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Abstract: Surface modification is a reliable method to enhance the sensing properties of pristine
graphene by increasing active sites on its surface. Herein, we investigate the interactions of the
gas molecules such as NH3, NO, NO2, H2O, and H2S with a zinc oxide (ZnO)–graphene hybrid
nanostructure. Using first-principles density functional theory (DFT), the effects of gas adsorption
on the electronic and transport properties of the sensor are examined. The computations show that
the sensitivity of the pristine graphene to the above gas molecules is considerably improved after
hybridization with zinc oxide. The sensor shows low sensitivity to the NH3 and H2O because of
the hydrogen-bonding interactions between the gas molecules and the sensor. Owing to observable
alterations in the conductance, large charge transfer, and high adsorption energy; the sensor possesses
extraordinary potential for NO and NO2 detection. Interestingly, the H2S gas is totally dissociated
through the adsorption process, and a large number of electrons are transferred from the molecule
to the sensor, resulting in a substantial change in the conductance of the sensor. As a result, the
ZnO–graphene nanosensor might be an auspicious catalyst for H2S dissociation. Our findings open
new doors for environment and energy research applications at the nanoscale.

Keywords: graphene; zinc oxide; ZnO; sensor; NH3; NO; NO2; H2S; adsorption; density functional
theory (DFT)

1. Introduction

There are presently great efforts being made in developing novel gas sensors centered around
new nanomaterials for the detection of toxic gases since they offer higher sensitivity, selectivity, and
reliability; as well as immediate response and recovery at low cost. One of the most significant
advantages that nanostructure-based sensors have over conventional microsensors is the high
surface-to-volume ratio. This is a crucial parameter since it defines the sensitivity of the gas sensors.
Moreover, the nanostructured materials provide a greater detection area leading to better adsorption
of gas species and an increase in sensing abilities.

Graphene, the first discovered two-dimensional (2D) material, has become a promising material
for different types of applications [1,2]. Graphene’s amazing properties have attracted considerable
interest in the area of gas sensing since they enable the improvement of miniaturized sensors at
low cost and power consumption [3–5]. Consequently, graphene has been extensively studied
theoretically [6–14] and experimentally [15–20]. On the downside, because of the weak interactions
between π electrons of graphene’s surface and the gas molecules, pristine graphene has shown
limitations for the recognition of individual gas particles [9,10], exhibiting low sensitivity to common
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gases such as CO, CO2, CH4, N2, NO2, NH3, H2, and H2O [6–8]. Therefore, physical or chemical
modification of graphene’s surface has been considered to boost its performance. Hydrogen
plasma [21], reduction reagents [22], and electron beam irradiation [23] are the physical methods
that have been applied to modify the surface of the graphene by reducing the graphene oxide (GO).
Besides the physical modification, chemical methods such as functionalization, impurity atom
doping, and defects have been reported to successfully alter the electrical and magnetic properties
of nanomaterials [24–32]. Techniques, where dopants or defects are introduced, have shown an
improvement in the sensitivity of the graphene-based gas sensors [7,8,11–14,28–30,33]. Zhang et al.
showed small gas molecules such as NO2, CO, NO, and NH3 display strong reactions with B-doped,
N-doped, and defective graphene [7]. Additionally, when graphene is doped with B, N, and Si,
it displayed boosted interactions with other common gases like N2, SO2, CO2, O2, H2, and H2O
compared to pristine graphene [8]. Doped graphene with transition metals (Fe, Co, Ni, Ru, Rh, Pd, Os,
Ir, and Pt) has also been demonstrated to have high sensitivity to O2 adsorption [12]. Borisova et al.
noticed that when defects are induced on graphene, it improved the interactions of H2S with C atoms,
showing much better response in comparison with pristine graphene [13]. Density functional theory
(DFT) calculation on Eu-decorated single- and double-sided graphene sheets exhibited that each Eu
could firmly bound to six H2 molecules [14]. Recently, the sensitivity of other 2D nanomaterials such as
MoS2 [34–36], phosphorene [37,38], hexagonal boron carbide (BC3) [39,40], WS2 [41,42], silicene [43–45],
and germanene [46] to several gases have been inspected.

Metal oxides like SnO2, WO3, etc. have been commonly integrated on gas sensors to improve
their performance, specifically their sensitivity and selectivity [47–52]. However, these types of sensors
have a significant constraint since they need to operate at high temperatures, between 200–600 ◦C,
limiting their application and integration as well as presenting energy consumption issues and risks of
gas explosion. Recently, metal oxide gas sensors (including Cu2O, In2O3, Co3O4) have been hybridized
with graphene to boost their ability of gas detection at room temperature [53–64].

Zinc oxide (ZnO) is a rising and significant semiconductor due to its large direct band gap of
0.37 eV and large exciton binding energy of 60 mV. ZnO nanoparticles are very popular to use in
graphene hybrid systems because it is easy to control their size, morphology, and material properties.
We have recently reported decoration of graphene with Zn12O12 nanoclusters to open a band gap of
14.5 meV around the Fermi level at K-point [65]. Graphene decorated with ZnO nanoparticles has been
proven to heighten the sensitivity towards common toxic gases like CO, NH3, NO [55], methane [66],
NO2 [67,68], formaldehyde [69,70], H2 [63], and also to humidity [71].

The objective of this study is employing DFT in order to analyze the electronic and transport properties
of the zinc oxide–graphene hybrid nanosensor when in close proximity to the gas molecules such as NH3,
NO, NO2, H2O, and H2S. Variations in the electronic transport properties of the ZnO–graphene sensors
are correlated with the sensitivity capability of the device. Our results reveal the promising future of
ZnO–graphene hybrid nanostructure in the development of ultra-high sensitive gas sensors.

2. Computational Methods

This paper presents first-principles calculations based on DFT in combination with the
non-equilibrium Green’s Function (NEGF) method performed in the Atomistix ToolKit (ATK)
software package [72–74]. The Perdew, Burke, and Ernzerh (PBE) approach of generalized gradient
approximation (GGA) is used for the exchange-correlation function. To expand the electron wave
function, a double-ζ polarized basis set is employed. The Grimme van der Waals (vdW) correction
(PBE-D2) [75] is utilized in order to take into account the long-range vdW interactions in the adsorption
systems [76]. The electronic temperature is kept constant at 300 K, and the plane wave mesh cut-off
energy is set to 150 Rydberg.

To mimic a free-standing graphene sheet, we consider a periodic (3 × 10) supercell of graphene in
y and z dimensions. To avoid any image interactions, a vacuum spacing of 15 Å is imposed on the plane
in the x-direction in which the sheet is not periodic. By employing the conjugate gradient method, the
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supercell is allowed to optimize fully until all the final atomic forces are less than 0.01 eV/Å. The first
Brillouin zones are sampled using 1 × 21 × 11 k-points in the x, y, and z directions, respectively. In the
next step, zinc oxide is placed in the center of the supercell in the vicinity of the C atoms, and then the
whole system is optimized again. For the calculations, we increase the k-points to 1 × 121 × 111 in the
x, y, and z directions, respectively. The adsorption energy gives us a quantitative explanation of the
interaction strength between adsorbent and adsorbate. The adsorption energy of zinc oxide onto the
graphene sheet is computed from:

Ead(ZnO) = EZnO−Graphene − EGraphene − EZnO (1)

Here, EZnO−Graphene, EGraphene, and EZnO are the total energies of the ZnO–graphene system,
pristine graphene sheet, and the isolated ZnO, respectively. In the last step, the gas molecules including
NH3, NO, NO2, H2O, and H2S are added to the system by placing them in the vicinity of the ZnO.
The gas molecule–ZnO–graphene complexes are completely relaxed. The adsorption energies of the
gas molecules on the ZnO–graphene system are obtained by:

Ead(Molecule) = EMolecule−ZnO−Graphene − EZnO−Graphene − EMolecule (2)

where EMolecule−ZnO−Graphene is the total energy of the molecule–ZnO–graphene compound and
EMolecule is the energy of an isolated gas molecule. Mulliken population analysis is engaged to
study the charge transfer between the graphene and ZnO and between the gas molecules and the
ZnO–graphene system. To simulate the gas sensing system and analyze its electronic and transport
properties, the structure is converted to a two-point probe sensor, as shown in Figure 1. The sensor
consists of 120 atoms of C which is functionalized with the zinc oxide. It also includes a scattering
region (12.8 × 24.6 Å2) and 4.92 Å electrodes on each side. It should be noted that the left and right
electrodes (the black boxes) are semi-infinite until cells and are repeated along the z-axis. Moreover,
the scattering region is periodic along the y-axis. We describe the quantum conductance of the system
via the transmission coefficient at the Fermi level:

C(E) = G0T(E) (3)

where G0 = 2e2/h is the quantum conductance constant (e is the electron charge and h is Planck’s
constant). The transmission is calculated along the z-direction. Moreover, transmission coefficients at
energy E can be expressed based on the retarded Green’s function G†(E) and the advanced Green’s
functions G(E) of the scattering region.

T(E) = G(E)ΓL(E)G†(E)ΓR(E) (4)

Here, ΓL(R)(E) is the coupling function of the left (right) electrode which is:

ΓL(R) =
1
i
(∑ L(R) − (∑ L(R))

†

) (5)

where ∑ L(R) is the electrode self-energy of the left (right) electrode.
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Figure 1. Schematic illustration of zinc oxide (ZnO)–graphene hybrid gas sensor with two leads
(black boxes). The gray, purple, red, blue, yellow, and white balls represent C, Zn, O, N, S, and H atoms,
respectively. The length and the width of the scattering region (red box) of the sensor (in unit of Å) are
also provided.

3. Results and Discussion

We first optimize the ZnO–graphene hybrid nanostructure in order to obtain the most energetically
stable geometry of the sensor. ZnO can adhere to the graphene at different positions including the
atom site (above C atom), bridge site (above C–C bond), and hollow site (center of C–C hexagons).
Additionally, concerning the surface of the graphene sheet, a ZnO can be aligned parallel or upright
at these specific positions. The most stable configuration is found by full relaxation of all the
possible structures and comparing their final adsorption energies. The most energetically favorable
adsorption configuration, which is the arrangement with the minimum adsorption energy, is shown in
Figure 2a. Our DFT calculations show that ZnO prefers to place itself perpendicular with respect to the
graphene plane, while the Zn atom heading to the C atoms and the O atom way around. The Zn atom
is located above the middle of the C1–C2 bond and is bonded to C atoms on the graphene sheet to form
a Zn–C1–C2 triangle with Zn–C1, Zn–C2, and C1–C2 side lengths of 2.24, 2.20, and 1.44 Å, respectively.
The C1–Zn–C2 angle is 37.95◦. The Zn–O bond length in isolated ZnO (2.00 Å) is reduced to 1.70 Å
after interaction with C atoms of the graphene sheet. For ZnO–graphene nanostructure, an adsorption
energy of−0.68 eV is obtained that could be indicative of moderate chemisorption. This chemisorption
accompanies with an electron transfer of 0.105 e from ZnO to graphene. These findings can be
confirmed by comparing the band structures of the pristine graphene sheet and the ZnO–graphene
hybrid nanostructure, as depicted in Figure 2b. The dashed green curves show the reference results
for a pristine graphene sheet. As we know, graphene has no band gap. This means the valence and
conduction bands touch at the Dirac points. Upon exposure to zinc oxide, the induced electrons
shifted down the Dirac point of the graphene towards negative energies and moved the Fermi
level to the conduction band, as shown in Figure 2b in solid black curves. This suggests that the
n-type doping effect of graphene has taken place. The Dirac point of the graphene is distorted after
interaction with the ZnO due to breakage of bond symmetry in graphene. Interestingly, a gap of
26 meV is observable between the bands c (shifted conduction band) and v (shifted valence band) of
the ZnO–graphene hybrid.

Next, the adsorption mechanisms of the NH3, NO, NO2, H2S, and H2O gas molecules onto a
graphene–ZnO nanostructure sheet are addressed. In the first step, each gas molecule is placed at a
distance of 2 Å above the O atom of the ZnO–graphene nanostructure. Some initial configurations are
considered. The gas molecules can be aligned in parallel or perpendicular concerning the surface of the
ZnO–graphene nanostructure. Further, the N atom of NO with a diatomic molecular structure can point
up or down to the ZnO–graphene nanostructure. For the triatomic molecules (NO2, H2O, and H2S)
and tetratomic molecule (NH3), two orientations are examined. In the first orientation, the N atom
(in NH3 and NO2), O atom (in H2O), and S atom (in H2S), point to the O atom of the ZnO–graphene
nanostructure, while, in the second one, the O atom (in NO2) and H atom (in NH3, H2O, and H2S)
point down to the surface of the sensor. In the second step, all the input structures are allowed to fully
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optimize. Once improved, the structural stability is studied regarding the adsorption energy. The most
stable configurations which have the most negative adsorption energies are chosen for further analysis
and are depicted in Figure 3. The conventional sensing mechanism is that charge transfer between the
adsorbed gas molecules and the surface of the 2D nanomaterials is expected to affect the conductivity
of the system upon exposure to the target gas molecules, while the chemical structure of the sensing
layer is preserved. The adsorption energies of the gas molecules on the ZnO–graphene nanostructure,
the minimum binding distances, and the net charge transfer on molecules using Mulliken population
analysis are summarized in Table 1.
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Figure 2. (a) Relaxed configuration of the ZnO adsorbed onto a graphene sheet. The gray, purple,
and red balls signify C, Zn, and O atoms, respectively. The green area highlights the C1–Zn–C2 angle.
The bond lengths and the binding distances between the ZnO and the graphene sheet (in unit of Å) are
also given. (b) The band structures of pristine graphene (dashed green curves) and the ZnO–graphene
hybrid (solid black curves).
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Figure 3. The most stable adsorption configurations (top and side view) for NH3, NO, NO2, H2O, and
H2S on the ZnO–graphene sensor. The gray, purple, red, blue, yellow, and white balls represent C, Zn,
O, N, S, and H atoms, respectively. The bond lengths (in unit of Å) and the binding distances between
the molecule and the sensor are also provided.
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Table 1. The calculated adsorption energy (Ead), binding distance (D) which is the shortest atom to
atom distance between the molecule and the sensor, the charge transfer (Q), and the evaluated value of
the sensitivity of the sensor with respect to each gas molecule (S). The positive value of charge indicates
a charge transfer from the molecule to the sensor.

System Ead (eV) D (Å) Q (e) S (%)

NH3-ZnO-G −0.55 1.72 +0.056 11.8
NO-ZnO-G −2.21 1.28 +0.155 188.2
NO2-ZnO-G −1.85 1.33 +0.141 141.1
H2O-ZnO-G −0.32 1.60 +0.031 6.4
H2S-ZnO-G −1.01 1.04 +0.121 76.47

We first scrutinize the interactions of the NH3 molecule and the ZnO–graphene compound. As can
be seen in Figure 3, H atom of the NH3 molecule interacts with the O atom of the ZnO–graphene
nanostructure. The interaction distance H-O is found to be 1.72 Å which is larger than the sum of the
covalent radii of the H and O atoms (0.95 Å) [77]. Furthermore, the adsorption energy is calculated to
be −0.55 eV that is large enough to form a hydrogen bond between the NH3 and the sensor (H–O).
A hydrogen bond is a weak interaction whose strength can be placed between the chemical bond and
the vdW force [78]. One can say that the NH3 molecule is only physically adsorbed on the surface while
maintaining its molecular form. The C1–C2 bond length remains unchanged while both Zn–C1 and
Zn–C2 bond lengths are slightly altered to 2.21 Å. The C1–Zn–C2 angle is reduced from 37.95◦ to 14.86◦.
The bond lengths of N–H in an isolated NH3 (1.03 Å) are found to be the same after adsorption onto
the ZnO–graphene. These small variations substantiate that the influence of NH3 adsorption onto
the sensor is trivial. This observation can be further verified by the low amount of charge (0.056 e)
that is transferred from the NH3 to the graphene-based sensor. Excitingly, the calculated adsorption
energy for the NH3–ZnO–graphene complex is greater than that obtained for NH3 adsorption onto
pristine graphene (−0.11 eV) [7] and is less than the ammonia adsorption energy on the ZnO (1010)
(−1.32 eV) [79], ZnO (0001) (−2.21 eV) [80], and ZnO (6,0) single-walled nanotube (−0.82 eV) [81]
surfaces, revealing that hybridization of pristine graphene with ZnO increases its adsorption capability
toward NH3 significantly. This is in accordance with the experimental data. It was reported that
sensors based on ZnO-decorated graphene oxide sheets can detect NH3 for concentrations as low as
1 ppm at room temperature [55].

Next, the interactions of the NO and NO2 gas molecules with the ZnO–graphene hybrid are
inspected. The relaxed structures are provided in Figure 3. The adsorption energies of NO and NO2

are −1.21 and −1.85 eV, respectively. One can conclude that there exists a strong chemisorption
characteristic between NO and NO2 gas molecules and the sensor. Upon adsorption of NO on the
ZnO–graphene compound, the C1–C2 bond length is elongated to 1.45 Å, while Zn–C1 and Zn–C2 bond
lengths are shortened to 2.13 and 2.18 Å, respectively. Additionally, the C1–Zn–C2 angle is slightly
increased to 39.58◦. The N and O atoms of the NO interact with O and Zn atoms of ZnO, respectively,
to form a kite where its four sides can be grouped into two pairs of equal-length sides (N–O and Zn–O)
that are adjacent to each other. The length of N–O is 1.28 Å and Zn–O equals to 2.06 Å. The N–O bond
length is stretched from 1.17 Å in an isolated NO molecule to 1.28 Å in the NO–ZnO–graphene system.
The O–N–O and O–Zn–O angles of the kite are 113.10◦ and 92.46◦, respectively. The interaction of
NO2 and ZnO–graphene bears many similarities to that of the NO and ZnO–graphene. In much
the same manner, the interaction between the NO part of the NO2 molecule and ZnO results in the
Zn–O–N–O kite. In this geometry, the lengths of the N–O sides equal to 1.33 Å and the Zn–O sides have
the length of 2.06 Å. The O–N–O and O–Zn–O angles of the kite are 113.92◦ and 91.16◦, respectively.
In comparison with the length of N–O bonds in the isolated NO2 (1.21 Å), the N–O bond of the NO2 in
the kite gets extended to 1.33 Å, while the second N–O bond of the molecule remains almost unchanged.
It should be added that the O–N–O bond angle of isolated NO2 decreases from 133.06◦ to 122.38◦ after
complexation with ZnO–graphene compound. Despite the resemblances above between NO and NO2
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adsorption on the ZnO–graphene sensor, the Zn atom is shifted from above the middle of C1–C2 bond
to top of the C2 atom, where both Zn–C1 and Zn–C2 bond lengths are 2.50 and 2.03 Å, respectively.
Interestingly, after exposure to NO2, the C1–C2 bond length is stretched to 1.46 Å. Additionally, the C2

atom protrudes outwards after NO2 adsorption with a buckling distance of ~0.302 Å. These noticeable
changes in the structure of the ZnO–graphene sensor are indicative of the chemical adsorption of NO
and NO2 and agree well with the calculated adsorption energies for the gas molecules on the sensor.
The obtained adsorption energies for NO (−1.21 eV) and NO2 (−1.85 eV) on the ZnO–graphene are
considerably higher compared to those reported for NO (−0.30 eV) and NO2 (−0.48 eV) adsorption
onto pristine graphene [7] and those obtained for NO (−0.28 eV) and NO2 (−0.36 eV) adsorption
onto the ZnO (1010) surface [82] and for NO (−0.40 eV) and NO2 (−0.31 eV) adsorption onto the ZnO
(2110) surface [83]. It should be noted that the gas adsorption does not change the chemical structure
of the sensing layer. As mentioned earlier, the sensing mechanism of the gas molecules is due to the
charge transfer between the target gas molecules and the sensing layer. A significant amount of charge
transfer is observed from NO (0.155 e) and NO2 (0.141 e) to the sensor. The large electron transfer in
these systems can be attributed to the strong chemisorption of the NO and NO2 gas molecules on
the sensor. Such a large charge transfer is expected to induce considerable changes in the conductivity
of the system which will be discussed later. The experimental data support our theoretical findings.
Singh et al. discovered that ZnO decorated graphene sheet sensor responses to 5 ppm NO gas in dry
nitrogen at room temperature [55]. Furthermore, Liu et al. reported that the introduction of ZnO
nanoparticles into reduced graphene oxide matrix enhances its sensing performance for NO2 at room
temperature [67].

We also evaluate the sensitivity of the ZnO–graphene sensor to the H2O and H2S gas molecules.
Figure 3 depicts the most stable configuration of the H2O and H2S–ZnO–graphene complexes. For H2O,
our computational results indicate that it is weakly physisorbed on the sensor with an adsorption
energy of −0.32 eV which is higher than its adsorption energy on pristine graphene (−0.027 eV) [84]
and the pristine ZnO (0001) surface (−0.28 eV) [85], while it is less than its adsorption energy on the
pristine ZnO (1010) surface (−0.94 eV) [86]. Hence, the ZnO–graphene sensor demonstrates promise
to work under humid air. A charge of 0.031 e is transferred from the water molecule to the sensor.
The minimum distance between the H2O and the sensor is 1.60 Å and this occurred between H of
the H2O and O of the ZnO which is larger than the sum of the covalent radii of the H and O atoms
(0.95 Å) [77]. One can conclude that there exists a weak hydrogen-bonding interaction between H2O
and the sensor. Therefore, the sensor undergoes minor structural changes when is exposed to H2O
(also known as, humidity). Consequently, H2O is only physisorbed on the surface while preserving
its molecular form. The Zn–C1 and Zn–C2 are slightly reduced to 2.22 and 2.19 Å, respectively,
while C1–C2 is kept unchanged. The C1–Zn–C2 angle is increased to 38.22◦, and the Zn–O bond length
is extended to 1.72 Å. These small variations in the sensor are in agreement with the results obtained for
the adsorption energy and charge transfer, and confirm the weak physisorption of the water molecule
by the sensor. The H2S adsorption mechanism on ZnO–graphene is more complicated than the other
molecules studied above. The H2S molecule and the sensor experience substantial structural changes
after adsorption process. The H–S bond lengths in isolated H2S (1.35 Å) are extended to 1.36 and 1.95 Å,
indicating that the molecule is fully dissociated during the adsorption process into the chemisorbed H
and separated HS species. While the first HS bond dissociates, the second one does not. Therefore,
dissociation of adsorbed H2S to adsorbed H and HS occurs on the surface of ZnO according to the
following process:

H2S(ada) → HS + H(ads) (6)

The H atom of the molecule forms a covalent bond with the O atom of the ZnO with a bond
length of 1.75 Å. The H–S–H bond angle of the isolated H2S increases from 91.29◦ to 92.63◦ after
complexation with ZnO-graphene sensor. The Zn–C1, Zn–C2, and C1–C2 bond lengths are 2.24,
2.13, and 1.45 Å, respectively. Although H2S and H2O are quite similar molecules, the strength
of the HS compared to HO bonds is significantly different. The much higher preference of H2S
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to dissociate in comparison with H2O can be related to the different acidity of the two molecules
and the much lower pKa value of H2S [87]. The adsorption energy of H2S on the ZnO–graphene
compound is −1.01 eV which is accompanied by a charge transfer of 0.121 e from the molecule to
the sensor. H2S prefers to dissociatively adsorb on the ZnO (1010) surface with an adsorption energy
of −1.36 eV [88]. Moreover, the calculated Ead of H2S on the ZnO–graphene compound is higher
than the values reported for its adsorption on the pristine graphene (−0.11 eV) [89], pristine ZnO
(0001) (−0.91 eV) [90], and pristine hexagonal monolayer ZnO (−0.54 eV) [91] surfaces, proposing the
great capability of the ZnO–graphene hybrid for H2S dissociation. The experimental reported data
confirm our DFT findings. Song et al. experimentally shown that the dispersion of ZnO nanoparticle
on the reduced graphene sheet promotes the H2S adsorption capacities [92]. Moreover, Cuong et al.
demonstrated that a sensor based on vertically aligned ZnO nanorods on a graphene film effectively
detects 2 ppm of H2S in oxygen at room temperature [93].

In order to better understand the binding strength of the gas molecules adsorption, the electronic
total charges density of ZnO–graphene is obtained and compared with those calculated for gas
molecules–ZnO–graphene complexes, as shown in Figure 4. An orbital overlap can be observed
between ZnO and the graphene sheet, confirming this theory that ZnO is chemically adsorbed on
the graphene sheet. For NO and NO2, an orbital overlap can be seen between the gas molecules
and the ZnO, revealing the occurrence of the strong chemisorption. This strong orbital mixing is
attributed to the large charge transfer to the sensor. The weak interactions of the NH3 and H2O
with the ZnO–graphene sensor can be verified by studying the electronic total charge densities of the
molecules-sensor compound. It can be seen that there is no orbital overlap between the molecules
previously stated and the sensor. In consistent with our obtained results, while the electron density of
the H atom of the H2S is bonded with the O atom of the ZnO, the HS part of the gas molecule has no
overlap with the sensor, confirming the full dissociation of the hydrogen sulfide molecule through the
adsorption process.
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represent C, Zn, O, N, S, and H atoms, respectively.

It is worth mentioning that the electronic properties of the sensor undergo significant changes
owing to orbital mixing and the charge transfer between the molecule and the sensor, which is
favorable for gas sensing applications. To explore the effect of gas molecules adsorption on the
electronic properties of the sensor, the band structure of the ZnO–graphene sensor before and after
exposure are calculated, and plotted in Figure 5. As discussed earlier, the ZnO–graphene sensor
shows n-type behavior due to the transferred electrons from the ZnO to graphene. This causes a
downward shift of the graphene’s Dirac point to the negative energies and opens a gap of 26 meV
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between conduction (band c) and valence (band v) bands of the graphene, which are highlighted with
green color in Figure 5. When the ZnO–graphene sensor is exposed to the gas molecules, different
amount of electrons are transferred from the molecules to the sensor which dropped more the K-point
of the hybrid structure. The band structure of the sensor changed a little upon adsorption of NH3

and H2O. However, the variation in the electronic properties of the sensor after NH3 adsorption
(mostly in the c band) is more pronounced compared to that upon H2O adsorption. The gap of the
hybrid sensor is slightly increased to 33 and 30 meV after NH3 and H2O adsorption. These small
changes agree well with the small number of electrons transferred from NH3 (+0.056 e) and H2O
(+0.031 e) to the sensor. Upon exposure to NO and NO2, the c and v bands are shifted even more
to the negative energies, implying that the sensor’s n-type behavior is enhanced. The reason for
this phenomena is the large electron transfer after adsorption of NO (+0.155 e) and NO2 (+0.141 e)
onto the sensor. Additionally, the gap between the bands are widened to 68 and 171 meV after the
interaction of the sensor with NO and NO2 gas molecules, correspondingly. Finally, the band structure
of the sensor undergoes substantial alterations after interacting with the H2S gas molecule. The energy
range of band c is extended towards the positive electron energies, while the energy range of band v is
shrunken. Moreover, the gap between bands c and v at K-point increases to 66 meV, while its location
is moved down. These changes can be attributed to the dissociation of the H2S after interacting with
the sensor inducing an electron transfer of +0.121 e from the molecule to the sensor.
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Figure 5. The electronic band structures of the ZnO–graphene sensor before and after adsorption of
NH3, NO, NO2, H2O, and H2S. Valance and conduction bands are highlighted in green. The Fermi
levels, indicated in blue dashed lines, have been set to 0 eV.

The charge transfer caused by the gas molecules adsorption brings about alterations in the
conductance of the sensor which is a key element for assessing the performance of the substrate
material. To learn about the impacts of the gas molecule adsorption on the transport properties of the
sensor, we calculate the quantum conductances of the two-point probe sensor (see Figure 1) with and
without the gas molecules’ adsorption, as plotted in Figure 6. This also helps us understand better the
ability of the sensor to detect the aforementioned gas molecules. As seen in Figure 6, pristine graphene
shows semi-metallic behavior with zero band gap and zero conductance at the Fermi level. The ZnO
adsorption significantly stimulates the transport property of graphene. The electronic states of
the ZnO–graphene hybrid at the Fermi level are noticeably increased due to the electrons transfer,
resulting in an enhancement to the conductance of the system. The quantum conductance of the sensor
is found to be 0.34 2e2/h at the Fermi level. In addition, the metallic ZnO–graphene compound shows
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a peak at electron energy of −0.24 eV. The conductance of the compound drops to zero at electron
energy of −0.64 eV, confirming the existence of a gap between c and v bands in its band structure, as
discussed before. The conductances of the ZnO–graphene sensor before and after adsorption of NH3

and H2O molecules vary very little, suggesting low level of sensitivity to these molecules. However,
the alterations of the quantum conductances are more prominent for the other complexes. Once NO
(NO2) is absorbed on the sensor, the quantum conductance of the sensor increases from 0.34 to 0.97
(0.81) 2e2/h. Furthermore, the sensor shows no conductivity for the electron energy range of −1.28
to −1.11 eV after NO2 adsorption and −1.40 to −1.33 eV after interaction with NO, which concurs
well with our previous findings for their corresponding band structures. The observable conductance
changes, high adsorption energy, and large charge transfer indicate the promising applications of the
ZnO–graphene as a sensitive chemical sensor for NO and NO2 detection. One can also see that the
interactions of the H2S with the sensor increase the quantum conductance to 0.59 2e2/h. The quantum
conductance of the sensor after adsorption of H2S is zero in the electron energy between −1.02 to
−0.95 eV, indicating a shift of 0.36 eV to the negative electron energies in comparison with that of
an unexposed sensor. Consequently, the ZnO–graphene sensor might be a potential catalyst for
dissociation of the H2S gas molecule. These results are in good agreement with reported experimental
results, showing that the ability of graphene-based sensors to detect NH3 [55], NO [55], NO2 [67,94],
and H2S [57,95] are significantly enhanced after adsorption of ZnO.
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The sensing capability of the ZnO–graphene sensor to various gas molecules are also assessed by
quantifying its sensitivity, which can be expressed as follows:

S(%) =
|C− C0|

C0
(7)

Here, C and C0 are the zero bias conductances for the nanosensor with and without the gas
molecules, respectively. The results obtained are listed in Table 1. The sensitivities of NH3, NO,
NO2, H2O, and H2S gas molecules on the sensor are calculated to be 11.8%, 188.2%, 141.1%, 6.4%,
and 76.47%, respectively. The sensitivities of the sensor to NO, NO2, and H2S are much larger than its
sensitivity to H2O, showing superior sensitivity and selectivity toward those gas molecules even in the
presence of water vapor. Another important factor for evaluating the performance of a gas sensor is
the recovery time (τ), which can be described using conventional transition state theory as follows:

τ ∝ exp(−Ead/kBT) (8)
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A small adsorption energy can result in a fast desorption process of the gases from the sensor.
The recovery time is found to follow an ascending order of H2O < NH3 < H2S < NO2 < NO.
The sensor shows a low level of sensitivity to the NH3 in spite of the short recovery time. Interestingly,
the sensor shows promise to work under humid air as a result of its low sensitivity and quick
recovery time to water molecules. Since the chemisorption of NO2 and NO is accompanied with high
adsorption energies, much longer time is necessary to completely desorb the gas molecules. Hence,
the ZnO–graphene sensor can be utilized as a disposable molecule sensor for specific NO and NO2

detection. Lastly, the moderate adsorption energy for H2S suggests that it is possible to desorb it from
the sensor by heating at room temperature, revealing a great potential of the ZnO–graphene hybrid to
be used as H2S catalyst.

4. Conclusions

We performed detailed first-principles computational analysis on the geometric and electronic
transport properties of the ZnO–graphene hybrid gas sensor upon interaction with NH3, NO, NO2,
H2O, and H2S gas molecules. It was found that NH3 and H2O are adsorbed on the sensor with
weak hydrogen bonds. These weak interactions caused small variations in the electronic transport
properties of the sensor that can be attributed to the small charge transfer from NH3 and H2O to
the sensor. However, the NO and NO2 are chemisorbed with a high adsorption energy and large
charge transfer, resulting in significant alterations in the conductance of the ZnO–graphene hybrid gas
sensor. Interestingly, the H2S gas molecule is chemisorbed through a dissociative mechanism which is
accompanied by a large charge transfer from the molecule to the sensor, leaving noticeable changes in
the electronic transport properties of the sensor. Consequently, ZnO–graphene is a potential material
for NO and NO2 detection and is a propitious catalyst for H2S dissociation.
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