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Abstract: With its exceptional strength characteristics, diamond has some mechanical drawbacks,
significant brittleness being among them. In particular, some HPHT-grown diamonds crack when
the extreme parameters inherent to the diamond growth process gradually decrease. The cracking
is caused by excessive stress due to the poor plastic properties of the diamond growth catalytic
medium at certain stages of reducing the pressure and the temperature. An insulating container with
the growth cell and heating circuit fragment inside can also make a significant contribution to the
probability of cracking. This paper considers the possibility of minimizing the mechanical stress in
the growth cell and, consequently, in the diamond crystal by choosing the optimal trajectory for the
decrease in the pressure and temperature from diamond growth conditions to normal conditions.

Keywords: large-volume cubic press; diamond anvil; cast iron plasticity

1. Introduction and Objectives

At present, diamond electronics is a rapidly progressing branch of power and mi-
crowave electronics [1–3]. Traditional methods of synthetic diamond production (chemical
vapor deposition (CVD) and high-pressure–high-temperature (HPHT) synthesis), as well
as non-traditional methods [4–6], are being developed in parallel. This work is related
to a particular but important problem, existing within the framework of well-explored
HPHT technology—the problem of diamond preservation in the course of reducing the
extreme conditions of the diamond synthesis (pressure above 5 GPa, temperature around
1750–1850 K). Experience shows that during this reduction, a part of diamonds gets cracked,
which causes the loss of marketable quality of a considerable part of diamonds. The mor-
phology of the cracks is varied, with cracks observed in both vertical and horizontal
directions, and not necessarily coinciding with the cleavage fracturing planes.

The diamond cracking problem is relevant because HPHT technology, which can
provide high pressure in much larger growth cells than before—over 50 × 50 × 50 mm
(if we talk about cubic cells)—and obtain diamonds of tens of carats in size, is rapidly
progressing. Herewith, proven technological solutions may come into conflict with the task
of preserving the diamonds that have been grown.

In particular, an important element of the HPHT technology is the use of pyrophyllite
(or lithographic stone) as a medium material for pressure transfer to the growth cell from
the anvils and effective thermal insulation at the same time [7]. This material is unique
in that it converts to a viscous liquid when subjected to ultrahigh pressure. However,
pyrophyllite is characterized by a complete loss of plastic properties when it is exposed to
HPHT conditions for many hours. Another problem may be the occurrence of significantly
larger temperature gradients inside large cells than in small cells.
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The analysis of this problem is complicated by the fact that the composition and plastic
properties of the catalytic medium that ensure diamond growth are not known with any
certainty. Moreover, there is no possibility to diagnose the integrity of the diamonds before
normal conditions are reached. In our paper, the properties of the medium are supposed to
be analogous with those of cast iron.

This paper is devoted to finding the optimal conditions that would provide the
lowest mechanical stress upon both the catalytic medium and the container in a complex
non-stationary process of reducing the extreme parameters p,T which exist during the
diamond growth.

Thus, the objectives of this work can be formulated as follows:

• To estimate the importance of mechanisms that pose a potential danger to the destruc-
tion of diamonds when reducing the extreme conditions that allow their growth;

• To suggest a trajectory for reducing the parameters (p,T) and their reduction rates in
different sections of the trajectory;

• To evaluate the compatibility of requirements for the reduction trajectories from differ-
ent diamond destruction mechanisms in case these requirements are contradictory;

• To compare the obtained recommendations with statistical regularities of diamond
preservation or their cracking observed in practice.

2. Materials and Methods: The Pyrophyllite Container and the Diamond Growth Cell
in the Simulated Technology

The specific conditions and parameters of the simulated diamond production technol-
ogy were as follows: the cubic growth cell side in the HPHT process with cubic presses was
approximately 50 mm; and the operating pressure and temperature were 5.5–6 GPa and
1750–1800 K, respectively [8]. These growth conditions are quite standard in the production
developed by the research and production company “Almaz” in Sestroretsk, Russia.

A schematic of the pyrophyllite container with the diamond growth cell inside is
shown in Figure 1.
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Figure 1. Schematic of pyrophyllite container: 1—MgO gasket; 2—graphite; 3—dolomite thermal
insulating gasket; 4—pyrophyllite; 5—steel electrodes. The interior of the diamond growth cell itself
is separated by grey filler and is not detailed.

During the synthesis, the container is pressured by carbide anvils (not shown in
Figure 1) with a pressure pad size of 50–60 mm and height of 150–170 mm. In addition
to the growth cell, the pyrophyllite container has dolomite gaskets for thermal insula-
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tion, a heating circuit of thermally expanded graphite, steel electrodes, a double shell of
magnesium oxide MgO and steel containing the growth volume inside.

The schematic of the cubic growth cell and partially of the surrounding reinforcement,
shown in Figure 1, is quite standard. Other variants of the geometry and of the arrangement
of insulating gaskets around the cell [9–13] differ only in the size and material of the gaskets,
which is not essential for our consideration.

3. Model and Results
3.1. Difference in Thermal Expansion Coefficient between Diamond and Catalyst as a Reason for
Stresses Generated in Diamond

An evident and, in a sense, trivial cause of diamond cracking is a difference in the
thermal expansion coefficient (TEC) between the diamond αdiam and the solid metallic
catalyst αcat. It is easily accounted for in a simple model of a rigid spherical diamond
core and a spherical catalyst shell enclosing it. In the absence of such a core, the cooled
hollow-ball-shaped catalyst, initially without mechanical stresses and external pressure,
reduces its inner radius from a value of r (equal to the original diamond radius) to a smaller
value r′ = r·(1 − αcat·δT), where δT is the temperature decrease (Figure 2).
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Figure 2. Diamond (two inner circles) resisting the compression of the surrounding catalytic shell
(two outer circles) as the shell cools.

As the rigid diamond core has a smaller TEC, this value is even smaller: r′ ′ < r′, such
that the stress tensor component σrr in the catalyst along the shell–diamond contact contour
is approximately Êcat(r′′ − r · (1− αcat · δT)), where Êcat is the effective Young’s modulus
of the catalyst. This takes into account the simultaneous tangential stretch of the catalytic
shell and includes the Poisson factor.

By equating the radial component of the catalyst stress tensor σρρ with a similar value
for the diamond, we obtain Êcat(r′′ − r(1− αcat · δT)) = Êdiam(r · (1− αdiam · δT)− r′′).
Finding r′ ′ from here, one comes to the relationship

(σρρ)r=r′′ = Êdiam
(
r′ − r′′

)
=

ÊcatÊdiam(αcat − αdiam)

Êcat + Êdiam
δT ≈ Êcat(αcat − αdiam)δT

(The last equality in this relationship takes into account that Ediam = 1100 GPa >> Ecat =
200–300 GPa). Since the difference between the TEC of the diamond and of the catalyst has
the order of the TECs themselves, i.e., 10−6, the radial stress should not exceed 1–10 MPa
if the temperature decreases even by 103 K. The same applies to the tangential stress.
Therefore, the difference between the TECs of the diamond and of the shell can hardly
be considered a probable cause of the cracking of the diamonds and other causes should
be analyzed.
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3.2. Basic Concepts of Plasticity Theory in the Model under Consideration

Based on the loss of mass of the graphite substance, which is the carbon source in
diamond growth, it is easy to estimate the carbon content in the substance initially forming
a pure metallic catalyst. It is not less than 5–10%. Therefore, we conventionally correlate
this catalyst with cast iron, especially since it completely loses its catalytic role at the stage
of reducing the parameters p and T.

The diamond growth conditions (the pressure of 5.5 GPa and the temperature of
1750–1800 K) are close to the liquid–solid-phase equilibrium curve for iron and transition
metals of the iron group (nickel–cobalt, following the book [14]). Because of this circum-
stance and the fact that the composition and morphology of the catalyst are not reliably
known, we consider the initial point of the descent trajectory in the p,T diagram as a solid
phase of the catalyst and compare it with the phase diagram in the p,T axes constructed for
pure iron.

As the pressure and the temperature decrease from the diamond growth conditions
(the bold black dot S in the upper right corner of Figure 3) to the normal conditions, we
enter the region corresponding to a strongly plastic state. To evaluate this region, we
can proceed from S.N. Zhurkov’s theory determining the effective time τrelax of plastic
deformation or plastic fracture, or crack formation [15], as

τrelax = τ0 exp
(

U0 − γσ(p, T)
kBT

)
, (1)

where σ is some generalized stress in the system; (U0, γ) is a pair of parameters corre-
sponding to one of the above processes; and γ is called the activation volume. When
describing plastic deformation, it is considered that the energy parameter U0 is close to 2/3
of the vaporization energy, and “bare” time τ0 is close to the inverse frequency of atomic
vibrations in the lattice, i.e., 10−13 s.
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activated plasticity border σT(p,T) = σZh; 2—σT(p,T) = 0.6σZh; 3—σT(p,T) = p; 4—τrelax = 1 s; the upper 

Figure 3. Characteristic curves of drastic changes in catalyst properties on the (p,T) plane and
optimal trajectory of reducing the (p,T) parameters to the normal curve “o” (optimal). Other curves:
1—activated plasticity border σT(p,T) = σZh; 2—σT(p,T) = 0.6σZh; 3—σT(p,T) = p; 4—τrelax = 1 s; the
upper curve is the liquid–solid-phase equilibrium curve; the bold point S marks the stationary p,T
parameters during diamond growth.

The activation barrier U0 − γσ(p, T) in (1) is proportional to the stress σ(p, T). At the
Zhurkov stress limit σZh = U0/γ, this barrier turns to zero. If the value σZh is identified
with the plasticity onset limit of the catalyst material σT(p,T) (considered to be known), one
can draw a curve on the (p,T) plane (curve 1, Figure 3). To the right of this curve, the plastic
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state is established instantly, and the material is as plastic as it can be. Let us discuss the
values of σZh and σT which can be used when drawing curve 1.

The value of σZh is known with sufficient accuracy only for a small number of metals.
So, in [15], the values of U0 = 3.8, 4.4, 3.6, and 5.7 eV are suggested for Ni, Fe, Cu, and Pt,
respectively. The values of γ for Ni, Cu, and Pt are 0.7, 1.6, and 5.2 nm3, such that σZh is
851.8, 354, and 1726 MPa for these metals, respectively. From indirect data for iron in the
same paper, σZh = 865–880 MPa.

The initial information on the dependence σT(p,T), essential for drawing curve 1 in
Figure 3, is rather scarce, though the parameter σT(T) at normal pressure is a quite standard
characteristic both for cast irons and steels (Figure 4).
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is an averaged curve accepted for simulation in this model.

The dependences σT(T) in Figure 4 monotonically decrease. As a rule, they are known
at temperatures up to 1000 K, which are practically interesting for structural materials.
Focusing on obtaining qualitative conclusions and considering that the dependence σT(T)
tends toward some constant value σT (p = pn = 1 atm, T∞) at temperatures up to 2000 K, we
assume that

σT(pn, T) = σT(pn, T∞) + (σT(pn, Tn)− σT(pn, T∞))E, E = exp

(
−
(

T− Tn

T1 − Tn

)2
)

, (2)

where T∞ is a conditional “infinitely high” temperature.
Formula (2) suggests that the plasticity onset limit decreases with the temperature

growth to decrease “e” times at T∞. The fitting temperature T1 is assumed to be T1 = 980 K.
As can be seen from a typical s-s diagram (strain ε-stress diagram, Figure 5), this formula
does not contain all necessary information. Simultaneously to decreasing σT with tempera-
ture, there is an increase in the “plasticity plateau” of the strain ε, such that the dependence
of plasticity on temperature is ambiguous.

Unfortunately, the known diagrams of cast irons similar to those shown in Figure 5
have been constructed only for tensile experiments with bars. It is difficult to predict on
their basis the plastic medium behavior under the all-round compression of the growth cell
complicated by rigid inclusions in the form of a diamond or a diamond group. It can be
assumed then that the horizontal sections of the σ(ε) dependences are transformed into
sloping ones (Figure 5b).
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(a) and under all-round compression (b) as a function of temperature: T1 > T2 > T3 > T4. The value of
ε in (b) has a slightly different meaning and is close to ε/3.

Therefore, we assumed that at temperatures considerably higher than room temper-
ature Tn, the plasticity onset limit σT is sufficiently representative of the same value in
all-round compression.

Other available information on the dependence σT(p,T) can be found in the dependence
of σT (or of some proportional value such as activity or fracture limit) on pressure at normal
temperature Tn. Such dependences have been plotted for some cast irons and steels in
a number of works, information on which is collected in [16].

These curves look like straight (or nearly straight) lines brought to a pressure not
exceeding 1 GPa. Their expression at normal temperature has the form

σT(p, Tn) = σT(pn, Tn) + ωn(p− pn), (3)

where the quantities σ andω are accepted equal to σT(pn,Tn) = 300 MPa,ωn = 0.6 at T = Tn,
andω∞ = 0.6 at T = T∞; the values of the both pressures and σT(p,Tn) are expressed in MPa.
The limit of 1 GPa up to which the dependences (3) are known is obviously insufficient.
However, it is known that P.W. Bridgman’s investigations of the mechanical properties
of metals, glasses, and minerals [17,18], carried out in the 1930s–1940s, reached external
pressures up to 30 thousand atm. A sharp increase in the plasticity of the materials was
noted. Yet, the same source [16] suggests that all-round uniform pressure cannot increase
the strength and the plasticity onset limit indefinitely. More specific data are not available.

On the other hand, the industrial hardening of steels in industry is conducted at
pressures > 2.5 GPa. Ferrous iron, phosphor bronzes, beryllium, and marble are also
hardened under such conditions. The pressure extrusion technology also uses pressures
above 1 GPa and there is no information to suggest that after this processing the materials
are easier to destroy.

The possibility of reducing plastic properties at ultrahigh pressures could be related to
approaching the critical point (pcrit, Tcrit) of the melt-to-solid metal phase transition. The
problem of whether such a point exists, above which the melt could not be hardened at any
pressure (by analogy with liquid–vapor transitions), is relatively poorly investigated [19,20].
In the most recent work on this problem [21], the estimated critical pressure was not lower
than 105–106 atm for alkali metals and lay in the range of 106–107 atm for transition metals
of the iron group. This pressure is connected with approaching the region of relativistic
electronic statistics when the Fermi energy of metal is comparable by the order of magnitude
with mc2.

This pressure is much higher than the conditions of the conventional diamond anvil
cell (DAS), not to mention the conditions of diamond synthesis.
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Based on the above, the plasticity onset limit at “infinitely high temperature” (conven-
tionally T = T∞) was chosen by analogy with that at room temperature in (3):

σT(p, T∞) = σT(pn, T∞) + ω∞(p− pn). (4)

The relationship between the values of σT at room temperature and at T∞ was
assumed by

σT(pn, T∞) = σT(pn, Tn)/exp(1). (5)

Taken together, the relationship σT(p, T) was given by combining Formulas (3)–(5):

σT = σn,∞ + ω∞(p− pn) + (σn,n − σn,∞ + (ωn −ω∞)(p− pn))E, (6)

where the function E is introduced in (2).

3.3. Characteristic Curves of the Catalytic Metal on (p,T) Plane, along Which the Catalyst
Properties Change Drastically

Let us now return to a qualitative discussion of the dependence

σT(p, T) = σZh,

i.e., of curve 1 (Figure 3). Note that the intersection of this curve with the liquid–solid
interface curve at a pressure close to 5.5 GPa, i.e., at the diamond growth operating pressure
in a particular technology, is rather random. In general, the start of the trajectory of reducing
the p,T parameters does not necessarily lie at curve 1.

As mentioned above, the material is “superplastic” to the right of curve 1. To the left of
curve 1, there is a region of activated plasticity, where the attainment of plasticity requires
some finite time. If the plasticity properties are weakened on some trajectory of reducing
the p,T parameters within this region, the excess stress over the plasticity onset limit at
an earlier point in time may exceed the strength capabilities of the catalyst. In this case, the
excess stress is transferred to the diamond, increasing the probability of its fracture.

To the left of the activated plasticity region, there is the elastic region. Its natural right
boundary can be considered as the linearity limit σLin on the tensile stress curve. Given the
lack of information, this limit was set in two ways.

The first way assumes a constancy of the ratio σLin/σT (e.g., σLin/σT = 0.6). For many
cast irons, this assumption corresponds to reality and allows us to draw an analogue of
curve 1 (Figure 3) with the substitution of σZh with 0.6σZh (curve 2, Figure 3):

0.6σZh = σT(p, T). (7)

Another way of setting the elastic region boundary assumes that in the elastic section
of the s-s curve, the stress varies in proportion to the pressure and does not differ too much
from it at the end of this section (curve 3 in Figure 3):

p = σT(p, T). (8)

In addition to curves 2 and 3, the region of strongly activated plasticity was evaluated
in yet another way. The parameters p,T were determined for the point at which the plasticity
delay time τrelax in Formula (1) for the given dependence σT(p,T) reaches a preset value,
e.g., one second (curve 4, Figure 3).

Curves 2 and 3 form a “gorge” with curve 1 in the region of low temperature and
of comparatively low pressure (Figure 3), the crossing of this “gorge” being inevitable
when the parameters p,T decrease. As the plastic properties of the catalyst reduce when
approaching the linear region on the left edge of the “gorge”, the conditions here can be
considered as extreme ones from the viewpoint of diamond preservation.
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Until the “gorge” is reached, the optimal reduction trajectory should leave curve 1 to
the left and top of itself. In this case, the catalyst instantly reaches the plastic state at each
time moment and the diamond is subjected to the lowest probability of fracture.

So, the condition of not entering the activated plasticity region looks the simplest for
the optimal trajectory of reducing the (p,T) parameters, but this condition may contradict
other desirable conditions for diamond preservation. It is therefore necessary to understand
which trajectories within this region expose the diamond to the greatest danger.

As it is most correct to compare the stress value not with the plasticity onset limit σT
but with the fracture limit when assessing this danger, we considered that the fracture limit
is related to σT by an unknown proportional multiplier. As a parameter characterizing the
probability of the diamond fracture, we used initially the ratio

D =
p
σT

Θ
(

p
σT
− 1
)

, σT = σT(p(t− τrelax), T(t− τrelax)) (9)

of the instantaneous value of pressure and the plasticity onset limit at the earlier time
t − τrelax, where θ(t) is the Heaviside theta function.

The introduction of the parameter D partially compensates for the paucity of infor-
mation on the plastic properties of the catalytic material under complex deformation and
allows one not to construct a numerical field of deformations and stresses for each point of
the trajectory (p,T) (such a field always describes an already established plasticity). An ex-
ample of calculation of the stress field σxx in ANSYS 13 software (Static Structure) [22] in
the 2D simulation framework is shown in Figure 6. The catalytic medium in the cell at
an applied pressure of 1 GPa was assumed to be close to a perfectly plastic medium [23].
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Figure 6. Stress field σxx in a growth cell of 40 × 40 mm size (2D simulation). Two diamonds of
7 × 7 mm size are located at the bottom of the cell. The catalytic medium in the cell at an applied
pressure of 1 GPa is assumed to be close to perfectly plastic media.

It is clearly seen that the stress level is notably reduced in the area between the
diamonds, partially shielded from external pressure. On the contrary, inside the diamonds
the stress increases on the sides facing the sides of the container. In general, this stress is
distributed rather unevenly across the diamond.

The variations in the parameter D(t) for several (p,T) reduction trajectories on the p,T
plane from the starting point S on curve 1 (Figure 3) until reaching the elastic region of the
catalyst were calculated for the same reduction time of 20 min. The reduction trajectories
and the variation in parameter D are shown in Figures 7 and 8, respectively. For curves
1′–3′ in Figure 7, the pressure reduces uniformly over time from the starting value of
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ps = 5250 MPa to pf = 514 MPa, which approximately corresponds to the elastic region
boundary (curve 3, Figure 3).
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Figure 7. Pressure- and temperature-reduction trajectories lying in the activated plasticity region
(left-hand side of curve 1) down to the elastic region boundary. The temperature and the pressure
along curves 1′, 2′, and 3′ reduce linearly with time over 20 min. The pressure reduces linearly.
The temperature on curves 4′ and 5′ reduces as T = Ts + (Tf − Ts) · ((p− ps)/(pf − ps))

2 and
T = Ts + (Ts − Tf) · ((p− pf)/(ps − pf))

2, respectively.
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Figure 8. Variation in the fracture parameter D with time. Curves 1′–5′ correspond to the curves of
reducing the parameters p,T shown in Figure 7 with the same numbers.

The starting temperature Ts was 1888.2 K and the final temperature varied: Tf = 516.5 K
for curve 1′, 700 K for 2′, and 1000 K for 3′. On these three curves, the temperature reduced
uniformly over time, like pressure. On curve 5′, the temperature reduced to Tf = 516.5 K,
initially with acceleration with respect to p, then slowed down. On curve 4′, it was vice
versa. The curves of Figure 3 are shown as well in Figure 5 as dashed curves with the same
numbers as in Figure 3.

Figure 9 plots the relaxation time change for curves 1′, 2′, and 3′ (Figure 7). It can be
seen that almost to the elastic region boundary, the delay in the development of the plastic
state is small. It becomes significant only at the end of the trajectory, when the absolute
value of external pressure reduces by 5–6 times.
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Figure 9. Relaxation time variation for curves 1′, 2′, and 3′. They correspond to reducing the p,T
parameters shown in Figure 7 with the same numbers.

The variation in static plastic properties is more important. The most dangerous trajec-
tories are the trajectories of slow temperature descent (curves 3′ and 4′ in Figures 7 and 8),
where the growth of the plastic properties due to the temperature decrease does not manage
to compensate for the reduction of these properties due to the pressure reduction.

The parameter D is maximal at the beginning of the trajectories (i.e., in early moments
of time) and it is in this area that the pressure must first be reduced slowly (curve 5′,
Figures 7 and 8) and the temperature must be reduced much more rapidly. However, the
area approaching the elastic region border can also be dangerous.

First of all, the position of curves 2, 3, and 4 in Figure 3 is known very approximately.
In addition, the delay in the plastic state onset can be much higher if the pre-exponent
factor τ0 of the relaxation time is longer than the approximate value of 10−13 s. Finally, if
curves 1′–5′ in Figure 8 are reconstructed as ratios D’ of the pressure to the fracture limit
σfract (instead of plasticity onset limit), they will quantitatively coincide with curve D only
if the plasticity onset limit σT and fracture limit σfract change proportionally.

If the fracture limit decreases faster than the plasticity onset limit (as in Figure 5b)
with the temperature decrease, the shape of curve D′(t) is much more gentle compared
to curve D (curve 1′ ′ ′, Figure 10). Then, the risk of fracturing the solid catalytic medium
is maintained throughout the cooling and pressure descent trajectory. We return to the
question of how fitting the parameter σfract/σT allows us to describe the main body of
experimental data in Section 4.

In practice, it is desirable to significantly decrease the reduction rate of both the
pressure and the temperature at pressures in the range of p = 0.6–1 GPa, where the delay in
the onset of plasticity becomes large (in the order of minutes). For example, one can take
one hour to go through this range.

At lower pressure, the system enters the elastic behavior region of the catalyst. As the
next section suggests, only unsteady temperature gradients can influence the stress level
in this region. Let us estimate the possible temperature gradients associated with a sharp
decrease in the average temperature T in the growth cell.

3.4. Unsteady Temperature Gradients and Elastic and Weakly Plastic Behavior of
Catalytic Medium

As shown in this section, unsteady temperature gradients can be made small by
choosing a reasonable temperature reduction rate. Therefore, we have not conducted
a detailed analysis of the temperature distribution in the growth cell. As far as we know,
analysis of this sort for different designed anvils with self-consistent consideration of the
position of the heating circuit and insulating gaskets was first carried out in [24]. For our
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particular problem, we either limited ourselves to a constant temperature in the growth
cell (as above) or set a constant temperature gradient down and up the cell.
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Figure 10. Variation in parameters D and D′ d during the activated plasticity stage. Curve 1′

corresponds to curve 1′ in Figures 8 and 9. In curves 1” and 1′ ′ ′ corresponding to the same process,
the parameter D’ is defined as D’ = p/σfract. In curve 1”, σfract/σT = Const = 1.5 and varies linearly
as σfract/σT = (σfract/σT)s − ((σfract/σT)s − (σfract/σT)f)(T− Ts)/(Tf − Ts) in curve 1′ ′ ′ from the
starting value (σfract/σT)s = 4 to the final value (σfract/σT)f = 1 as the catalyst cools down.

The elements of the electric circuit for heating the growth cell are a graphite heater and
anvils (not shown in Figure 1), and the elements of the thermal problem are the insulating
MgO gasket and the growth cell itself. The graphite heater can be immediately excluded
from the consideration of the thermal problem, as well as the current-carrying circuit
through the anvils of enormous cross-section. Then, the power supply to the pyrophyllite
container is allocated almost entirely in the growth cell and the MgO gasket, the MgO being
thin and having lower thermal conductivity than the growth cell. Therefore, the delay time
τdelay in establishing a steady-state temperature distribution in the cell is determined by
the heat capacity and thermal conductivity of the catalyst alone. By order of magnitude

τdelay ≈
r2

cell
2χcat

=
r2

cellρcatccat

2κcat
, (10)

where χcat is the temperature conductivity of the catalyst medium. The unsteady tempera-
ture difference between the center of the cell and the heat deposition point (graphite heater
at a periphery of the cell) is

δT ∼ τdelay
dT
dt

. (11)

The thermal conductivity κcat, the density ρcat, and the heat capacity ccat of the iron
catalyst under normal conditions are 0.50 W/(cm·K), 7.5 g/m3, and 0.9 J/(g·K), respectively;
the half side rcell of the 2 rcell side was assumed to be rcell = 3 cm. Taking into account
the considerable variation in these parameters depending on p and T, τdelay~1 min and
δT~50 K at uniform temperature reduction from 2000 to 500 K in 40 min. This reduction
rate approximately corresponds to the steady-state bottom-top temperature difference in
the cell during the diamond growth. At a lower temperature reduction rate of 10 K/min
(1000 K for ~1.5 h), the unsteady temperature effects are unimportant and cannot cause
significant stresses in the diamond.

Figure 11 shows the stress fields σxx in the diamond and in the catalyst due to the
difference in Young’s moduli and TECs in the elastic problem (ELCUT 5.2 package [25])
at a temperature difference of about 50 K across the cell height. With the 2D simulation,
the external pressure was 1 GPa, and the temperature varied from the bottom to the top
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as 330 + 2.5y (K) up to a height of y = 20 mm. It can be seen that the stress is very slightly
higher than the external pressure, although it is accentuated on the diamond first of all.
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fracture during the relatively slow reduction in the p,T parameters. 

However, the above consideration does not address the strength and plastic proper-
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is practically irrelevant as long as the catalyst material retains its plasticity. This is true up 
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If the container loses its plasticity and has “pre-acquired” cracks at pressures above 
0.7–1 GPa, the loads translated to the diamond can exceed this value many times over. 

Figure 11. Stress σxx field arising from the differences in Young’s moduli and in TECs of the diamond
and the catalyst in the diamond growth cell. The stress field is calculated within the 2D elastic
problem at an external pressure of 1 GPa. The temperature varies as T[K] = 330 + 2.5y (K) from the
bottom to the top of the cell of 20 mm height. The stress in the diamond exceeds that in the cell
volume by about 100 MPa.

3.5. Influence of Plastic Properties of the Container and Limitations on the Descent Trajectory of the
p,T Parameters Associated with It

Thus, neither the “delayed plasticity” nor the temperature gradients should result
in extreme stresses on the diamond at the “dangerous” region below 1 GPa and cause its
fracture during the relatively slow reduction in the p,T parameters.

However, the above consideration does not address the strength and plastic properties
of the pyrophyllite container enclosing the growth cell. The integrity of the container is
practically irrelevant as long as the catalyst material retains its plasticity. This is true up to
pressures of ~1 GPa, as shown in Figure 3. However, in the elastic region of the catalyst, it
completely translates superstresses arising in the container.

If the container loses its plasticity and has “pre-acquired” cracks at pressures above
0.7–1 GPa, the loads translated to the diamond can exceed this value many times over.

A typical picture of the stress field σxx created in an elastic material by a 5 mm-deep
and 3 mm-wide triangular crack at the top of the material is shown in Figure 12.
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Figure 12. Stress tensor component σxx in a catalyst cell with crack. The material of the cell is
simulated as an elastic medium with a Young’s modulus of 200 GPa, at 1 GPa all-round load. The
size of the cell is 40 × 40 mm, but the lower part with an almost uniform stress level is cut off.
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It can be seen that the maximum rupturing stress occurs at the bottom of the crack and
effectively extends deep into the catalyst at least to the depth of the crack. The effective
width of the stress exceeds the transverse crack width by about an order of magnitude.

Figure 13 plots the stress field σxx initiated in the cell by the three cracks in the
pyrophyllite container—top, left, and bottom under the diamond under an all-round load
of 1 GPa. The Young’s modulus and Poisson’s ratio of the container are chosen rather
arbitrarily as 300 GPa and 0.25, respectively. The dimensions of the diamond and the
growth cell are 7 × 7 mm and 40 × 20 mm, respectively; the thickness of the container is
3 mm.
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Figure 13. Stress field σxx initiated by three through cracks in the container—in the top, left, and
bottom under the diamond crystal at an all-round load of 1 GPa.

It can be seen that the maximum rupturing stress acting on the diamond is concentrated
in its lower part, immediately above the crack (dark blue color).

Let us set a target to minimize the probability of cracks in the container during the
reduction of the extreme parameters p,T, assuming that no cracks have yet occurred in the
container at the growth times of the diamond.

Since almost nothing is known about the strength properties of pyrophyllite, wholly
dehydrated and turned into stone after the diamond growth period is completed, the most
stringent requirement for reducing the p and T parameters was as follows: the volume of the
pyrophyllite container should not change. Thus, the reduction in the catalyst volume inside
the pyrophyllite automatically leads to lower pressure on it from inside. Accordingly, in
the parameter dynamics optimal for pyrophyllite container integrity, the external pressure
should decrease at the same rate. Then, the external and internal pressures on the container
remain approximately equal and the probability of cracking is minimal.

As follows from conventional thermodynamics, the decrease in the internal pres-
sure pint due to the temperature reduction is approximately dpint/dT ≈ (∂p/∂T)V =
−(∂p/∂V)T(∂V/∂T)p = 3αcat/ζ, where ζ is the isothermal compressibility of the catalyst
material. For solid iron under normal conditions, αcat = 12 × 10−6, ζ = 0.6 × 10−6

1/atm. That gives dpint/dT~50 atm/K for the internal pressure reduction rate, i.e.,
about 105 atm for the total temperature reduction of ~2000 K during the entire reduc-
tion time of the p,T parameters. This value is only twice the ratio of the total drops in
the pressure and temperature over the reduction period.

Therefore, the reduction trajectory optimal for the pyrophyllite container preservation
lies almost entirely in the activated plasticity region (trajectory o′ in Figure 14) and has
a small slope. Herewith the load on the catalyst is maximum. Reaching the catalyst-safe
trajectory requires passing through the initial cooling section without the pressure reduction
(S-So section), when the risk of the pyrophyllite container failure is maximal, at least from
the point in time where the curve o′ in Figure 14 intersects curve 2.
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and in the pyrophyllite container (o′), respectively.

4. Discussion: Comparison of Model with Experiment

Thus, the requirements for integrity of the catalytic medium and of the pyrophyllite
container are very poorly matched. Therefore, when comparing the proposed model with
the experiment, it was assumed that the container was not destroyed and all destructive ef-
fects upon the diamond were related to the catalyst medium. The possibility of pyrophyllite
fracture was considered as a random and uncontrollable factor.

The target function of the calculation was the fraction of diamonds with fractures
Ω. A correct determination of ω was not difficult because in all experiments at least
four diamond nuclei were initially present in the growth cell.

For any particular trajectory on the (p,T) plane, the integral fracture parameter <D′>
must take into account that in the plasticity region the effect of the instantaneous parameter
D′ is almost independent of the process rate. Then, one can assume that <D′> is proportional
to the time integral of D′ and is smaller the faster the hazardous section of the trajectory
is passed.

On the contrary, it is desirable to reduce the parameters p,T slowly when approaching
the elastic region. Then, both the plasticity delay and unsteady effects of thermal expan-
sion are negligible. The additive to <D′> emerged from these effects must be inversely
proportional to the reduction time.

In this case, the plasticity delay can be considered insignificant if we limit ourselves
to trajectories where the pressure reduction is slow and the temperature reduction is
rapid at the start of the process and vice versa at the end of it (trajectories such as 5′ in
Figures 7 and 8). In this case, the plasticity delay can be very large, but the catalyst moves
into the less plastic region from the more plastic one and no large stresses can arise.

The trajectories of the opposite type (such as 3′ and 4′ in Figures 7 and 8) make
a large contribution to <D′> even without considering the plasticity delay. Therefore,
the contribution of the elastic and weakly plastic sections of the trajectory to <D′> is
mainly determined by the unsteady effects of thermal expansion and must be inversely
proportional to the transit time of these sections.

So, the behaviors of the elastic and plastic contributions to the fracture probability
from the transit time of these sections are opposite, and it is difficult to select a common
time scale for them to introduce a single dimensionless parameter.

However, if one considers only slow reduction trajectories in the elastic region where
the additional temperature gradients are small, it is sufficient to calculate the integral
fracture parameter from the plastic section of the trajectory only, supposing the plasticity
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delay is small. Then, the integral fracture parameter can be written in the style of Zhurkov’s
theory in a form similar to (1), i.e.,

〈D′〉 ∼
t1∫

0

exp
(
γ(p− σfract(p(t), T(t)))

T(t)

)
dt, (12)

where t1 is the descent time of the parameters p,T from the starting point S to the elastic
region boundary.

The parameter <D′> on each particular trajectory depends on the two fitting parame-
ters (σfract/σT)s and (σfract/σT)f described in Section 4 and used in writing the dependence
σfract(p,T) in Figures 7 and 8. The optimal pair of parameters (σfract/σT)s and (σfract/σT)f
was determined by minimizing the sum of least squares of the deviation of the parameterω
from its mean value. Each value of the argument on the horizontal axis <D′> corresponded
to the value of the integral (12) with a given pair of values of (σfract/σT)s and (σfract/σT)f.
When this pair is varied, the set of abscissa of the experimental points changes. Similarly,
the position of the mean curve and the value of the variance change.

To simplify the calculation procedure, all values of <D′> calculated for a given pair of
(σfract/σT)s and (σfract/σT)f were divided into five intervals from the minimum value to
the maximum value. In the graph in Figure 15, this maximum value is equated to 1. This is
possible because <D′> in (12), having the meaning of dimensionless probability, is defined
with the accuracy of a constant multiplier.
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Figure 15. Experimental dependence of the fraction of cracked diamonds on the integral fracture pa-
rameter determined by (12) with optimal parameter selection (σfract/σT)s = 3.8 and (σfract/σT)f = 1.2.

Within each interval of <D′>, the mean value of ω was assumed to be constant,
allowing the variance to be determined. To ensure that the contributions of different
intervals of <D′> were equally significant, the sum of least squares was determined as

∑
i

(
ωi − 〈ω〉k(i)

)2
/〈ω〉k(i), where “i” is the number of experimental points; and k(i) is the

number of intervals of value <D′> in which the point “i” falls. The number of experimental
points (i.e., trajectories on the p,T plane) was 18.

Since the quantities plotted on the x and y axes are essentially the same value, the
dependence found must be simply a straight line. Indeed, it follows from Figure 15 that the
fraction of cracked diamonds decreases simultaneously with the value of <D′>. The spread
of the points obtained for all <D′> intervals seems acceptable.

However, at the minimum values of <D′> realized experimentally, the fraction of
cracked diamonds is still not reduced to zero, but is 10–15%. This value is somewhat
lower than the relative frequency of the pyrophyllite container fracture relative to all the
experiments performed.



C 2023, 9, 52 16 of 17

In addition, it must be kept in mind that the diamond growth process always requires
a considerable time and it is not always rational to choose a too-risky trajectory for reducing
the p,T parameters just to obtain an experimental point.

5. Conclusions

Thus, it is established that the optimal trajectory of reducing the pressure p and the
temperature T in terms of non-fracturing the catalyst material (and, consequently, the
diamond) should bypass the activated plasticity region.

Trajectories partly passing inside this region are also acceptable, but must satisfy the
following conditions:

• At the initial stage of reducing the (p,T) parameters, the temperature must decrease
with acceleration as compared with the pressure. The rate of reducing the (p,T)
parameters over time at the stage of plasticity is insignificant;

• When the descent trajectory on the (p,T) plane approaches the elastic region of the
catalyst medium (at a pressure of about 1 GPa), the pressure should, on the contrary,
decrease faster than the temperature. Thus, before entering the elastic region, the shape
of the trajectory should be similar to that of the activated plasticity region boundary
(curve 1, Figure 3);

• In the elastic behavior region of the catalyst, the descent rate must be reduced to
minimize unsteady temperature gradients within the growth cell.

The details of how the reduction trajectory is positioned in this region until normal
parameters are reached have little importance.

The above recommendations assume the integrity of the pyrophyllite container with
the diamond growth cell inside it.

If the container integrity is preserved at the moment when the p,T parameters start to
decrease, its non-destruction at the stage of reducing the (p,T) parameters is best ensured
under conditions opposite to the conditions of the non-destruction of the catalyst medium.
Namely, the temperature decrease should be slow with a simultaneous sharp pressure
decrease. This condition is particularly relevant at the beginning of the reduction trajectory,
when the external pressure on the container is at its maximum.

Therefore, the use of a pyrophyllite container when growing diamonds at high pressure
(above 5 GPa) is undesirable, although this material is well-established technologically and
is commonly used. Synthetic composite materials as an alternative to pyrophyllite are well-
known, but their adaptation to the technology of producing massive diamonds is a rather
serious technical task. It is currently under both theoretical and design development.
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