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Abstract: Biochar is a renewable source of carbon that can partially replace carbon black as filler in
rubber composites. Since the carbon content of biochar is less pure than carbon black, improvements
and modifications must be made to biochar to make it a viable co-filler. In this work, two methods to
change the surface chemistry of biochar were employed: (1) gas treatment at 300 ◦C with either air or
carbon dioxide, and (2) coating with lauric acid. Both methods are amenable to the current rubber
processing industry. After biochar was treated with these methods, it was used as co-filler in rubber
composite samples. Gas treatment with either air or carbon dioxide was found to increase stiffness in
the final composites. Although lauric acid coating of biochar by itself did not have a significant effect
on tensile properties, biochar that was first treated with carbon dioxide and then coated with lauric
acid showed a 19% increase in tensile strength and a 48% increase in toughness. Gas treatment and
lauric acid coating of biochar provide relatively simple processing techniques to improve the stiffness
and tensile strength of biochar as rubber composite filler.

Keywords: biochar; surface treatment; lauric acid; rubber composite

1. Introduction

Carbon black (CB) has been the dominant filler in the tire industry for over a century [1].
However, there are important reasons why sustainable alternatives should be pursued.
CB is a petroleum product, and dependence on foreign fossil fuel sources is challenging
since oil prices can be very unstable due to global conflicts and other political reasons [2].
Shrinking CB’s footprint in the global marketplace also improves air quality with less
pollution [3].

Biochar has been a popular candidate as a sustainable source of carbon from biomass [4].
Most biochar research has been carried out with intended applications being carbon se-
questration [5], catalysts [6–8], energy storage [9–11], filtration media [12,13], and sorptive
media [14–16], the latter two taking advantage of the (frequently) porous nature of most
biochars, although porosity does depend on many factors such as feedstock and process-
ing conditions [17]. However, when using biochar as rubber composite filler, porosity is
not as important as other characteristics such as carbon content and particle size. Cur-
rent literature for using biochar as rubber composite filler is limited but slowly growing.
Greenough has reviewed the relevance of biochar as rubber composite filler [18]. Current
examples include Xue et al. [19] using rice husk, with its high silica content, as feedstock
to make biochar that was ball-milled and used as reinforcing filler. Other sustainable
feedstocks studied for biochar use as rubber composite filler include waste lignin [20] and
leaf biomass [21].

Suliman and coauthors have studied biochar surface chemistry extensively; both
in how feedstock and pyrolysis temperature affect it [22] as well as how oxidation by
air has a role in modifying it [23]. Suliman found that for poplar wood as a biochar
feedstock, greater quantities of carbonyl and other carboxyl groups were formed on biochar
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surfaces produced at lower temperatures of 300–400 ◦C as opposed to higher temperatures
ranging up to 600 ◦C. The formation of these oxygenated functional groups would increase
negative charges on the biochar. Carbon dioxide was chosen for comparison with air as a
biochar gas treatment. Yi and co-workers studied the influence of CO2 on cellulose biochar
properties and found that it enhanced carbon content and increased the C:O ratio [24],
and others [25,26] have also observed that gaseous CO2 can react favorably to increase the
carbon content in biochar production.

For biochar used as rubber composite filler, modifying the surface chemistry to make
the biochar more hydrophobic will improve dispersion in the rubber matrix. Traditionally
this has been done using stearic acid [27] (pp. 170–171). Since most biochars have highly
charged surfaces [28], adding surfactants creates a ‘coated’ biochar that will then have an
outer surface with many aliphatic long-chain hydrophobic tail groups and thus make the
biochar particles themselves more hydrophobic. Navarathna et al. employed this method
by saturating biochar with lauric acid (LA) to make it more hydrophobic [29]. Navarathna
proposed that the polar carboxylic acid groups in LA are attracted to the oxygenated
functional groups on the surface of the biochar, which results in the hydrocarbon chains
creating a more hydrophobic outer surface layer on the biochar particles. We hypothesize
that this same mechanism will work in dry milling LA with biochar as carried out in
this manuscript.

In this work, our goal was to study these two surface chemistry modification methods
as a two-step process for biochar, with the first step being gas treatment of the biochar.
Using a technique similar to that of Suliman [23], separate samples of poplar biochar were
treated with either air or carbon dioxide. In the secondary step, each of these three biochar
samples (untreated biochar control, air-treated, or CO2-treated) were then coated with
lauric acid using a method similar to that of Navarathna [29], but altered to a dry-milling
method more amenable (and scalable) to the rubber compounding industry. Our hypothesis
was that LA-coated biochar, being more hydrophobic than uncoated biochar, would have
better dispersion in the rubber matrix during compounding and result in more strongly
reinforced rubber composites that would show higher tensile strength and/or stiffness
than uncoated biochar samples. We were also interested to observe any differences in the
gas treatments combined with LA coating, and to determine if the gas treatments acted as
favorable or unfavorable pre-treatments for LA coating in terms of final tensile properties
of the composites.

2. Materials and Methods
2.1. Materials Used

Biochar samples made from Populus tremuloides (commonly known as poplar) were
provided by Green Carbon Nanostructures Corporation (Hartland, WI, USA). Three poplar
biochar samples were provided: (1) an unadulterated biochar control, designated “BC
control”; (2) a biochar sample that was air-oxidized at 300 ◦C for 30 min designated “BC
air”, and (3) a biochar sample treated with carbon dioxide at 300 ◦C for 30 min designated
“BC CO2”. An N-339 CB (Vulcan M) was supplied by the Cabot Corporation (Alpharetta,
GA, USA). Styrene-butadiene rubber (SBR) provided by Michelin (Greenville, SC, USA)
was used as the rubber matrix for composite samples. Lauric acid (98%) was provided
by Aldrich Chemical Company (Milwaukee, WI, USA). Precipitated stearic acid-coated
calcium carbonate (SA-CC) nanopowder was bought from US Research Nanomaterials, Inc.
(Houston, TX, USA) and used as a dry-milling aid.

2.2. Chemical and Physical Material Properties

Elemental analysis was done using a PerkinElmer 2400 CHNS/O series II analyzer
(Waltham, MA, USA) using cysteine as a standard. Each measurement used approximately
2 mg of biochar and was done in triplicate. Ash content of the biochar samples was
determined using a TA Instruments Q2950 thermogravimetric analyzer (New Castle, DE,
USA) by heating to 1000 ◦C at a heating rate of 10 ◦C per minute in an air atmosphere.
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Ash content was determined to be the weight percentage remaining, and oxygen (O) was
determined by difference from the original dried sample and the sum of C, H, N, and ash.
Densities of the biochar samples were measured in triplicate using a Micromeritics Accupyc
II 1340 helium pycnometer (Norcross, GA, USA) using the 10 cm3 sample cup. Infrared
spectra were obtained using a Frontier attenuated total reflectance (ATR) Fourier-Transform
Infrared Spectrometer (FTIR) (Perkin Elmer, Waltham, MA, USA) fitted with a diamond
crystal. The background scan was conducted under ambient atmosphere. Powdered
samples were placed directly on the crystal. For each sample, 64 scans were conducted
from 650–4000 cm−1 at a spectral resolution of 4 cm−1. The baseline correction function of
the Spectrum software was utilized for all samples.

2.3. Lauric Acid Coating of Biochar

The biochar surface was modified by taking 24 g biochar, adding 2.4 g SA-CC and
2.4 g lauric acid, and dry milling this mixture with an SFM-1 (model QM-3SP2) planetary
ball mill (MTI Corporation, Richmond, CA, USA). The optimum quantity of lauric acid
to use was a matter of investigation and is described in Section 3.2. The milling media
used was yttrium-stabilized zirconia spheres (3 mm diameter) supplied by the Inframat
Corporation (Manchester, CT, USA). A 50:1 weight ratio of milling media:biochar was used
with 500 mL capacity stainless steel jars and lids. Ball milling was done at 500 rpm for
30 min, the samples decelerated to zero rpm and rested for 6 min, then were increased to
500 rpm for 30 min in the opposite direction.

2.4. Creation and Tensile Testing of Rubber Composite Samples

Table 1 below contains the recipe for the rubber composite masterbatch used to make
rubber composite samples. Amounts listed are in parts per hundred (phr). Each sample
was differentiated according to which biochar filler was used; see the following list with
their shorthand notation in parentheses: (1) biochar control (BC control); (2) air-oxidized
biochar (BC air); (3) carbon dioxide treated biochar (BC CO2); (4) biochar control coated
with lauric acid (BC control LA); (5) air-oxidized biochar coated with lauric acid (BC air
LA); (6) carbon dioxide treated biochar coated with lauric acid (BC CO2 LA).

Table 1. Rubber composite formulation (phr).

SBR CB Filler MBTBM SA ZnO Sulfur CBTS

100 30 12.86 0.80 2.00 3.00 2.00 1.00
SBR: styrene butadiene rubber; CB: carbon black; MBTBM: 2,2′-methylenebis(6-tert-butyl-4-methylphenol);
SA: stearic acid; ZnO: zinc oxide; CBTS: N-cyclohexyl-2-benzothiazolesulfenamide.

Tensile properties were measured on an Instron 55R1123C5420 (Instron, Inc., Norwood,
MA, USA) and data was processed using Bluehill Universal Software version 4.32. For each
rubber composite sample at least 4 replicates were run.

3. Results
3.1. Biochar Characterization

Physical characteristics of the biochar samples can be seen in Table 2 below. Carbon
content in these samples is very high, although not approaching the >99% purity of CB.
Density of these biochars is also nearly identical to the density of CB used (1.7–1.9 g/cm3).

Relative purity of these biochars are also shown in the X-ray diffraction spectra seen in
Figure 1. Graphitic d-spacing peaks that are typical in CB and other high-carbon containing
materials at 24 and 43◦ 2θ [30] are most prominent in the CB trace, but can also be seen
for the biochar samples. No other sharp peaks are seen, meaning there are no appreciable
crystalline impurities present in any of the biochar samples.
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Table 2. Material properties of carbon black and biochar samples.

Sample C (%) H (%) N (%) O (%) a Ash (%) Density
(g/cm3)

CB b >99 <1 <1 <1 <1 1.7–1.9
BC control 87.22 ± 0.50 1.81 ± 0.18 0.12 ± 0.04 6.52 4.33 1.68

BC air 86.42 ± 0.38 1.63 ± 0.20 0.13 ± 0.02 7.93 3.89 1.69
BC CO2 88.67 ± 0.32 1.49 ± 0.03 0.15 ± 0.03 5.96 3.73 1.69

a oxygen calculated by difference; b data supplied by the manufacturer.
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Figure 1. X-ray diffraction spectra of CB, biochar control, and gas-treated biochar samples. Graphitic
d-spacing peaks at 24◦ and 43◦ 2θ are typical of high carbon content materials such as CB and are
seen in all four samples.

3.2. Determination of Lauric Acid Coating Concentration

To determine the appropriate amount of LA to use to coat biochar particles, several
different concentrations (5, 10, and 20% relative to biochar weight) of LA were milled with
a control biochar. The 5, 10, and 20% LA-coated control biochar samples were then molded
into rubber composite samples and their tensile properties were measured. Results can be
seen in Table 3.

Table 3. Tensile properties of biochar as a function of LA concentration.

LA Concentration (%) Tensile Strength (MPa) Elongation (%) Toughness (MPa)

0 19.8 ± 0.4 526 ± 14 49.1 ± 2.7
5 19.2 ± 0.5 527 ± 5 46.3 ± 1.8
10 20.5 ± 1.1 552 ± 20 53.2 ± 3.7
20 19.3 ± 0.8 513 ± 10 45.6 ± 0.9

Tensile results over the LA range tested for these rubber composites were similar, but
since the 10% LA-coated composite had a slightly higher tensile strength and increased
toughness, this concentration was selected to coat all the biochar samples.

Confirmation of LA coating on biochar samples can be seen by the presence of the
characteristic LA C-H stretching vibrations at 2915 and 2847 cm−1 [31] in Figure 2. These
biochars were then used to create rubber composite samples for tensile testing.
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Figure 2. FTIR spectra for LA-coated vs. uncoated biochar samples showing the presence of LA by
the peaks at 2847 and 2915 cm−1.

3.3. Tensile Property Results

Tensile results for both uncoated and 10% LA-coated biochar samples are shown in
Table 4. The effect of gas treatments to the biochar with air and CO2 can be seen in the first
three rows of Table 4. Tensile strength remains similar with all three samples, however both
gas treatments reduce elongation relative to the control.

Table 4. Tensile properties of uncoated and 10% LA-coated biochar samples.

Sample n Tensile Strength (MPa) Elongation (%) Toughness (MPa)

BC control 8 20.1 ± 2.1 501 ± 42 43.1 ± 8.5
BC air 5 21.2 ± 1.0 488 ± 17 44.8 ± 4.0

BC CO2 4 18.6 ± 1.1 447 ± 20 34.9 ± 3.9

BC control LA 5 20.7 ± 0.9 532 ± 18 47.9 ± 3.7
BC air LA 4 20.8 ± 1.3 504 ± 25 45.4 ± 5.7

BC CO2 LA 5 22.1 ± 0.6 536 ± 12 51.6 ± 2.7
n = number of replicate runs.

By examining the stress–strain curves for these three samples (Figure 3), the higher
stiffness of the gas-treated samples is evident in the steeper slopes compared to that of
the control. It should be noted that in all stress–strain plots presented in this work, the
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representative curve that was closest to the average tensile strength and elongation for each
sample was selected and shown for clarity.
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Figure 3. Stress vs. strain curve for the three uncoated biochar samples, illustrating the effect of air
and CO2 treatment during biochar processing.

To show the effect of LA coating, Figure 4 shows each of the stress–strain curves for
the BC control, BC air, and BC CO2 samples with and without LA coating. For the control
biochar, LA coating showed no appreciable change in the tensile strength or elongation as
the stress–strain curves were nearly identical. For the air-treated biochar sample, tensile
strength remained unchanged and there was a slight increase in stiffness relative to the
uncoated sample. The effect of LA coating on the CO2 treated biochar sample showed that
stiffness was essentially unchanged, but the tensile strength increased nearly 20%.
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Figure 4. Stress–strain curves of LA-coated vs. uncoated rubber composite samples for the control
(top), air-treated (middle), and CO2-treated (bottom) biochar samples. For each plot the single
representative curve closest to the average tensile strength and elongation was chosen for clarity.

4. Conclusions

For this work we wanted to observe two separate surface chemistry modifications to
biochar; a gas treatment step followed by the addition of LA. Both treatments are amenable
to the rubber processing industry as they only involve gas treatment to the biochar at
controlled temperature and dry-milling, two processes that are both easily scalable. Gas
treatment of the biochars with air and CO2 at 300 ◦C did not appreciably affect the tensile
strength of the resulting filled rubber composites, but did increase their stiffness relative to
the untreated biochar control.

Biochar control coated with LA appeared to have no effect on the tensile properties of
the resulting filled rubber composite. For the air-treated biochar sample, coating with LA
did not appreciably change the tensile strength, but did slightly increase the elongation of
the composite, making it slightly softer. The most notable difference in tensile properties
occurred when the CO2-treated biochar was then LA-coated; composites made from this
biochar sample increased their tensile strength by 19%, and their toughness by 48%. This
suggests that the CO2 gas treatment helps condition the biochar so that LA coating is more
effective. CO2 treatment of biochar increased its carbon content and reduced its oxygen
content, reducing the number of charged, oxygen-containing functional groups on the
biochar and making it more hydrophobic. Further investigation to understand the relative
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roles of CO2 treatment in conjunction with LA coating is needed to help optimize and
improve biochar reinforcement of rubber composites.
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