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Abstract: Metal-free carbon porous materials (CPMs) have gained the intensive attention of scientists
and technologists because of their potential applications, ranging from catalysis to energy storage.
Various simple and facile strategies are proposed for the preparation of CPMs with well-controlled
sizes, shapes, and modifications on the surface. The extraordinary tenability of the pore structure,
the environmental acceptability, the unique surface and the corrosion resistance properties allow
them to be suitable materials for a large panel of catalysis applications. This review briefly outlines
the different signs of progresses made towards synthesizing CPMs, and their properties, including
catalytic efficiency, stability, and recyclability. Finally, we make a comparison of their catalytic
performances with other nanocomposites, and we provide an outlook on the expected developments
in the relevant research works.

Keywords: graphene; graphene oxide; porous carbon; graphitic carbon nitride; metal-free catalysts;
recyclability; stability

1. Introduction

Carbon porous materials (CPMs) play an increasingly critical role in science and technical
applications ranging from sensors to energy storage [1–4]. Considering the business cost and
energy/environmental concerns, the use of CPMs as catalysts for a variety of heterogeneous catalysis
applications becomes one of the hot topics [5]. The reason behind is that they have desirable unique
properties such as a large surface area, meso-/micro-porosity, a large pore volume, chemical inertness,
high stability, high electrical conductivity, etc. [6]. Mostly, graphitic or porous carbons are used for
applications in catalysis, sensors, and sorption. Apart from this, carbon surface chemistry (surface
oxygen, and other heteroatoms, amphoteric character, and hydrophobicity) and the controlled pore
structure of carbons are very important for catalysis applications. In the last few years, graphitic
carbon nanosheets and heteroatom-doped or activated carbon nanosheets acting as carbocatalysts or
direct catalysts (i.e., metal-free catalyst), have been developed [7–10].

Carbon-based materials including amorphous carbon, carbon fibers (CFs), activated carbon
(ACs) ordered mesoporous carbon (OMCs), graphene oxide (GO), carbon black (CB), carbon
nanotubes (CNTs), and carbon nanodots (CNDs) offer new possibilities for the developments of
many catalytic supports and catalytic performances [11–13]. A considerable effort towards the
development of aerobic oxidation reactions has emerged as a promising alternative [14–17]. For instance,
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oxidation of alcohols [18–20], amines [21], and thiols or sulphides were conducted under mild
conditions [22,23]. A wide range of homogeneous and heterogeneous transition metal-based catalysts
have been developed for several organic transformations. Unfortunately, many of those metals are
rare, expensive, and/or toxic, thus imposing challenges on sustainable and environmental issues.
In contrast, metal-free carbon-based materials are eco-friendly and abundant, and readily available
heterogeneous catalysts for organic reactions. In carbon-based materials, the carbon-bonded structures
give a major contribution to induce the catalytic processes. For example, graphite oxide (GO) or
functionalized graphene oxide materials are widely and successfully used in oxidation reactions, [24–26],
olefin hydrogenation [27], Friedel-Crafts reactions [28,29], Mukaiyama-Michael additions [30,31],
polymerizations [32], crosslinking reactions [33], epoxide ring-opening reactions [34,35], one-pot
reactions [36], and multi-component reactions [37,38] owing to their low cost, structural tunability,
huge π-conjugation, and co-existence of nitrogen and oxygen groups in the graphene (Gr) sheets,
along with structural defects and active sites provided by various dopants [39–43]. Very recently,
GO has drawn attention as a metal-free catalyst for synthesizing 1,5-benzodiazepines [44] because
it possesses a large specific surface area with many oxygen functional groups (carboxyl, hydroxyl,
epoxide, and lactone), and therefore, GO can be considered as a potential catalyst for synthesis of
some biologically and pharmacologically relevant benzodiazepine compounds. Mohammedi and
co-workers [45] have reviewed the use of porous GO and sulfonated Gr as metal-free heterogeneous
nanocatalysts in several organic reactions as they showed several advantages such as good dispersion,
adsorption of the reagent, and desorption of the product in a fast manner. The boundless growth
on “graphene-based metal-free catalysis” is depicted in Figure 1 which shows the annual number of
publications using “Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive
perspective” provided by Scopus database. These numbers indicate the very rapid growth of graphene
publications, and the parallel growth of publications related to metal-free catalysis applications [45].
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Graphitic carbon nitrides (GCN) are highly attractive for their outstanding optical and
electrocatalytic characteristics, as well as increased potential uses. [46]. Since they possess the
advantages of low-cost, lightweight, easy availability, and remarkable stability, they have been
applied in water splitting, photocatalysis, sensing, bio-imaging, etc. [47]. In addition, the polymeric
nature of GCN is also suitable for a metal-free catalyst, which has been used in a wide range of
electrochemical sensing of biomolecules, phenolic compounds, and photocatalyst. Among them, the
photocatalyst is being actively studied. Compared to Gr or GOs, they have similar or larger surface
areas. Their electronic and surface properties, which determine their catalytic performance, can also be
fine-tuned via heteroatom doping [48]. More importantly, their large-scale production for metal-free
catalytic applications can be achieved at much lower cost and without involving metal catalysts [49].
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However, GCN is one of the most prominent materials because of its suitable band structure containing
the optical band gap of about 2.70–2.90 eV, which corresponds to the wavelength of 460–430 nm, and
low electrical conductivity (~0.9 × 10−9 S m−1) [50]. To enhance the catalytic performance, narrowed
band gap can be observed for GCN upon doping with different elements such as sulfur, phosphorous,
oxygen and boron. Recently, GCN-based nanocomposites have been engaged for the photocatalytic
decomposition of aqueous organic pollutants, and the details have been reviewed [51].

Activated carbons (ACs) are carbonaceous materials that are capable of tailoring their porous
internal structure and surface chemistry [52]. Material properties of this ACs can be tuned by
modification treatments to obtain superior catalytic performances [53]. Especially, functionalization
of ACs influences the surface behavior, in addition to their relevant features for catalytic reactions.
Since these functional groups behave as active sites, the nature and concentration of these groups play
major roles in determining its application as acid catalysts [54]. These materials were used as catalysts
in several reactions including the oxidative dehydrogenation of hydrocarbons [55], hydrogenation
of hydrocarbon [56], alcohols dehydrogenation [57], reduction of NOx [58], oxidation of SOx [59,60],
ozonation [61], and catalytic wet air oxidation [62,63]. The presence of nitrogen andoxygen-carrying
functionalities in ACs facilitates their dispersion in water and polar solvents, as well as interrupts
the regular electron distribution. These unique characteristics make hetero-atom-doped ACs a
potent material for the immobilization of various nanoparticles, polymeric composites, and catalytic
activities [64,65]. Significant progress towards developing N-doped porous carbon (NPC) nanomaterials
with superior activity in hydrogenation and oxidation reactions was made. These improvements have
been mini-reviewed by Li and coworkers [66].

2. Graphene Nanocomposites for Catalysis

In recent years, graphene and element-doped graphene-based materials have attracted significant
importance in metal-free catalysis, owing to their unique structures, active sites, large surface area,
and electronic properties [67,68]. Many efforts have been undertaken to use these materials in
various reactions including alkene hydrogenation, amination, oxidation, reduction of nitrobenzene,
acetophenone, etc. [69–71]. For instance, doped graphene has been employed as a carbocatalyst for
selective hydrocarbon, styrene, and cyclooctane oxidation [72], while N-doped graphene materials have
gained substantial attention as catalysts for the hydrochlorination of acetylene [73]. Recently, the best
transesterification conversion of glyceryl trioleate was observed using an aquivion-carbon composite
as a catalyst in methanol at mild conditions [74]. In another study, carbon blacks act as effective
metal-free catalysts for the conversion of olefins to alkanes using a reducing agent, hydrazine [13].

Zhang et al. reported that primary amine-functionalized GO (AP-GO) is an inexpensive and
effective metal-free catalyst for the one-pot Henry-Michael reaction of benzaldehyde and nitromethane
into trans-nitrostyrene, which on further reaction with malononitrile, affords 2-(2-nitro-1-phenylethyl)
malononitrile in a good yield (87%) [75]. In this reaction, the synergy of carboxyl and amine functional
groups presented on GO at 100 ◦C led to the excellent catalytic performance with high selectivity
(Scheme 1). Notably, these functional groups on GO might strengthen the interaction with the bases to
react strongly with the starting materials. In addition, it showed a higher catalytic activity than those
using other amine-functionalized carbon catalysts, and it can be reused six times.
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Scheme 1. One-pot Henry-Michael reaction using a primary amine-functionalized graphene oxide
(GO) catalyst. From Zhang et al. [75]. Reprinted with permission from [75]. The American Chemical
Society, 2015.

Kumari et al. used GO nanosheets as an effective catalyst for the one-pot synthesis of aromatic
amides at a reflux temperature condition to give moderate-to-good yields (60–82%) within 8–14 h
(Scheme 2). They employed both electron-rich and -poor aromatic aldehydes for this reaction.
The electron-poor substituents occupied at the ortho- and para-positions producing the desired
amides in excellent yields. Moreover, the reusability of this catalyst was investigated up to six catalytic
cycles in the synthesis of amide derivatives. Furthermore, the reaction mechanism of this reaction was
suggested and discussed [76].
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2.1. C–N Coupling Reaction

Since these nanocomposites show a remarkable catalytic performance upon increasing active sites,
the growth of metal-free catalysts seems to be explosive nowadays. For example, Zhang et al. reported
first that an acid-base bifunctional catalyst using –COOH and –NH2 on the edge and basal surface of
GO, respectively, showed an excellent catalytic performance in deacetalization-Knoevenagel reaction
because of their unique two-dimensional (2D) structure containing low mass transfer resistance and
surface acidity of carbons (Scheme 3). In addition, amine functionalized-activated carbon, -silica and
-alumina nanocomposites were also subjected to this reaction, which resulted in moderate yields when
compared to NH2–GO. The N content study confirmed the successful grafting of amines onto the GO
surface. The recovered catalysts could be reused at least six times [77]. This type of catalyst provides
advantages such as the absence of transition metals, more surface area and excellent activity.
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From Zhang et al. [77]. Reprinted with permission from [77]. The American Chemical Society, 2014.

In 2017, the catalytic performance of GO was harnessed for the reaction of α-ketoaldehyde
and primary/secondary amines to afford α-ketoamides via a cross-dehydrogenative coupling (CDC)
pathway (Scheme 4) [78]. Under optimized conditions, the substituted activated aldehydes underwent
a reaction with a variety of amines to give >90% yields. In this reaction, the product yield was not
altered upon changing the substituents in the phenyl ring, but the nature of the base, acid, or NaBH4

showed a major impact on this reaction. The typical class of the C–N coupling reaction catalyzed by a
COOH-functionalized GO was also demonstrated under different temperatures. This catalyst showed
very good stability under acidic and oxidizing catalytic reaction conditions. This approach has been
proven to be efficient in synthesizing biologically active compounds.
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2.2. Dehydrogenative C–C Coupling Reaction

Coupling reactions that allow for catalytic dehydrogenative C–C bond formation have been
accomplished using GO catalyst [79] to afford bi-aryl motifs, which are extensively present in
pharmaceuticals, natural products, etc. The derivatives of 1,3,5-trialkoxybenzene underwent
homo-coupling reaction in the presence of GO to afford high yields (70–86%) (Scheme 5), whereas
1,2,4-trimethoxybenzene gave a 35% product yield, because of inconsistent electronic effects exerted
by the –OCH3 groups. The -naphthol derivatives also produced dimerized products in good
yields (71–80%), but steric effects arising from alkyl/alkoxy groups at the 2-position in naphthyl
derivatives yielded low amounts (27–53%) of their desired homo-coupling products. Apart from
this, cross-dehydrogenative C–C bond formation was achieved upon the reaction of naphthalene
substituents with 1,3,5-trimethoxybenzene and the yield of coupling products was in the range of
34–77%. This approach permitted an easy, simple, robust scale-up to the gram-scale, and it did not
require any other additives. Surprisingly, other carbon allotropes were inactive during this reaction.
The authors proposed that the unpaired electrons of GO were major contributors in determining the
catalytic activity.
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Scheme 5. C–C coupling catalyzed by a GO catalyst. From Fang et al. [79]. Reprinted with permission
from [79]. Wiley Online Library, 2018.

N-doped reduced graphene oxide (N–RGO) serves as an efficient metal-free catalyst toward the
hydrogenation of 4-nitrophenol (4-NP), as shown in Scheme 6 [80]. Fabrication of a series of N–RGO
meshes was achieved through the etching of 3–5 nm sized nanopores with doping of N-dopants.
They exhibited a high activity, which is comparable to metal nanoparticles [81], and they followed a
pseudo-first order pathway with a k value of 1.0 s−1 g−1 L. The obtained value was 14-, and 26-fold
more efficacious in comparison to N-doped graphene [82], and surface-modified RGO without nitrogen
dopant, respectively. These catalysts showed good performance in their activities up to 12 cycles,
indicating better reusability. They also exhibited poison resistance compared to N–RGO sheets [83].
Their catalytic activity was slightly decreased as a result of losing active sites through the adsorption
of the 4-aminophenol product by a π–π stacking interaction. Likewise, Kong et al. [84] reported that
N-doped graphene catalyzed the reaction of 4-NP without the formation of by-products, giving a rate
constant of 7.34–108 mol L−1 s−1. As supported by theoretical studies, active sites could be generated
from C atoms, which are next to the doped N atoms on N-doped graphene (NG) surface; hence these
NG meshes are a more useful candidate in the catalytic reduction of the nitro compound.
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Scheme 6. (a) Schematic illustration of the catalytic process using N-doped reduced graphene oxide
(N–RGO) meshes; (b) Photographs of the 4-NP before (left) and after (right) the addition of the N–RGO
mat. From Kong et al. [84]. Reprinted with permission from [84]. The Royal Society of Chemistry, 2013.

Primo et al. reported that graphene (Gr) can be used to replace noble metals for the heterogeneous
hydrogenation of carbon-carbon bond [85]. To support this claim, several alkene derivatives such as
styrene, and -acetoxy- or -acetoxy-styrene underwent selective hydrogenation reaction in the presence
of Gr to form their corresponding alkenes in 76.7, 82.1, and 9.1%, respectively. Furthermore, the
liquid phase hydrogenation of styrene, cyclooctene, and oleic acid took place selectively under batch
conditions (Scheme 7). In these reactions, complete conversion was achieved at a long reaction time
except for -acetoxy-styrene. A hydrogenation mechanism has been proposed for these systems, but the
authors preferred theoretical calculations and surface techniques to understand the issues arising from
these reactions.
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Recently, Zhang et al. have reported that GO catalyzed direct selective mono- and di-iodination
of arenes or ketones using iodine at 120 ◦C (Scheme 8) [86]. The mono-iodination reaction took place
in 5 min–12 h catalyzed by GO (20 mg) in a sealed tube containing CH3NO2. Through this approach,
different mono-derivatives of arenes or ketones were prepared, with excellent yields (62–99%).
Using this protocol, different di-iodinated derivatives of arenes or ketones were synthesized in
moderate to high yields (9–95%) within 10–24 h. Encouraged by a successful gram-scale synthesis, this
protocol yielded products selectively, with good to excellent yields. A mechanism has been proposed
to link with unpaired electrons on GO, which played a vital role for this catalytic reaction. The reaction
condition can inherently lead to simple technique because the use of additional compounds under
conventional unpleasant chemical methods can be avoided.
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Table 1 summarizes the utilization of GO catalyst in various organic transformations for
the efficient synthesis of fine chemicals with the scope of opportunities in green chemistry for
industrial applications.
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Table 1. Summary of the catalytic performance of GO-based catalysts.

Name of Reaction Reaction Condition Yield (%) Time Examples/Recycle Ref.

Hydrogenation
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3. Graphitic Carbon Nitride Nanocomposites for Catalysis

A visible-light-responsive graphitic carbon nitride (GCN) as a fascinating two dimensional
(2D) conjugated and C- and N-atoms layered polymer, having impressive characteristics [102–106],
has drawn increasing attention to its potential applications in catalysis and energy storage [107–112].
By taking advantages of their unique physical and chemical characteristics, including high surface area,
excellent electrical conductivity, strong mechanical strength, unparalleled thermal conductivity, ease of
functionalization, etc. these nanomaterials are often considered as a good candidate in photocatalytic
and organic reactions [113,114]. From an environmental point of view, reactions involving oxygen or
H2O2 as a renewable feedstock, and that are environmentally benign, with water as a byproduct, will be
a more desirable [112,113]. Since triazine or tri-s-triazine-based crystalline bulk GCN having alternating
sp2 hybrid C and N atoms exhibit a bandgap of ~2.7 eV, they can be used for C−C bond cleavage
under photolysis [115]. On the other hand, the GCN is mainly restricted to electrochemical-related
applications, due to its inherent low electronic conductivity and low surface area. However, after
doping with heteroatoms like S, B, O, and P, the GCN substrate turns out to behave as a highly efficient
and photostable organic photocatalyst [116,117]. The annual collections of number of papers dealing
with the application of graphene derivatives in organic synthesis are shown in Figure 2.
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Nitrogen-rich organic precursors including cyanamide (CA) [117], dicyandiamide (DCA) [118],
urea (U) [119], thiourea (TU) [120], ammonium thiocyanate (ATC) [121], melamine (MA) [122], and
hexamethylenetetramine (HMT) [123] can be easily prepared through the thermal condensation at
500–600 ◦C in air or inert atmosphere. This review encompasses the synthesis and functionalization
of GCN by incorporating organic heteroatoms or surface functional groups that prompt their place
in a wide range of potential uses. In line with the focus of this review, we mainly highlight several
nanosized metal-free and non-metal doped g-GCN catalysts. The following schematic diagram
illustrates the fabrication of ultrathin GCN nanosheets through nitrogen-rich precursors in the different
methods (Scheme 9).
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The metal-free catalyst also was invoked for many well-known organic reactions, including
Knoevenagel condensation [124], cycloaddition [125], dehydrochlorination [126], transesterification [127],
catalytic oxidation of cyclic olefins [128], and so forth. Besides, the industrial effluents contain
several organic and inorganic pollutants which are acutely toxic and difficult for biodegradation [129].
However, these contaminants are genotoxic and they may disrupt endocrine systems even at trace
level of concentrations, and hence the human health is at the high risk. De-colorization or complete
mineralization is difficult because of the complex structure of the dyes and high recalcitrance to its
degradation. Major studies have been carried out to develop new fascinating metal-free materials for
dye removal. For example, rhodamine B (RhB: C28H31N2O3Cl) and methylene blue (MB: C16H18N3SCl)
dyes are highly detrimental to the ecosystem and thus, pose menace to the animals and human
beings [130]. Luo et al. [131] have investigated the ordered mesoporous GCN for the photocatalytic
degradation of RhB, owing to its unique semiconductor band structure, excellent chemical, temperature
stability, surface area (SBET = 279.3 m2 g−1) and pore volume (Vpore = 0.38 cm3 g–1). These prompted
properties may enhance its charge carrier recombination, electron-hole separation, and performance.
This catalyst degraded the RhB completely within 50 min with a k value of 7.6 × 10−2 min−1, which is
larger by 16-fold than that of the bulk g-C3N4 (hereafter denoted as BCN). Likewise, the fabricated
inorganic salt-assisted GCN nanomaterials showed its highest catalytic activity with a k value of
0.167 min−1 which is about 4.5 faster than that of BCN [132]. Other catalysts such as various
phosphorus doped GCN, were also active with a k value of 3.679 × 10−2, 8.27 × 10−2, 9.856 × 10−2,
6.493 × 10−2, 4.495 × 10−2 and 8.8 × 10−4 min−1 for 0, 0.5, 1.0, 1.5, and 2.5% P doping and without
catalysts, respectively. In this reaction, the rate constant of 1% P doping was about 2.7 times as large
as that of BCN [133]. The reaction mechanism for the photocatalytic degradation of RhB by P-doped
GCN catalysts is also proposed (Scheme 10).
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The photocatalytic degradation of organic pollutants is summarized in Figure 3a, containing the
distribution estimated for the different categories of materials and modifications.
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The corresponding mechanism shown in Figure 3b, has been widely applied in enhancing the
visible-light absorbance of GCN-based metal-free catalysts, which will be thoroughly discussed in this
section. Briefly:

GCN + hν→ GCN × e−CB + h+
VB (1)

h+
VB + H2O→ •OH + H+ (2)

O2 + e−CB
− → O2

•− (3)

O2
•− + H+ → HO2

• (4)

HO2
• + HO2

• → H2O2 + O2 (5)

O2
•− + HO2

• → O2 + HO2
− (6)

HO2
− + H+ → H2O2 (7)

H2O2 + hν→ 2•OH (8)

H2O2 + O2
•− → •OH + OH− + O2 (9)

H2O2 + e−CB
− → •OH + OH− (10)

Organic dye + •OH→ Degradation products (11)

Organic dye + GCN (h+)→ Degradation products (12)
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Organic dye + GCN (e−)→ Degradation products (13)

In addition to H2O2, a variety of active radicals, including O2
•−, •OH, and HO2

•, have been
invoked as the oxidants responsible for mineralization, and •OH is the most likely candidate
(Equation (11)). Direct oxidation of carboxylic acids by photoexcited holes to generate CO2 has also
been evidenced in Equation (12), termed the ‘photo-Kolbe reaction’. Reductive pathways involving
photoexcited electrons (Equation (13)) are considered unimportant in dye degradation; however, the
thermodynamic requirements for GCN metal-free photocatalysts dictate the oxidation potential of
hydroxyl radicals (E0

(H2O/
•

OH) = +2.8 eV (Normal hydrogen electrode; NHE)), and the reduction
potential of superoxide radicals (E0

(O2/O2•−) = −0.3 eV (NHE)) lie well within the band gap between
the valance band (VB) and conduction band (CB) [46–48].

In another study, Zhao et al. [134] studied the photocatalytic reduction of RhB with the help of
nanoporous-tube like GCN composites (PTCN) upon the irradiation of visible light. It was observed
that within 40 min nearly 90% of the RhB was photodegraded with a k value of 4.491 × 10−2 min−1,
which is 8.16-, 3.09-, and 1.48-fold more active compared to BCN, tubular GCN, and tubular GCN-SiO2,
respectively. The edge effect of the pores and unique tubular structures led to the enhancement of its
photocatalytic efficiency. Furthermore, a trapping experiment studies revealed the formation of O2

•−

and h+ to support the knowledge of free radical production mechanism (Scheme 11).
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Yang et al. [135] have reported the application of mesoporous graphitic carbon nitride (mpg-C3N4)
catalyst, which was obtained using guanidine hydrochloride, dicyandiamide, and urea as precursors
and SiO2 as a template, in a Friedel-Crafts acylation of arenes. This catalyst underwent good catalytic
performance for the Friedel-Crafts acylation of arenes with hexanoyl chloride to afford a final product
conversion of 89% and 75% at 90 ◦C and 27 ◦C, respectively. It could retain at least 80% activity, and
therefore, it was reusable.

In 2016, Xu et al. used a series of mesoporous g-CN catalysts in Knoevenagel condensation
and transesterification reactions [136]. Assisted by a detemplation approach, a cheap precursor
dicyandiamide was used to prepare a mesoporous carbon nitride catalyst through a nanocasting
method. Upon eliminating silica template using alkaline solutions, the ordered mesostructures can
be retained in the obtained materials. This catalyst proceeded a well base-catalyzed Knoevenagel
condensation with a remarkable catalytic conversion of 37–96% along with a selectivity of 80–98%
to yield the corresponding products at 37–92%. In addition, this catalyst demonstrated its excellent
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activity in the transesterification of ethylene carbon (EC) and CH3OH to afford its 91.3% conversion
and 99.3% selectivity to dimethyl carbonate at 160 ◦C. It was found that their efficiencies are higher
than that of the catalysts templated by conventional HF. The authors recycled the catalytic solution up
to four times without minimal loss of its activity.

To overcome the drawbacks including coupling with doping heteroatoms, joining with
semiconductors, or fabricating new nanocomposites for active GCN catalyst, several strategies have
been developed. For instance, Zhao et al. [137] investigated the catalytic activity of highly-ordered
mesoporous GCN toward the ethylbenzene dehydrogenation under O2, as well as steam-free reaction
conditions. Catalysts having a large surface area (971–1124 m2 g−1), pore volume (1.31–1.79 cm3 g−1),
and rich N content (9.3–23 wt %) were prepared through a nanocasting route upon the use of SBA-15
and HMT as a template and precursor, respectively (Scheme 12). It was found that several factors
including temperature and precursors become a dominant parameter in determining pore volume,
specific surface area, and N content of these catalysts. Upon the pyrolysis temperature of 750 ◦C,
the catalyst displayed excellent catalytic activity (11.6% of product yield with 93.6% selectivity) over
other carbon materials such as classical mesoporous carbon and mesoporous GCN, and nanodiamond
(ND) owing to their presence of abundant C=O functional group, defect/edge characteristics, smaller
size, ultrahigh surface area and pore volume. Different mesophore CNs containing different textural
characteristics using various templates could also be prepared under different conditions.
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Boron-doped GCN nanomaterials have drawn a great attention as a metal-free, solvent-free, and
an ecofriendly catalyst [138,139]. These studies focused on describing the metal-free active sites that
are responsible for the catalytic performances of various reactions. It has been shown that various
defects such as carbon vacancies, holes, and edge effects, chemical doping of non-metals like B, S, and
P, and heir functionalities on the GCN layers influenced their roles in diverse catalytic reactions [140].
Apart from this, the contribution of adsorbing substrates and reagents, and charge transfer toward
their catalytic performances was also discussed.

Jiang, et al. have studied the photocatalytic activity for RhB and tetracycline (TC) degradation
using hexagonal boron nitride-decorated GCN nanocomposites, which was prepared by in situ growing
process [141]. As this catalyst possessed a large surface area and fast electron transfer characteristics, it
increased photoexcited holes transfer and promoted the charge separation. In this catalyst, hexagonal
boron nitride behaved as a promoter for photoexcited holes transfer. Catalytic studies revealed that
this nanocomposite showed a 7.3 and 11.8 times higher catalytic activity for RhB degradation, and 2.3
and 60.3 times higher catalytic activity for TC degradation compared to GCN and hexagonal boron
nitride (h-BN), respectively. The plausible reaction pathway for the photodegradation of RhB over
visible light responsive to h-BN/g-C3N4 is shown in Scheme 13.
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To enhance surface reaction activity of the photocatalysts, various elements such as boron and
nitrogen have been successfully incorporated into the structure of GCN. Yan et al. [142] improved
significantly the photocatalytic performance of B-doped GCN catalyst by loading of the boron element.
The B-doped GCN catalyst was obtained upon heating the reaction mixture of MA and boron oxide (BO)
at 727 ◦C for 2 h (Scheme 14a). The band gap of B-doped GCN was found to be 2.66 eV in comparison
to bare GCN (2.7 eV). Several factors, including their unique photophysical and chemical properties,
dye adsorption, a decrease in band gap (0.04 eV), and efficient light absorption are beneficial for the
photodegradation of RhB. Catalytic studies on the degradation of RhB revealed that this nanocomposite
underwent the first-order reaction pathway, giving a k value of 0.199 min−1, which is two-folds more
active compared to GCN (k = 6.5 × 10−2 min−1). This process was ascribed to the photogenerated hole
oxidation as evidenced by electron paramagnetic resonance (EPR) analysis and several comparison
experiments. However, in the case of photodegrading methyl orange (MO), both catalysts obtained at
580 ◦C and 600 ◦C showed the similar rate constant (4.0 × 10−2 min−1), which was ascribed to the
overall reaction. The overall mechanistic pathways for the photodegradation of RhB and MO by this
catalyst are described (Scheme 14b).
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Hu et al. [143] prepared outstanding visible light active oxygen-functionalized sulphur-, and
phosphorus-co-doped GCN nanorods under hydrothermal condition. The use of S- and P-codoping
led not only to inhibit the crystal growth of GCN, but also enhanced the efficiency of the separation
of the photogenerated electrons and holes. In this system, functional oxygen atoms play key
factors in enhancing the GCN adsorption ability and the production of photogenerated holes via
capture of photogenerated electrons for the catalytic activity of RhB photodegradation under anoxic
conditions. Under optimized conditions, this catalyst showed the RhB photodegradation rate constant
of 2.6 × 10−2 min−1, which is 13- and 2-fold more active compared with CN and P-SN, respectively.

For enhancing the catalytic performance of visible light responsive catalyst, Dang et al. [144]
fabricated a core-shell heterojunction using C3N4 nanocomposite enwrapped with α-sulfur (–S@C3N4)
by a self-assembly method. Upon changing the amount of ultra-thin C3N4 nanosheet which acts as a
charge transporter, the photocatalytic activity of this catalyst can be tuned. In this system, the GCN
nanosheets alone act as a visible-light-driven photocatalyst (Scheme 15). The nanocomposite containing
35% GCN nanosheets showed 6.72 times higher RhB photodegradation rate in comparison with -S
owing to the effective separation of the photogenerated holes and electrons. Upon the modification of
GCN with carbon-based nanostructures, an enhanced absorption efficiency from visible-to-infrared
(IR) light could be achieved with the fast transfer of photogenerated carriers.C 2018, 4, x FOR PEER REVIEW  16 of 35 
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pathway for the catalytic activity. From Dang et al. [144]. Reprinted with permission from [144].
The Royal Society of Chemistry, 2015.

Producing the GCN with porous carbon structure can greatly enhance the number of active chemical
sites, which could increase the catalytic activity upon the irradiation of visible light. For example,
the fabrication of a photocatalyst GO-modified GCN (GO/GCN) via a sonochemical approach was
achieved [145]. It was observed that this hybrid photocatalyst underwent pseudo-first-order pathway,
giving a k value of photocatalytic degradation for RhB to be 2.08 times with respect to the pristine
GCN. Additionally, it displayed good stability after five consecutive experiments; the stability results
are displayed in Figure 4a. However, the photocatalytic efficiency declined by only 1.5%, as observed
for GO/GCN, indicating its superior catalytic stability upon illumination by visible light. The RhB
degradation reaction pathway is also illustrated (Figure 4b). Based on this mechanism, it was observed
that degradation was highly dependent on the nature of electron-hole separation and electron transport.
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Zhao et al. [146] assembled a 0.4–0.5 nm sized single layer GCN nanosheets (SL g-C3N4) via an
ultrasonic exfoliating protocol using a few layer graphitic-C3N4 precursors, and applied it for the
photocatalytic remediation of environmental pollutant (RhB) in the water. Time-resolved emission and
electrochemical studies revealed its high photogenerated charge lifetime, and enhanced the charge
transfer capability, respectively. Upon visible light irradiation, SL GCN underwent photodegradation
of RhB, giving a rate constant of 1.96 h−1, which was 3.0-, 8.8-, 10.2-, 16.4-, 37.1- and 93.8-fold
higher compared to GCN NS, CdS, bulk GCN, N-TiO2, P25 (TiO2; Degussa), and BiVO4, respectively.
This catalyst promoted the recombination of photogenerated charge and electron transporter.

Apart from RhB, methylene blue (MB), crystal violet (CV), methyl orange (MO), acid red 18
(AR 18) and orange II are also classified as environmental pollutants whose break down products are
potentially toxic, and carcinogenic to living organisms [147]. In 2009, Yan et al. [148] have prepared a
visible light sensitive GCN catalyst to perform the catalytic photodegradation of MO in water. The use
of nitrogen-doped-TiO2, Ag loading, and acid radical ions also promoted degradation of MO rate and
the results were compared with that of MO degradation over the GCN. From these results, it was
clearly observed that the photo-reduction pathway led by the photogenerated electrons resulted in
high catalytic performance for MO photodegradation when using this catalyst.

Recently, Xu and co-workers [149] prepared ~2 nm sized with larger active sites and pore volume
containing porous g-C3N4 nanosheet (PCNS) through a template-free strategy in the absence of
any reagents. Upon the illumination of visible-light, PCNS underwent the photodegradation of
MB with pseudo-first order reaction, affording the apparent k value of 0.551 h−1, which is 6.4- and
1.6-fold higher compared to that of BCN and PCN, respectively. The degradation of Acid Red 27
(AR 27), and bisphenol A (BPA) using this catalyst under photolysis also followed pseudo-first-order
kinetics, affording the apparent k, which is 4.0-, and 1.9-fold higher compared to BCN. Besides, PCNS
showed a 3.7 times higher photocurrent intensity compared to BCN. In addition, PCNS were able
to kill Escherichia coli cells completely within 4 h, but BCN killed only 77.1% of cells. The entire
dye reduction pathway mechanism is clearly represented in Scheme 16. Considering their larger
Brunauer-Emmett-Teller (BET) surface area, larger surface active sites, and high charge transfer and
separation efficiency, visible light-responsive PCNS acts as an excellent candidate for the photocatalytic
remediation of environmental pollutants.
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In 2017, Fan and coworkers [150] reported the catalytic activity of a visible light-responsive
S-doped GCN porous catalyst (S-pg-C3N4) for RhB degradation. This catalyst showed good adsorption
and catalytic activity in comparison to bulk g-C3N4 as a result of synergetic effects between S-doping
and the structure of the catalyst. Recently, Panneri and co-workers [151] demonstrated a synthetic
route for the synthesis of carbon-doped GCN (Scheme 17a) for effective tetracycline (TC) removal upon
the illumination of visible light. During the template-free spray drying process, followed by thermal
oxidation at 500 ◦C, g-C3N4 nanosheets, which was obtained from the urea-thiourea (U-TU) mixture
pyrolysis, was changed into microspheres. These two processes caused the formation of the minimized
band gap and longer absorption range of visible region in the catalyst after the introduction of C-doping
into the catalyst. This catalyst exhibited a higher percentage of adsorption and photodegradation of TC
compared to BCN. The mechanistic pathway for the photocatalytic TC degradation using this catalyst
is also demonstrated (Scheme 17b). This catalyst displayed a considerably high activity, even after five
recycling rounds.

C 2018, 4, x FOR PEER REVIEW  18 of 35 

and catalytic activity in comparison to bulk g-C3N4 as a result of synergetic effects between S-doping 
and the structure of the catalyst. Recently, Panneri and co-workers [151] demonstrated a synthetic 
route for the synthesis of carbon-doped GCN (Scheme 17a) for effective tetracycline (TC) removal 
upon the illumination of visible light. During the template-free spray drying process, followed by 
thermal oxidation at 500 °C, g-C3N4 nanosheets, which was obtained from the urea-thiourea (U-TU) 
mixture pyrolysis, was changed into microspheres. These two processes caused the formation of the 
minimized band gap and longer absorption range of visible region in the catalyst after the 
introduction of C-doping into the catalyst. This catalyst exhibited a higher percentage of adsorption 
and photodegradation of TC compared to BCN. The mechanistic pathway for the photocatalytic TC 
degradation using this catalyst is also demonstrated (Scheme 17b). This catalyst displayed a 
considerably high activity, even after five recycling rounds. 

 
Scheme 17. (a) Scheme illustrates the generation of carbon doped on porous GCN and (b) the 
photocatalytic mechanism of TC degradation. Panneri et al. [151]. Reproduced with permission from 
[151]. The American Chemical Society, 2017. 

In another study, Zhang and coworkers [152] demonstrated the synthesis of S-, and O-co-doped 
GCN via the polymerization of melamine- and H2O2-bonded trithiocyanuric acid at room 
temperature (Scheme 18a). On comparison with pristine g-C3N4, this catalyst showed a 6-fold 
enhancement in the photocatalytic RhB degradation owing to its superior properties such as 
increasing visible light adsorption and decreasing its band gap (Scheme 18b). Computational studies 
proved that these dopants not only influenced strong highest occupied molecular orbital (HOMO) 
and lowest unoccupied molecular orbital (LUMO) delocalization but also increased more active sites 
to make the migration of photogenerated electron/hole pairs easier. 

 
Scheme 18. (a) Synthetic routes, and (b) RhB photodegradation using S and O co-doped GCN. Zhang 
et al. [152]. Reprinted with permission from [152]. The Royal Society of Chemistry, 2017. 

  

Scheme 17. (a) Scheme illustrates the generation of carbon doped on porous GCN and (b) the
photocatalytic mechanism of TC degradation. Panneri et al. [151]. Reproduced with permission
from [151]. The American Chemical Society, 2017.



C 2018, 4, 54 19 of 35

In another study, Zhang and coworkers [152] demonstrated the synthesis of S-, and O-co-doped
GCN via the polymerization of melamine- and H2O2-bonded trithiocyanuric acid at room temperature
(Scheme 18a). On comparison with pristine g-C3N4, this catalyst showed a 6-fold enhancement
in the photocatalytic RhB degradation owing to its superior properties such as increasing visible
light adsorption and decreasing its band gap (Scheme 18b). Computational studies proved that
these dopants not only influenced strong highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) delocalization but also increased more active sites to make the
migration of photogenerated electron/hole pairs easier.
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Scheme 18. (a) Synthetic routes, and (b) RhB photodegradation using S and O co-doped GCN.
Zhang et al. [152]. Reprinted with permission from [152]. The Royal Society of Chemistry, 2017.

Yuan et al. [153] fabricated 3D porous thermally exfoliated GCN nanosheets by the reaction of
few-layered nanosheets interconnected via H2SO4 intercalation, followed by heating the reaction
mixture. Compared to bulk C3N4, it exhibited a good performance in RhB photodegradation and
followed a pseudo-first order pathway, yielding a rate constant of four times higher. This can be
ascribed due to the availability of a number of active sites, longer carrier lifetime, and the shorter
route of the carriers to the active sites. This catalyst displayed a considerably high activity, even after
11 rounds of recycling.

Along with the above-mentioned modifications, many researchers have attempted to develop
a different morphology of GCN-based metal-free catalytic systems, including GCN in the form of
nanotubes [154], nanofibers [155], tubular [156], and nanorods [157] for the effective photodegradation
of organic dyes. For instance, GCN nanotubes were more highly photoactive for the degradation of MB
compared to bulk GCN or P25 [158]. In addition, its catalytic performance and photocurrent efficiencies
were also 1.5–2.0 times higher compared to g-C3N4 nanoplates. In another study, a nanofiber-like GCN
catalyst exhibited superior catalytic activity for the degradation of RhB upon the illumination of visible
light [159]. Tahir et al. utilized a visible light-responsive tubular GCN catalyst for the degradation of
MB and MO, showing more activity compared to BCN. This was ascribed to the large surface area,
along with high visible light absorption in addition to high separation of charge/transfer [156,157].
We compiled the reports on some non-metals such as S, P, C, O, and B co-doped GCN-based catalysts
employed for environmental depollution applications (Table 2).
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Table 2. Summary of the metal-free GCN-based catalysts for photocatalytic degradation of organic dyes.

Photocatalyst Precursor Dye Experimental Condition Comments Ref.

PTCNs a MA +
Liq.NH3

RhB
5 mg of catalyst, 20 mL of dye solution (70 mg L−1) and
visible light (450 W, Hg lamp) by a cutoff filter
(λ > 380 nm)

SBET:107.4 m2 g−1, BG: 2.63 eV, kRhB:
0.04491 min−1); Four times recycled.

Zhao et al. [134]

B-Nv
b-GCN BA + MA MB 100 g of catalyst, 100 mL of dye solution (20 mg L−1) and

visible light (metal halide lamp, 300 W).
SBET: 27.0 m2 g−1, BG: 2.63 eV; kMB:
0.03 min−1, Three times recycled.

Mao et al. [140]

h-BN c/GCN DCA RhB 50 mg of catalyst, 100 mL of dye solution (20 mg L−1) and
visible light (300 W Xe lamp) with a 420 nm cut-off filter.

SBET: 34.69 m2 g−1, BG: 2.56 eV, kRhB:
0.13097 min−1, Five times recycled.

Jiang et al. [141]

B d-doped GCN MA + BO o RhB and MO
200 mg of catalyst, 100 mL of dye solution (4 mg L−1)
visible light (300 W Xe lamp) with cutoff filter L42 and a
water filter.

SBET: 30 m2 g−1, BG: 2.66 eV, Three
times recycled.

Yan et al. [142]

S,P e-doped GCN
nanorods

TU p +
(NH4)2HPO4

RhB
50 mg of catalyst, 200 mL of dye solution (10 ppm) and
visible light (250 W), high-pressure Na lamp with a 0.5 M
NaNO2 solution filter.

SBET:13.6 m2 g−1, BG: 2.53 eV, kRhB:
0.026 min−1, Three times recycled.

Hu et al. [143]

α-S@GCN
core-shell

MA +
Na2S2O3.2H2O RhB

80 mg of catalyst, 80 mL of dye solution (5 mg L−1) and
visible light (300 W, Xe lamp).
Light intensity = 30 mW cm−2.

SBET: 13.6 m2 g−1, BG: 3.03 eV, kRhB:
0.0382 min−1, Three times recycled.

Dang et al. [144]

SL f-GCN MA RhB 10 mg of catalyst, 50 mL of dye solution (10 mg L−1) and
visible light (Xe lamp, 100 mW cm2, λ > 400 nm.

SBET: 13.6 m2 g−1, BG: 2.9 eV, k:
1.96 h−1, Ten times recycled.

Zhao et al. [146]

BBA g-GCN DCA + BBA RhB 100 g of catalyst, 100 mL of dye solution (5 mg L−1) and
visible light (125 W, Xe lamp) with a 420 nm cut-off filter.

SBET:175.38 m2 g−1, kRhB:
0.02031 min−1); Four times recycled.

Zou et al. [147]

GCN MA MO
300 mg of catalyst, 100 mL of dye solution (0.4 mg L−1),
and visible light lamp (300 W, Xe lamp) with cutoff filter
L42 and a water filter.

SBET: 8 m2 g−1, BG: 2.75 eV,
Three times recycled.

Yan et al. [148]

PCNS gh MA MB
10 mg of catalyst, 1.2 × 10−5 M of dye solution, and
visible light (500 W, Xe lamp) equipped with UV cut-off
filter (>420 nm).

SBET:190.1 m2 g−1, BG: 2.82 eV, kMB:
0.551 h−1, Five times recycled.

Xu et al. [149]

S-pg-GCN i MA +
TTCA q RhB 100 mg of catalyst, 100 mL of dye solution (10 mg L−1),

visible light (500 W Xe lamp) with a 400 nm cutoff filter
SBET: 20–52 m2 g−1, BG: 2.56 eV, kRhB:
0.0176 min−1, Four times recycled.

Fan et al. [150]

C j-doped GCN U + TU TC s
40 mg of catalyst, 80 mL of 10−4 M TC, Sunlight
(07/10/2015, Trivandrum, India, between 11 p.m. and
1 p.m., 78,000–80,000 lux).

SBET: 151 m2 g−1, BG: 2.54 eV,
Five times recycled.

Panneri et al. [151]
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Table 2. Cont.

Photocatalyst Precursor Dye Experimental Condition Comments Ref.

S,O k co-doped
GCN

DCA RhB 50 mg of catalyst, 50 mL of dye solution (10 ppm), visible
light (500 W, Xe lamp) with a 420 nm cut-off filter. BG: 2.3 eV, Four times recycled. You et al. [152]

TE l-GCN MA RhB 50 mg of catalyst, 50 mL dye solution, visible light (500 W
UV lamp).

SBET:54.3 m2 g−1, BG: 2.79 eV, kRhB:
0.0358 min−1, Eleven times recycled.

Yuan et al. [153]

GCN Nanotubes MA MB 50 mg of catalyst, 100 mL of dye solution (10 mg L−1),
visible light (300 W, Xe lamp) with a 420 nm cut-off filter.

SBET:10 m2 g−1, BG: 2.64 eV, kRhB:
(0.01 min−1), Not recycled.

Wang et al. [154]

GCN Nanofibers MA RhB 100 mg of catalyst, 0.4 L of dye solution (0.01 M), visible
light (500 W, Xe lamp).

SBET:165 m2 g−1, BG: 2.80 eV, kRhB:
0.0412 min−1, Three times recycled

Tahir et al. [155]

GCN Tubulars MA MO and MB 100 mg of catalyst, 40 mL of dye solution (10 mg L−1),
visible light (500 W Xe lamp) with a 420 nm cut-off filter.

SBET: 182.61 m2 g−1, BG: 2.85 eV, kMB:
0.02116 min−1, kMO: 0.0067 min−1,
Three times recycled.

Tahir et al. [156]

GCN Nanorods DCA MB 25 mg of catalyst, 50 mL of dye solution (0.03 mM),
visible light (500 W Xe lamp) with a 420 nm cut-off filter.

SBET: 182.61 m2 g−1, BG: 2.66 eV, kMB:
0.14812 h−1, Three times recycled.

Bai et al. [157]

PTI m MA MB 50 mg of catalyst, 100 mL of dye solution (10 mg L−1),
pH 7, visible light (300 W Xe lamp) with a water filter.

SBET: 96 m2 g−1, BG: 3.28 eV, kMB:
1.5 × 10−3 min−1,
Three times recycled.

Heymann et al. [159]

CNx LiNO3 and
C3N3Cl3

MB Catalyst (1.0 mg L−1), dye solution (10 mg L−1), visible
light (500 W Hg-Xe lamp) with a filter.

SBET: 24.5 m2 g−1, BG: 2.4 eV, kMB:
0.0098 min−1, Four times recycled.

Tan et al. [160]

HM-CN n U + TU MB 10 mg of catalyst, 50 mL of dye solution (10 mg·L−1) and
visible light (150 W Xe lamp)

SBET:119.53 m2 g−1, BG: 2.11 eV, kMB:
0.125 min−1, Not recycled.

Zhou et al. [161]

Ultrathin GCN
NSs U r RhB 100 mg of catalyst, 100 mL of dye solution (20 mg L−1),

visible light (300 W Xe lamp), cut-off filter > 420 nm.
SBET:131.2 m2 g−1, BG: 2.80 eV, kRhB:
0.07346 min−1, Four times recycled.

Yang et al. [162]

GCN DCA BDE209
20 mg of catalyst, 20 mL of 1 × 10−3 mol L−1 BDE209
solution, visible light (300 W, Xe lamp),
cut-off filter > 360 nm.

BG: 2.7 eV, kBDE209: 0.057 ± 0.01 min−1,
Not recycled.

Sun et al. [163]

a Nanoporous-tubes carbon nitrides; b Boron doping-nitrogen-vacancy; c Hexagonal boron-nitride; d Boron; e Sulphur and phosphor; f Single layer; g Barbituric acid; h Porous g-C3N4
nanosheets; i Sulfur-doped graphitic carbon nitride porous rods; j Carbon; k Sulphur and oxygen; l Thermally-exfoliated; m Poly (triazine imide); n Hydrogenated M-CN; o Boron oxide;
p Thiourea; q Tri-thiocyanuric acid; r Urea; s Tetracycline.
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4. Porous Carbon Nanocomposites for Catalysis

Porous carbon nanocomposites act as active phases in catalytic reactions, and they represent a
sustainable and green direction for catalysis research [164,165]. Nano-structured porous carbons are a
wide variety of carbon allotropes including porous graphite, amorphous carbons (porous carbon black,
and activated carbon fiber), and carbon nanotubes (CNTs). New developments in the improvement
of the properties and performance of a variety of functionalized porous carbons reported during the
last five years are also described [166]. Several potential applications of these materials including
catalysis, sensing, drug delivery, carbon capture, adsorption, and separation as well as energy storage
as displayed in Figure 5.
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The most commonly used materials are activated carbons because they have high surface area,
and are commercially available at low-cost. After introducing appropriate carboxyl, amine and
other functionalities onto nanocomposite surface, it exhibited a better catalytic activity with high
selectivity compared with bare carbons [167]. Carbon nanomaterials hold a huge potential in various
applications such as medicine, advanced materials, and electronics, due to their unique physical and
chemical properties. In addition, carbon nanomaterials can be efficiently used as catalyst supports or
as metal-free catalysts in several relevant catalytic processes [168,169]. The past decade has witnessed
an ever-increasing amount of publications on these topics (Figure 6). The inset shows the number of
publications on carbon nanotubes and graphene for comparison [170].

Hydrogenation of aromatic compounds is an increasingly prominent class of hydrotreating
reaction in coal, petroleum industries and organic transformations in organic chemistry [171].
For instance, Sun et al. [172,173] reported an efficient method for arenes and polycyclic arenes
hydrogenation at 300 ◦C using ACs. Interestingly, based on the catalytic hydrogenation and the
molecular structures, the relationship between the reactivities of aromatic rings and the mechanism
for hydrogen transfer was discussed. In this study, special attention has been given to the selective
hydrogenation of PAs, because of important aromatic and hydroaromatic products obtaining from
coal, and petroleum materials.
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On the other hand, the activated carbon originating from different precursors or materials
contains an uncontrolled distribution of pore sizes and preserves several impurities such as sulphur,
metals, etc. [174] Their application in industries is limited, owing to their large microporosity,
insufficient mechanical properties, and low density [175]. For obtaining narrow pore size distribution
(PSD) with a low proportion of micropores, mesoporous carbon as a catalyst was developed [176].
Murray et al. [177] reported that the selective hydrogenation of olefins to alkanes was obtained using
carbon blacks and hydrazine under aerobic conditions (Scheme 19). This reaction continued with a
variety of sensitive functional groups tolerance via a diimide intermediate. Note that carbon surface
was chemisorbed by a reductant N2H4 for attenuating its oxidative reactivity in order to permit its
selective hydrogenation. This protocol containing a low-cost solid may enable the catalysis of a variety
of substrate transformations.
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Scheme 19. Monarch 1300 carbon-catalyzed hydrogenation reaction. From Murry et al. [177]. Reprinted
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Gupta et al. [178] reported an effective method for the preparation of phosgene gas by
nitrogen-modified carbon nanomaterials, which was derived from the N-modified polymer material.
The incorporation of active nitrogen into graphitic carbon materials resulted in the formation of porous
carbon catalysts that are active and stable for the generation of phosgene (COCl2) with very high
selectivity. In another study, Lin et al. [179] demonstrated a high temperature-annealed ultradispersed
nanodiamond (ADD) catalyst that is used for simple, green, and selective oxidation of benzylic
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alcohols with t-BuOOH under mild conditions to produce their corresponding derivatives with a
conversion rate from 7 to 18.6%. The reaction mechanism of ADD-mediated catalytic processes is
shown in Scheme 20.C 2018, 4, x FOR PEER REVIEW  24 of 35 
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Scheme 20. Catalytic oxidation of benzylic alcohols over an Annealed ultradispersed nanodiamond
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Wang et al. [180] demonstrated the preparation of a N-containing ordered mesoporous carbon
(NOMC) catalyst, which was obtained by introducing N into the ordered mesoporous carbon during
the co-assembly step between m-aminophenol (MAP) and pluronic®F-127 in aqueous medium. It was
found that NOMC catalyst underwent the oxidation of ethylbenzene, to produce a conversion rate of
63.3%, along with the selectivity of 84.1%. The synthesis route of NOMC and its catalytic behavior is
depicted (Scheme 21).
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Watanabe and co-workers [181] developed an effective protocol for conjugated alcohol oxidation
using graphitic N-doped activated carbon (AC) in EtOH under an air atmosphere (Scheme 22). For the
oxidation of benzyl and cinnamyl alcohols, a 100% selectivity was achieved within 5 and 15 h,
respectively, using this catalyst. This catalyst was also active with 5-(hydroxymethyl)-2-furaldehyde to
afford a 24% conversion with a selectivity of 93%. However, non-conjugated alcohols did not undergo
an oxidation process upon reacting with this catalyst. For the oxidation of a conjugated alcohols, the
conjugated system may activate carbon bonding to the OH group for easy oxidation. In comparison
with traditional Pt/C and Ru/C catalysts, the performance of this catalyst was good under similar
reaction conditions. Recyclability studies showed that this catalyst lost its activity after the first run.
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In addition, they exhibited catalytic activity towards the reduction of nitrobenzene [182],
4-nitrophenol [183], transesterification [184], oxidative coupling [185], and dehydrochlorination
reactions [186]. Moreover, two excellent reviews highlight the active sites and advantages of
functionalized micro- and mesoporous carbon materials for metal-free carbon-based catalysts [187,188].

5. Prospect

For the development of greener and sustainable routes in organic transformations, impressive
sign of progress have been made in the past decades by employing carbocatalysts in a wide
range of reactions, including olefin oxidation, sulfoxidation, hydrogenation, Michael addition, C–C,
C–N coupling, and so forth. This review highlights the important developments of carbon-based
nanocatalysts for these most distinguished organic transformations. Notably, a metal-free catalyst
is comparatively cheap and efficient for many industrially and biologically important reactions.
Various chemical and physical synthetic strategies have been adopted for the preparation of these
carbocatalysts with well-controlled size, shape, and surface modification. Thanks to the effective
efforts of scientists and researchers in related fields, much progress has been achieved in the direction
of the synthesis and characterization of these carbocatalysts and their applications to various organic
transformations. However, the discovery of porous materials have been the main choice for metal-free
catalysts in catalytic applications, because of their special physiochemical properties, including
large surface area and pore volumes, active sites, low toxicity, and chemically modifiable surfaces.
The application of carbocatalysts chemistry helps to reduce the reaction time but allows for a high
yield. A variety of surface functional groups can be generated upon the bonding or doping of
heteroatoms such as N, O, P, S, B, etc., to defects in metal-free carbon catalysts. Thus, the development
of hetero-atom doped carbon catalysts that are favorable characteristics such as facile separation,
durability, and recycling capability, as well as fulfilling the concept of sustainable chemistry should be
the main objectives for future Research and Development (R&D) research.

Despite intensive research carried out in this area, there exist numerous challenges in the
application of these materials. The gas phase reaction of oxidative dehydrogenation of alkanes
using carbon materials is still limited and therefore its application is required. Even though several
carbocatalysts showed superior catalytic activities, there are still several challenges that hinder
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carbon material commercialization, including insufficient durability/reliability, corrosion, and catalytic
activity in many organic transformations. For example, the exact location of heteroatoms, the nature of
their active sites in carbon materials, and their doping mechanism are still not clear. For industrial
applications, it is more important to optimize reaction parameters for the large-scale production of
carbocatalysts with high product purity and yield, at low costs. The exploration of diversified synthetic
routes to fine-tune the properties of carbon-based nanomaterials continues to play a vital role in
improving the existing technologies and discovering new applications including energy storage, fuel
cells, water-treatment adsorbents, etc. With all these challenges still present in the battlefield, and with
growing interest in heterogeneous metal-free catalysis, the use of carbocatalysts will explore other
applications in synthetic hetero-coupling bond formation reactions for the fine chemical industry.
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Abbreviations and Acronyms

AC Activated carbon
AP-GO Amine functionalized graphene oxide
ATC Ammonium thiocyanate
BCN Bulk graphitic carbon nitride
CPMs Carbon porous materials
CFs Carbon fibers
CB Carbon black
CNTs Carbon nanotubes
CNDs Carbon nanodots
CA Cyanamide
DCA Dicyandiamide
Gr Graphene
GO Graphene oxide
GCN Graphitic carbon nitride
h-BN Hexagonal-boron nitride
HMT Hexamethylenetetramine
HOMO Highest occupied molecular orbital
LUMO Lowest unoccupied molecular orbital
MA Melamine
MB Methylene blue
MO Methyl orange
ND Nanodiamond
NPC N-doped porous carbon
N–RGO N-doped reduced graphene oxide
OMCs Ordered mesoporous carbon
PCNS Porous graphitic carbon nitride nanosheets
RhB Rhodamine B
TC Tetracycline
TU Thiourea
UV Ultra-violet
U Urea
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