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Abstract: The present work is based on the principle of biomass waste valorization. Brewer’s
spent grains (BSG) come from breweries as by-products. Their huge amount of production on an
industrial scale should focus our attention on their valorization, which creates challenges as well as
opportunities. One way to valorize BSG by-products is to convert them into biochar, a functional
material with multiple potential applications. With an emphasis on sustainable development and
the circular economy, in this work, we focused on a comparative study of the different mechanical
processes of BSG grinding and their effect on the resulting biochar formed after pyrolysis. Home
appliances such as blenders, coffee mills, and mortar and pestles were used for this purpose. FESEM
images confirmed the successful creation of five different morphologies from the same BSG under
the same pyrolysis conditions. Interestingly, a novel Chinese tea leaf egg-like biochar was also
formed. It was found that a series of physical pretreatments of the biomass resulted in the reduced
roughness of the biochar surface, i.e., they became smoother, thus negatively affecting the quality of
the biochar. XRD revealed that the biomass physical treatments were also reflected in the crystallinity
of some biochar. Via a Raman study, we witnessed the effect of mechanical pressure on the biomass
for affecting the biochar features through pressure-induced modifications of the biomass’s internal
structure. This induced enhanced biochar graphitization. This is a good example of the role of
mechanochemistry. DSC revealed the thermochemical transformation of the five samples to be
exothermic reactions. This study opens up an interesting possibility for the synthesis of biochar with
controlled morphology, crystallinity, degree of graphitization, and heat capacity.

Keywords: brewer’s spent grain; biochar; mechanochemistry; graphitization; Chinese tea leaf egg
morphology; morphological development processes; waste to wealth

1. Introduction

The total number of electrons in a carbon atom is six. Out of this, four valence elec-
trons (outermost shell) contribute to the physico-chemical properties of carbon-based ma-
terials. Due to their ability to participate in sp, sp2, and sp3 hybridization, they exist in
different allotropic forms [1]. Biomass-derived biochar using thermochemical processes
has been a hot topic of research in recent years due to its amazing properties [2] includ-
ing porosity, ultra-high specific surface area [3], and thermal conductivity [4]. Biochar is
cost-effective and eco-friendly, which makes it a perfect candidate for a plethora of poten-
tial applications [5–7], including soil amendment and water retention, pollutant adsorption
[8,9], sensing, and electrochemistry [10]. More generally, biochar contributes to the speeding
up of the vision of the circular bioeconomy [11].

A literature survey revealed that the field of biochar has progressed at a remarkable
pace since 1999. This 23-year period can be divided into three time zones: before 2009
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(initial budding), 2009–2015 (primary growth), and after 2015 (fast progress) [12]. In the
current era, due to the importance of biochar, their utilization in urban areas and potential
effects have been investigated [13]. Brewer’s spent grain (BSG) is a major by-product of beer
production and represents a large portion of waste generated after the brewing process [14].
Due to its techno-economic importance [15], BSGs are exploited for different purposes such
as biogas and biochar production, the removal of pollutants, the extraction of polyphenols
and other compounds, animal nutrition, and for use in fertilizers, to name but a few [16]. A
schematic representation of BSG production and valorization is shown in Figure 1. BSGs
are rich in fibre (70%) and protein (20%) and their chemical compositions differ depend-
ing on the (a) harvest time, (b) kind of barley, (c) malting and mashing procedure, and
(d) adjunct used during the brewing process [17].
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The surface morphology, particle size, and porosity of biochar are related to its impor-
tant features such as its water-holding capacity [18], sorption and cation exchange capacity,
energy storage, and immobilization and dispersion of nanocatalysts [19]. This creates
a need for the morphological development process. In the literature, there are different
methods to tune surface morphology as well as porosity [19]. Mainly, the studies are related
to changes in the pyrolysis parameters [20], biomass nature [21], chemical treatment [22],
presence of a catalyst [23] or catalyst precursor [24], etc. Even the vacuum freeze-drying
procedure [25] could affect the biochar surface morphology. Interestingly, biomass blending
affects biochar quality [26].

Pressure engineering is one of the most important techniques used to tune the mor-
phology of biochar. Maliutina et al. [27] studied the effect of pressurized entrained flow
pyrolysis. It is well-known that lignocellulosic biomass transformation into fuels and
chemicals is difficult due to its rigid structure. In this regard, pretreatment is important
because it breaks and eliminates the lignin part of the biomass. This results in changes in the
cellulose crystalline structure, which causes cellulose and hemicellulose to be more prone to
catalyzed reactions [28,29]. There are plenty of pretreatments reported in the literature for
this purpose such as alkaline, hydrothermal, acidic [30,31], metal salts [32], ozonolysis [33],
and microwave irradiation [34]. Of these, the majority of treatments are of the alkali or
acidic types. Unfortunately, they are less eco-friendly, time-consuming, and produce lots of
wastewater. In the context of mechanochemistry, ball milling has been found to be very
efficient [35], although it requires high energy. We focused on the importance of home
appliances including mortar and pestles for the mechanochemical-induced graphitization
of biochar derived from brewing industry waste.
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In the present work, we introduced an interesting comparative study involving the
production of five biochar surface morphologies using the same BSG under the same
pyrolysis conditions but using different grinding techniques for the starting biomass. For
this purpose, three different kinds of home appliances (blenders, coffee mills, and mortar
and pestles) were used. There were also variations in crystallinity, heat capacity, and the
degree of graphitization observed in some samples. Mortar and pestle grinding resulted in
an interestingly high degree of graphitization. This work did not require a sophisticated
commercially available grinding method for the lab-scale preparation. To the best of our
knowledge, no such studies have yet been carried out.

2. Materials and Methods
2.1. Chemicals

Distilled water was used to prepare a BSG smoothie. BSG was gifted from Bel Orge
brewery, Villers-sur-Mer 14640, Calvados, Normandy, France (49.32276, 0.01427). We worked
on the BSG by-products of lager beer (mixture of malts: barley malt and wheat malt).

2.2. Apparatuses

A blender (Proline, BLS700 model, 700 W, Darty & Fils, Ivry-sur-Seine, F-94200, France),
coffee mill/grinder (Duronic), and porcelain mortar and pestle were the home appliances
used to process the BSG biomass. The XRD study was carried out using the X’Pert PRO
PANalytical instrument. The tube current and operating voltage were maintained at 40 kV
and 40 mA, respectively. FESEM was operated at an accelerating voltage of 5 kV and an
emission current of 10 µA, with a working distance (WD) of 4.2 mm. An image was taken
of a sample that was prepared by pressing a small quantity of biochar material on carbon
tape pasted on the sample holder. The excess powder was removed by balloon blowing.
EDX was performed on a ZEISS Gemini SEM 360. For this purpose, the biochar sample
was dispersed in ethanol and drop-cast onto a silicon plate and dried. RAMAN analysis
was performed on a Horiba HR 800 spectrometer. TGA analysis was performed in air from
RT to 800 ◦C at a heating rate of 10 ◦C/min using a SETARAM instrument (Labsys Evo
model). XPS characterization was performed on a Thermo Scientific K Alpha+ apparatus.
Pass energy was maintained at 200 eV for the survey scan (step size = 1 eV) and 80 eV for
the high-resolution spectra (step size = 0.1 eV).

2.3. Synthesis of Brewer’s Spent Grain Biochar

The schematic representation of the synthesis procedure is clearly illustrated in Figure 2.
First, the bulk amount of brewer’s spent grain biomass from the stock was washed 2 times
with tap water, followed by two rounds of washings using distilled water (washed BSG).
Then, 175 mL of washed BSG measured using a beaker was added to a blender along with
175 mL of distilled water. It was blended for 2 min on speed setting 5. It was observed that
the mixture was very thin. Further, half of the earlier amount was added and blended for
2 more minutes at the same speed. This process resulted in a mixture that looked like a BSG
“smoothie”, containing 262.5 mL BSG approx. + 175 mL distilled water approx. Ultimately,
the biomass-to-water ratio was 1.5: 1. After drying in an oven at an initial 60 ◦C followed by
100 ◦C, the BSG “smoothie” formed pellets and was labelled as BSG-SP. These pellets were
ground using a coffee mill for 2 min and called BSG-SPCM. The second portion of the washed
BSG was dried (BSG-W). It was then ground using a coffee mill (BSG-CM) and another half
was subjected to mortar and pestle grinding (BSG-MP) for 30 min. All 5 samples BSG-W,
BSG-SP, BSG-SPCM, BSG-CM, and BSG-MP were subjected to pyrolysis and the obtained
biochar were referred to as B-W, B-SP, B-SPCM, B-CM, and B- MP, respectively. The parameters
chosen for carrying out pyrolysis were as follows: type of method: P10 KOH Free, N2 flow
rate = 1 L/min, ramp = 20 ◦C/min, temperature = 500 ◦C, residence time = 1 h, and cooling
time = 1 h. This pyrolysis protocol was chosen because it ensures a porous structure [19] and a
reduced amount of polycyclic aromatic hydrocarbons (PAHs). Indeed, it is important to note
that (PAHs) are normally produced during pyrolysis. These hydrophobic organic compounds
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are carcinogenic and could be hazardous pollutants for human beings if they are released from
the biochar into the soil and groundwater through rain, irrigation, and root exudates [36–40].
Usually, high-temperature pyrolysis (600–800 ◦C) yields biochar exceeding the maximum
permitted limit of PAH content (12 mg/Kg) [41]. In contrast, biochar synthesized at 500 ◦C
usually has a lower PAH content (483–2100 µg/Kg) [40].
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The digital photographs of the different biochar are shown in Figure 3. As the B-SPCM
and B-CM biochar samples were found to be dense and molded by the boat-shaped crucible,
they were ground using a mortar and pestle. All other biochar samples were tested as
prepared without any grinding.
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Figure 3. The photo of different textures of the biochar products formed.

The percentage yield was calculated using the formula below.

% Yield calculated = (weight of biochar/weight of biomass) × 100 (1)

Table 1 reports the amount of biomass taken, the obtained biochar, and the correspond-
ing percentage yield.

Table 1. Summary of the weight of biomass, biochar, and obtained % yield.

Biomass Weight of
Biomass Biochar Weight of

Biochar % Yield

BSG-SPCM 5.8096 B-SPCM 1.6226 27.9%
BSG-CM 3.7843 B-CM 1.0893 28.8%
BSG-MP 3.2917 B-MP 0.9337 28.4%
BSG-W 2.0717 B-W 0.6126 29.6%
BSG-SP 2.8120 B-SP 0.8026 28.5%

3. Results and Discussions
3.1. Surface Chemical Composition of Biochar

The elemental compositions derived from the XPS are reported in Table 2 and the
corresponding survey spectra are given in Figure 4. It is clear that the major elements
present at the surface of the biochar samples are carbon, oxygen, nitrogen, and phosphorous.
Silica was detected at trace levels.

Table 2. XPS atomic percentage composition of various biochar samples.

Sample C O N P Si Ca

B-SPCM 80.1 12.1 4.58 1.82 1.25 0.14
B-CM 78.2 13.2 3.74 2.39 1.35 1.16
B-MP 82.1 11.3 3.83 1.25 1.56 -
B-W 78.5 13.3 3.76 2.16 1.39 0.93
B-SP 78.3 13.5 3.80 1.46 2.27 0.61

3.2. Crystallinity of Biochar

The XRD technique was utilized to investigate the crystallinity of the sample. The
obvious and broad peaks (Figure 5) observed at 2θ = 25◦ indicate developed turbostratic
crystallites in an amorphous matrix [42]. The B-SPCM and B-CM patterns are comparatively
less sharp than those of the B-MP, B-W, and B-SP biochar samples. One could hypothesize
that pyrolysis of their respective BSG precursors resulted in less crystalline biochar than
the non-powdered biomass. This means that the initial texture of the biomass is decisive to



C 2022, 8, 46 6 of 15

the crystallinity of the produced biochar since the same pyrolysis conditions were set up
for the five BSG samples.
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3.3. Morphology of Biochar and Bulk Composition

The surface morphology of the biochar samples was investigated using FESEM. It
was observed that the B-SP (Figure 6a,b) and B-SPCM (Figure 6c,d) had a compact surface
and porosity was lost to a great extent. Comparatively, B-CM exhibited a compact ball-like
structure (appearing as small 1–2 µm-sized carbon particles, which are agglomerated to
form a big ball, see Figure 7a,b). In the case of B-MP, an interesting matrix impregnated with
a ball-like structure can be seen (Figure 7c–e). Ultimately, B-W showed a novel structure
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that resembled a Chinese tea leaf egg (Figure 7f–h). This porosity may be attributed to
the mashing [17,43,44] process in the brewery. During brewing, some constituents are
removed, which causes shrinkage and creates voids and this forms the basis of the unique
biochar formation. It should be noted that generally, the as-received biomass itself is
non-homogenous; first, a mixture of grains was received which contained husks and peels
and the main grains inside. This caused the appearance of different structures. These
are present all around, indicating the homogeneity of the sample and the efficiency of
our methodology. From the SEM images, one could anticipate observing distinct textural
properties that could be probed by BET surface area measurements [28].
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In order to understand the different morphologies obtained by the different grinding
methods, investigating the heat exchange phenomena is highly relevant. Biot number, as
well as the convective and diffusive phenomena within the pores of the prepared feedstock,
are important aspects in this regard. The retort/sweep gas/partial autothermal pyrolysis
processes all behave differently depending on the proportion of heat conduction from the
walls in the bulk, inert gas convection and pyrolysis gas convection. These are the key
parameters that could lead to different types of biochar production [45–47]. However, these
aspects are beyond the aim of the present work and deserve a full, systematic study.
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The EDX mapping was performed in order to determine the elemental compositions
and distributions within an analysis depth of 0.02–1.0 µm [48]. Figure 8 displays the EDX
mapping, spectrum, and compositions (in at. %) of the B-MP biochar. The different trials
of the EDX-determined compositions (in at. %) are reported in Table S1. It was confirmed
there was no aluminum, which ruled out any possible incorporation of alumina during
the grinding of the BSGs by mortar and pestle. The analysis was performed in different
spots showing similar elemental compositions (see caption for Figure 8), suggesting a
good homogeneity of the obtained biochar. The EDX mapping shows the homogeneous
distribution of all elements on the spotted biochar particle without any noticeable defects.
For more accuracy, the whole biochar should be characterized by CHNS elemental analysis.
This could, for example, give the H/C atomic ratio, which is intimately correlated with the
pyrolysis temperature [49].

3.4. Carbon Skeleton Structure of Biochar

Raman analysis is an important technique for understanding the defective nature of
carbonaceous materials and occurrence of aromatic structures [50,51]. The Raman peak
fitting (Figure 9) was carried out to understand the quality of the synthesized biochar. Here,
there are mostly six components, namely SL (hydrogen circulation along the periphery of
the biochar, S (alkyl–alkyl ether), D (defects, heteroatoms, etc.), V (sp2 C), G (degree of
graphitization), and GL (carbonyl function) [52–54]. The D/G ratio was calculated by both
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peak areas and intensity. In four of the samples, a D/G ratio > 1 indicated a low degree of
graphitization and the presence of more defects.
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However, the B-MP biochar exhibited a D/G ratio < 1 indicating a high degree of
graphitization as shown in Figure 9c,f. This is clear proof that biomass grinding using a
mortar and pestle induced a mechanochemical reaction [27]. Basically, the pretreatment of
BSG may result in the reorganization of the internal moieties, hence the obtaining of a more
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graphitized structure. It is worth noting that this same B-MP biochar had the highest carbon
content as judged from the XPS analysis, a result that parallels the noted graphitization.

3.5. Thermal Stability

The thermal stability analysis of the biochar samples is shown in Figure 10. Figure 10a
shows the TGA curves. There are few differences between the TGA thermograms of the
five biochars (Figure 10a), which indicates they followed a similar pattern of decomposition.
They are mainly categorized into three regions [55,56]: below ~300 ◦C is attributed to the
removal of low-boiling-point organics and the evaporation of moisture; between 300 and
660 ◦C, the rapid decomposition of the biochar occurs; above 660 ◦C, the decomposition
phenomenon becomes more stabilized; and at At 800 ◦C, the residual biochar accounts
for 20 wt.% of the initial biochar. However, the DSC curves show significant changes,
particularly for the B-CM biochar (Figure 10b). The curve shows values on a positive scale,
which is an indication of the exothermic process. The amount of heat flow in the different
materials is in the order of B-W < B-MP < B-SPCM < B-SP < B-CM. The derivative weight
loss curve [57] of the different biochar samples is shown in Figure 10c. The DTG have two
important parameters, i.e., Tic (temperature of initial combustion) and Tmwl (temperature
of maximum weight loss rate) [58]. The Tmwl values of the different biochar samples are
shown in Figure 10c. B-CM has the highest Tmwl, i.e., 543 ◦C, indicating that it is the most
stable biochar.
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4. Conclusions

In this work, we prepared five biochar samples from the same brewer’s spent grains
(BSGs) that were ground via five different approaches. The comparative study of the
different grinding processes revealed that these processes had a major effect on the surface
morphology of the biomass-derived biochar. Surprisingly, the harsh mechanical treatment
of the initial biomass resulted in less porosity. A novel Chinese tea leaf egg-like structure
was found in the biochar derived from the mortar-and-pestle-ground BSG. The grinding
method also affected the thermal behavior and the degree of graphitization of the biochar as
judged by the change in the D to G Raman band intensity ratio. To sum up, home appliances
for treating biomass are a simple procedure and easily available. Mechanochemistry plays
an important role in tuning surface morphology. This work provides an interesting perspec-
tive in the field of biochar as it conclusively demonstrates the effect of mechanochemistry
of the initial biomass on the surface morphology of the resulting biochar. This study was
conducted with brewer’s spent grains but inspired us to investigate whether it could be
extended to other types of agro waste. Research is underway toward this end.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/c8030046/s1, Table S1: Percentage composition of B-MP obtained
through EDX analysis.
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