increase, which allows the simultaneous existence of HPO4

2− and PO4
3− ions. In this case,

the deposit consists mainly in CDA (and disordered octacalcium phosphate (OCP) to a lower extent)
with a plate-like morphology. This suggests that CDA formation onto the carbon fibers occurred in a
different manner, likely through the precipitation of plate-like triclinic OCP, which is in situ converted
into plate-like hexagonal CDA according to the reaction (5):

5 Ca8(HPO4)2(PO4)4, 5 H2O→ 4 Ca10(PO4)6OH2 + 18 H+ + PO4
3− (5)

According to Brown et al. [23], the OCP hydrolysis into CDA is supported by a lattice reorganization
through the losses of water, phosphate ions, or, eventually, calcium ions. As a consequence, structural
defects and additional ions, such as carbonate groups, are incorporated in the hydroxyapatite structure.

The occurrence of such mechanism at low current densities allows for the explaining of the
observation of plate-like carbonated CDA with a little amount of non-hydrolysed OCP at 25 mA/g.
This OCP hydrolysis rate is expected to increase with the current density, and when it reachs 50 mA/g,
the amount of non-hydrolysed OCP is too small to be evidenced by FTIR. It should be mentioned
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that this OCP hydrolysis mechanism was postulated to be at the origin of plate-like carbonated
CDA observed in bones [23,24]. At intermediate current density (75 mA/g), the coexistence of
plate-like and needle-like morphologies suggests that the two mechanisms of CDA formation take
place simultaneously. When electrolysis starts, the pH increase leads to plate-like OCP precipitation,
which then is further hydrolysed into CDA, and later on, to needle-like carbonated CDA precipitation
when the pH becomes sufficiently high.

5. Conclusions

Calcium phosphate coated-activated carbon cloths have been successfully devised using the
sono-electrochemical deposition technique. This method allows one to increase the local pH of the
electrolyte near the carbon electrode using water electrolysis, which drives the precipitation of calcium
phosphate phases onto carbon fibers. Homogeneous coating with thicknesses ranging from 250 to
600 nm can be obtained using selected current charge densities. A thorough investigation of the coating
mechanism and resulted CaP characteristics allow concluding on the current density-dependence of
the deposit microtexture, structure, and chemical composition. At lower current density (25 mA/g), the
deposit consists of disordered triclinic octacalcium phosphate (OCP) having a plate-like morphology,
which is quickly in situ hydrolysed into disordered hexagonal calcium-deficient hydroxyapatite
(CDA); the structure changes, but the plate-like microtexture is kept. As the current density increases
(50 mA/g), the pH increase leads to losses of phosphate ions and to an increase of the OCP hydrolysis
rate into carbonated CDA. At this stage, only particles of CDA having a plate-like microtexture (no more
OCP particles) are observed. At high current densities (100 and 270 mA/g), the fast water electrolysis
rate leads to a direct precipitation of carbonated CDA having a classical, needle-like microtexture.

It has been shown that using well defined experimental conditions, carbon fiber cloths can be
coated with biomimetic carbonated CDA, which might be beneficial for use as a scaffold for bone
regeneration. Biocompatibility and bioactivity tests are currently under progress to assess the biological
properties of these novel and promising biomaterials [25,26].
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