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Abstract: Chinese traditional fermented seasonings, essential to the culinary heritage of China,
are produced through fermentation, resulting in a diverse range of unique flavors and aromas.
The microorganisms involved in fermentation play significant roles in shaping the quality of these
traditional fermented seasonings. The production of traditional fermented seasonings is affected
by various biological and abiotic factors, presenting challenges concerning product quality and
safety. This review investigates the impact of bioaugmentation technology on key Chinese traditional
fermented seasonings, such as vinegar, soy sauce, sufu, doubanjiang, dajiang, and douchi. Additionally,
the challenges and constraints linked to the implementation of bioaugmentation technology are
discussed. The potential of bioaugmentation is highlighted by its ability to shorten the fermentation
time, optimize raw material utilization, improve nutritional value, and enhance the quality parameters
of these seasonings. This paper demonstrates an interesting convergence of traditional culinary
heritage and contemporary technological advancements.
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1. Introduction

Fermentation, an ancient technique for food processing and preservation, entails
the conversion and decomposition of complex food components, such as carbohydrates,
proteins, and fats, by various microorganisms and enzymes [1–3]. As a result, fermented
foods are defined as “foods prepared through the growth and enzymatic transformation of
food components by specific microorganisms” [4].

A seasoning is a prepared food compound that contains one or more spices that
enhance the flavor of food [5,6]. Fermented seasonings are part of the various traditional
fermented foods produced by diverse microorganisms [7]. Traditional Chinese fermented
seasonings typically undergo technological processes, such as koji preparation and the
fermentation of raw materials, both of which are susceptible to biotic and abiotic factors,
including the environment and microorganisms, due to the semi-open fermentation method.
Consequently, ensuring the quality and safety of products has become a challenging task.
Therefore, the industry has prioritized improving the quality of fermented seasonings and
reducing potential safety hazards.

Bioaugmentation is a method of enhancing efficiency through the introduction of
specific strains [8]. Many studies have investigated microorganisms with specialized
functions to enhance the koji-making and fermentation processes, aiming to improve
the flavor compounds, optimize raw material utilization, reduce the contents of harmful
substances, and ensure overall product quality [9–12]. A study by Zhang [13] showed
that fermenting soy sauce with Tetragenococcus halophilus and Candida versatilis significantly
increased the presence of aroma and taste-active substances, particularly the amino acids
that contributed to the umami taste. In addition, the inoculation of marine yeast and flour
yeast, known for their robust ability to degrade biogenic amines, into soy sauce resulted in a
significant reduction in the biogenic amine content and an overall safety improvement [14].
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Microbial bioaugmentation positively influences the production of fermented season-
ings, offering a potential solution to deficiencies in traditional fermented food processing.
This review specifically investigates the application of bioaugmentation technology in the
production of key Chinese fermented seasonings, such as vinegar, soy sauce, sufu, douban-
jiang, dajiang, and douchi (Figure 1). By examining the role of microbial bioaugmentation in
traditional fermented seasonings, this review aims to establish a theoretical framework for
advancing the fermented food industry.
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2. Bioaugmentation Technology

Bioaugmentation, rooted in ancient food preparation [15], is generally categorized into
three types: in situ bioaugmentation, ex situ bioaugmentation, and bioaugmentation with
genetically engineered microorganisms. In situ bioaugmentation involves the application
of microorganisms screened from specific fermented foods to the same food; ex situ bioaug-
mentation entails the use of microorganisms from different sources in the fermentation
of foods; and bioaugmentation with genetically engineered microorganisms involves the
use of genetically modified microorganisms carrying specific enzyme-encoding genes to
facilitate food fermentation (Figure 2) [16,17]. Notably, it is essential to verify the safety
of genetically engineered functional strains, and their direct introduction into food is
prohibited in certain countries.

In traditional fermented foods, in situ bioaugmentation technology is often employed,
which entails incorporating a small portion of materials from the previous batch of fer-
mentation during the initial stage. This process leads to an improved product during the
subsequent fermentation cycle. However, modern bioaugmentation, achieved by intro-
ducing specific microorganisms to the native microbial community, has demonstrated a
greater efficacy [18]. Successful bioaugmentation relies mainly on the precise selection
of bacterial strains, prioritizing safety by opting for nonpathogenic strains that do not
pose a risk to human health. Additionally, the careful consideration of the activity and
viability of the strains in the environment as well as their interactions with the native
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microbiota is essential [15]. In recent years, there has been a gradual increase in research on
the application of bioaugmentation in the field of fermented foods.
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3. Traditional Fermented Seasonings and Their Associated Microorganisms
3.1. Vinegar

Vinegar, a traditional seasoning of global consumption, is particularly esteemed in
China, with notable traditional varieties being Shanxi aged vinegar, Zhenjiang aromatic
vinegar, Sichuan Baoning vinegar, and Fujian Monascus vinegar [19,20]. The production of
traditional Chinese vinegar involves solid-state fermentation, employing grain as the main
raw material and Daqu as the starter. The fermentation encompasses three stages: starch
saccharification, alcoholic fermentation, and acetic acid fermentation, typically lasting
20~30 d. Following leaching, vinegar requires a period of aging to enhance its distinctive
flavor profile [21,22]. Various molds, including Aspergillus and Monascus, play key roles in
vinegar fermentation by converting starchy materials into fermentable sugars [23,24]. This
starch saccharification process creates optimal growth conditions for the microorganisms
involved in alcohol and acetic acid fermentations. During alcohol fermentation, yeast are
crucial for converting fermentable sugars into ethanol and generating aroma compounds,
like esters [25]. In acetic acid fermentation, acetic acid bacteria and lactic acid bacteria
are the predominant bacteria. Acetic acid bacteria are capable of converting ethanol into
acetic acid [26]. Various microorganisms exhibit distinct physiological and biochemical
functions, yielding diverse metabolites during fermentation, thereby significantly influenc-
ing the vinegar quality. Table 1 presents the microorganisms found in typical traditional
fermented seasonings.
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Table 1. Representative microorganisms in traditional Chinese fermented seasonings.

Seasoning Fungi Bacterium Reference

Vinegar

Aspergillus,
Saccharomycopsis, Pichia,

Alternaria, Candida,
Issatchenkia, Monascus

Lactobacilli, Acetobacter,
Gluconacetobacter,

Komagataeibacter, Weissella,
Bacillus, Staphylococcus,

Enterobacter, Pseudomonas,
Clostridium

[21,27–33]

Soy sauce Candida, Pichia,
Zygosaccharomyces

Weissella, Tetragenococcus,
Staphylococcus, Bacillus,

Lactobacilli
[34,35]

Sufu

Simplicillium, Verticillium,
Actinomucor, Candida,

Debaryomyces,
Trichosporon, Rhizopus,

Monascus, Debaryomyces,
Rhodotorula

Weissella, Lactococcus,
Enterococcus, Kurthia,

Tetragenococcus, Lactobacillales,
Enterococcus, Enterobacter,
Leuconostoc, Pseudomonas

[36–39]

Doubanjiang

Aspergillus, Trichosporon,
Zygosaccharomyces,

Fusicolla, Candida, Pichia,
Millerozyma

Staphylococcus, Weissella, Bacillus,
Lactobacilli, Lysinibacillus,

Enterococcus, Escherichia-Shigella,
Sphingomonas, Leuconostoc

[40–43]

Dajiang Penicillium, Aspergillus
Tetragenococcus, Weissella,
Lactobacilli, Leuconostoc,

Tetragenococcus, Pediococcus
[44,45]

Douchi

Debaryomyces, Fusarium,
Pichia, Aspergillus,

Saccharomyces, Petromyces,
Rhizopus, Penicillium

Staphylococcus, Pediococcus,
Bacillus, Weissella, Lactobacilli [46–49]

3.2. Soy Sauce

Soy sauce, produced through the microbial fermentation of wheat and soybeans or
defatted soybeans, is a liquid seasoning known for its distinct color, aroma, and taste. It
has become a vital seasoning in various Asian countries [50]. The production processes
for different soy sauce products are similar, but their technical requirements, such as the
ratio of raw materials, fermentation time, and temperature, differ, leading to variations
in flavor and composition [51]. Soy sauce can be categorized into Chinese and Japanese
types based on the proportions of soybeans and wheat in the raw materials. Chinese-style
soy sauce contains a greater proportion of soybeans and a lower amount of wheat, and
it is consumed predominantly in China, Indonesia, Malaysia, the Philippines, Singapore,
and Thailand. Japanese soy sauce is made up of equal parts soybeans and wheat and
is primarily manufactured in Japan and Western countries [52]. Soy sauce fermentation
involves two primary methods: low-salt solid-state fermentation and high-salt liquid-
state fermentation [53]. Both methods involve a two-step fermentation process, including
koji fermentation and mash (moromi) fermentation. Koji fermentation, triggered by the
introduction of molds like Aspergillus oryzae to steamed soybeans, is a fundamental stage in
the creation of top-quality soy sauce. The fermentation of moromi, which comprises koji,
sea salt, and brine, typically takes several months to finish [54]. During the koji fermentation
stage, molds generate proteolytic enzymes that hydrolyze proteins into peptides and amino
acids, as well as amylase to convert starch into fermentable sugars. These nutrients support
the growth of bacteria and yeast during the moromi fermentation stage, contributing to the
distinctive flavor of soy sauce [51]. In the moromi stage, salt-tolerant lactic acid bacteria
and yeast dominate due to the inhibitory effect of high-concentration brine on the growth
of Aspergillus [55].
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3.3. Sufu

Sufu, a traditional Chinese fermented soybean product, shares similarities in shape and
fermentation process with cheese, yet distinguishes itself with a unique taste and flavor pro-
file [56]. Widely utilized as a seasoning and appetizer in China and other Asian countries, its
distinct taste, flavor, and nutritional benefits make it a popular choice [57]. Sufu is abundant
in proteins, carbohydrates, vitamins, and bioactive compounds that mitigate antinutritional
factors, thus promoting human health [58]. The production process of sufu includes bean
curd production, preliminary fermentation, pickling, and post-fermentation [36]. The
fermentation process occurs in a semi-open environment and is facilitated by intricate
microbial communities comprising fungi and bacteria [37]. Initially, pehtze is obtained
by introducing spores of Mucor, Aspergillus, or Rhizopus as the starter on the surface of
the tofu cubes, or by using microorganisms naturally occurring in the environment for
fermentation. The resulting pehtze is then salted for 24 h, transferred into wide-mouthed
bottles, and aged in a dressing mixture for 60 d [38,59]. Throughout the fermentation of sufu,
the predominant bacteria are mainly Tetragonococcus, Bacillus, Acinetobacter, Lactococcus,
and Enterobacter [60,61]. The formation of flavor substances in sufu primarily involves
lipolysis and proteolysis. Through the action of microbial lipases and proteolytic enzymes,
macromolecules, such as proteins and lipids, are broken down into smaller peptides, amino
acids, and fatty acids, providing sufu with its unique flavor profile [39].

3.4. Doubanjiang

Doubanjiang (broad bean paste), a prominent bean-based fermented food in China, is
widely utilized as a seasoning in Chinese cuisine [62]. The type originating from Pixian
county in Sichuan Province holds particular renown, being revered as the quintessence
of Sichuan cuisine [40]. Its preparation involves the use of broad beans, wheat flour, red
pepper, and a high-concentration brine [63]. The conventional manufacturing process
involves three phases: first, the fermentation of broad beans with 12~14% (w/w) salt to
produce doubanjiang-meju; second, the fermentation of red peppers with 14~16% (w/w)
salt to obtain red pepper moromi; and third, the aging fermentation of the mixture of
doubanjiang-meju and red pepper moromi for over six months in a semi-open environment
to enhance flavor [64]. The microorganisms participating in the traditional fermentation
process of doubanjiang comprise Leuconostoc lactis, Staphylococcus xylosus, Staphylococcus
succinus, Amylomyces rouxii, Mucor genevensis, Absidia corymbifera, Issatchenkia orientalis,
Basidiomycete yeast sp., and Metschnikowia pulcherrima, which are responsible for imparting
unique flavors to doubanjiang [65].

3.5. Dajiang

Dajiang, also referred to as doujiang or soybean paste, is a traditional seasoning pro-
duced through the fermentation of soybeans and wheat flour. With its rich color, moderate
viscosity, fresh, and mellow characteristics, and balanced salty–sweet taste, it serves as a
valuable flavor enhancer for various dishes [44,66]. This staple seasoning holds signifi-
cant importance in Asian culinary traditions and has gained global popularity [67]. The
production of dajiang involves two primary stages: koji production and fermentation. As
a starter of traditional fermented soybean products, koji is produced through soaking,
steaming, crushing, and molding [68], serving as a source of nutrients and flavor. The
natural fermentation process to acquire mature koji may take 4~5 months, involving the
joint action of microorganisms, including fungi, yeast, and bacteria [67]. Subsequently,
the mature koji is combined with brine and fermented for over two months to achieve the
distinctive flavor of dajiang products.

3.6. Douchi

Douchi, a traditional fermented black soybean product originating in China, has a
long history [69]. It is produced through two stages: the initial koji-making stage and the
subsequent fermentation stage. To make douchi, black soybeans are treated with the ‘house
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flora’ that initiates the koji-making process. At this stage, a koji inoculum from a later stage
is added to the black soybeans, which are then subjected to 7 days of koji fermentation until
a white mold covers them. Following this, the black soybeans are mixed with salt to inhibit
microbial growth and are transferred to sealed fermentation tanks to exclude oxygen. The
fermentation process continues for 15 d at approximately 55 ◦C, after which the resulting
product is dried in an oven [70]. Douchi can be categorized into four types based on
variations in the microorganisms involved in the fermentation process: bacteria, Aspergillus,
Mucor, and Rhizopus, with Aspergillus-type douchi being the most prevalent in China [71].
Microbial enzymes, including proteases and amylases, play pivotal roles in decomposing
soybean proteins and starches during fermentation, leading to the production of essential
nutrients and flavor compounds. The volatile components produced by different types
of douchi vary significantly in type and content, owing to differences in the production
process, microorganisms, and environment [72].

4. Effect of Bioaugmentation on Traditional Fermented Seasonings
4.1. Enhancement in the Key Flavor Substances

The fermentation process of traditional fermented seasonings is intricate, involving
protein hydrolysis, starch saccharification, fat hydrolysis, acid production, alcohol fermen-
tation, enzymatic browning, and the Maillard reaction. The progression of these reactions
depends on the participating microorganisms and fermentation conditions, which are also
pivotal for the generation of complex flavor compounds [73]. However, the traditional
fermentation process is typically conducted in a semi-open environment, where fluctu-
ating microbiota and environmental conditions can significantly impact product quality,
particularly flavor composition [74].

Flavor serves as a crucial parameter for assessing traditional fermented season-
ings [75,76]. Bioaugmentation involves the use of functional strains capable of generating
particular flavor compounds or the requisite enzymes to enhance the synthesis of flavor
compounds. During the production of Sichuan bran vinegar, the introduction of Hongqu,
obtained from fermenting steamed glutinous rice with Monascus purpureus, along with
traditional Daqu (koji) as a starter, lead to an increase in the relative abundance of acetic
acid bacteria. This, in turn, causes a 1.95-fold increase in the concentrations of organic
acids, a 2.30-fold increase in aromatic esters, and a 3.55-fold increase in alcohols within
the vinegar [24]. Wang et al. [77] investigated the impact of three aroma-producing strains
(Wickerhamiella versatilis, Candida sorbosivorans, and Starmerella etchellsii) on raw soy sauce
during a 30-day fermentation period. The study found that W. versatilis increased the
levels of esters, alcohols, and aromatic compounds, while S. etchellsii enhanced the contents
of 2,6-dimethylpyrazine, methyl pyrazine, and benzeneacetaldehyde. Additionally, soy
sauce bioaugmented with C. sorbosivorans exhibited elevated concentrations of furfuralde-
hyde, methane, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, and maltol, resulting in sweet
and caramel aromas. The effects of bioaugmentation technology on enhancing flavor
compounds in other traditional fermented seasonings are summarized in Table 2.

Table 2. Efficacy of bioaugmentation technology on the flavor of traditional Chinese fermented
seasonings.

Seasoning Microorganism Bioaugmentation Strategy Efficacy on Flavor Reference

Shanxi aged
vinegar Pichia manshurica Y14

P. manshurica Y14 was inoculated
(7%, v/v) in the Daqu-based

fermentation.

The contents of ester
compounds increased from

15.3 to 21.5 g/L.
[25]

Sichuan bran
vinegar

Bacillus
amyloliquefaciens

A new Daqu prepared by
combining B.

amyloliquefaciens-bioaugmented
Daqu and traditional Daqu

without Chinese herbs at a 1:1
(v/v) ratio was used as a starter.

The contents of ethyl acetate
and tetramethyl pyrazine
increased by 191.84% and

123.17%, respectively.

[23]
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Table 2. Cont.

Seasoning Microorganism Bioaugmentation Strategy Efficacy on Flavor Reference

Zhenjiang
aromatic vinegar

Lacticaseibacillus casei
(formerly Lactobacillus
casei) M1-6, Acetobacter

pasteurianus G3-2

Same number of Ls. casei M1-6 and
Acetobacter pasteurianus G3-2 were

inoculated.

The contents of acetoin, ethyl
acetate, ethyl lactate, and

Chuanqiongqin increased by
102.4%, 146.6%, 91.7%, and

52.1%, respectively.

[78]

Lactiplantibacillus
plantarum (formerly

Lactobacillus plantarum)
M10-1, Ls. casei

(formerly Lactobacillus
casei) 21M3-1

One liter of each strain
supernatant (1012 CFU/mL) was

inoculated into 164 kg vinegar Pei.

The presence of Ls. casei
21M3-1 led to a four-fold
increase in L-lactic acid
production, whereas Lp.

plantarum M10-1 enhanced the
contents of both L-lactic acid
and D-lactic acid by one-fold.

[22]

Soy sauce

T. halophilus,
Zygosaccharomyces
rouxii, Torulopsis

versatilis

After 15 d of moromi fermentation,
T. halophilus (2 × 105 CFU/mL)

was inoculated. Z. rouxii
(106 CFU/mL) was then

inoculated on day 30, followed by
the inoculation of T. versatilis

(106 CFU/mL) on the 45th day.

The fruity, saucy, alcoholic, and
caramel-like flavors increased
by 64.3%, 22.7%, 43.1%, and

36.2%, respectively, while the
saline taste increased by 64.3%.

[79]

T. halophilus, Z. rouxii

During moromi fermentation,
co-inoculation with T. halophilus

and Z. rouxii, or inoculation firstly
with T. halophilus, followed by the
sequential inoculation of Z. rouxii.

The promotion of alcohol
formation obtained through
bioaugmentation led to the

development of more intricate
aroma characteristics.

[80]

High-salt
liquid-state

fermentation soy
sauce

Millerozyma farinosa
CS2.23, Z. rouxii CS2.42,

Candida parapsilosis
CS2.53

Each strain (107 cell/mL) was
inoculated in high-salt liquid-state

moromi fermented for 45 d.

The volatile esters content
inoculated with M. farinosa

CS2.23, Z. rouxii CS2.42, and C.
parapsilosis CS2.53 increased by
108.85%, 166.71%, and 113.61%,

respectively.

[81]

Wickerhamomyces
anomalus ZMS55, W.

anomalus ZMS102

Following the fermentation of
high-salt liquid-state moromi to a

pH of 5, it was inoculated with
each strain (2 × 106 cells/g).

The production of esters
showed increased diversity,

accompanied by significantly
higher yields of ethanol, acids,

and aldehydes.

[82]

Z. rouxii QH-25, C.
versatilis

On the first day of the high-salt
liquid-state moromi fermentation,

Z. rouxii QH-25 was inoculated,
followed by the inoculation of C.

versatilis on the fifth day.

The concentrations of volatile
substances, including ketones,
esters, phenols, and alcohols,
increased by 3.07-, 1.91-, 1.36-,

and 1.22-fold, respectively.
Characteristic components,

such as ethyl octanoate,
4-hydroxy-2(or 5)-ethyl-5(or
2)-methyl-3(2H)-furanone,

4-ethyl-2-methoxy-phenol, and
3-methyl-1-butanol, exhibited
increases by 3.99-, 3.29-, 1.63-,

and 0.70-fold, respectively.

[83]

Gray sufu
Leuconostoc

mesenteroides F24

L. mesenteroides F24 was inoculated
in the mixture of brine and yellow
tofu serofluids at approximately

106 CFU/mL.

The contents of esters, alcohols,
aldehydes, acids, and aromatic

compounds increased.
[84]

Weissella confusa M1

W. confusa M1 was added to the
mixture of brine and yellow tofu

serofluids at approximately
106 CFU/mL.

The contents of 13 free amino
acids increased, particularly
aspartic acid and glutamic

acid.

[85]
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Table 2. Cont.

Seasoning Microorganism Bioaugmentation Strategy Efficacy on Flavor Reference

Doubanjiang
T. halophilus, W. confuse,

Z. rouxii

Lactobacillales (T. halophilus and W.
confuse) and Z. rouxii were

inoculated into the mixed Pei at
106 CFU/g and 105 CFU/g,

respectively.

The contents of amino acids,
like glutamic acid and aspartic
acid, along with volatile flavor

compounds, such as esters,
carbonyls, and phenols,

increased.

[41]

Z. rouxii Y-8
Z. rouxii Y-8 was inoculated at the
beginning of Pei fermentation at

106 CFU/g Pei.

The total concentrations of
volatile flavor compounds
increased from 4767.22 to

72,813.09 µg/100 g dry Pei,
with the presence of 33 new
volatile flavor compounds,
including alcohols, esters,

acids, and carbonyl
compounds.

[86]

Aspergillus-type
douchi

Meyerozyma Caribbica,
Meyerozyma

guilliermondii, Candida
etchellsii, C. versatilis

Following a 3-day culture period,
the purified strains were

co-inoculated with A. oryzae to
produce Aspergillus-type douchi.

The contents of amino acids,
unsaturated fatty acids, and

organic acids increased.
[87]

4.2. Improvement in Raw Material Utilization

Bioaugmentation offers a promising solution for low starch utilization in vinegar
production. Zhang et al. [88] demonstrated this by introducing Pediococcus lactis AAF5-1, a
strain known for its resilience to acidity and heat, into the initial acetic acid fermentation
process of Tianjin Duliu aged vinegar. This intervention resulted in an elevated abundance
of amylase-producing Lactobacilli strains, leading to an increase in starch utilization from
79% to 83%. In the production of Sichuan Baoning vinegar, Liu et al. [89] utilized Aspergillus
niger AS 3.758 to prepare bioaugmented bran Qu and observed a lower starch content of
5.49% in vinegar Pei, compared to 7.88% starch content in the non-bioaugmented group.
Moreover, Peng et al. [90] introduced Komagataeibacter europaeus JNP1 during the acetic acid
fermentation stage and noted a significant increase in the expression of genes related to
sugar metabolism. This led to a notable decrease in the reducing sugar content, indicating
the enhanced utilization of the starchy raw material through bioaugmentation.

During doubanjiang fermentation, the enzymes produced by microorganisms degrade
proteins, starches, and other raw materials into smaller molecules, like peptides, free amino
acids, and fermentable sugars, thereby enhancing the raw material utilization [91]. Studies
by Gupte and Verma demonstrated the positive impact of fungal co-cultures on hydrolase
production [92,93]. Aspergillus was found to be particularly influential in enhancing enzyme
activities during doubanjiang fermentation [94]. Therefore, Tang [12] selected A. oryzae QM-6,
known for its high neutral protease production, and A. niger QH-3, known for its high
acid protease production, and co-cultured these strains at a specific ratio. The resulting
inoculation of the co-cultures into doubanjiang koji revealed a significant enhancement in
proteolytic enzyme activity compared to the inoculation of A. oryzae QM-6 alone. This
co-cultured approach resulted in an improved protein utilization and a higher amino acid
content.

4.3. Shorter Maturity Time

Shortening the fermentation time has a significant impact on the cost of produc-
ing fermented foods. Feng et al. [95] developed a starter by combining Kocuria kristinae
F7, Micrococcus luteus KDF1, and Staphylococcus carnosus KDFR1676, which were isolated
from Kedong sufu, and applied it at a 2:1:2 ratio to the surface of tofu. The use of this
mixed microbial starter led to a 60-day reduction in the maturity period of sufu, while
still meeting the national standards for physicochemical properties, compared to tradi-
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tional back-slopping sufu. Similarly, Feng et al. [96] investigated the impact of introducing
Kocuria rosea KDF3, isolated from traditional Kedong sufu, on the bioaugmentation of sufu
fermentation. Following a 120-day fermentation period, the bioaugmented sufu exhibited
significantly higher levels of peptides, total free amino acids, and 14 specific free amino
acids in comparison to the non-bioaugmented group, which had undergone 150 d of fer-
mentation. Additionally, compared to the non-bioaugmented sample, the bioaugmented
sample showed significantly elevated levels of amino acid nitrogen and water-soluble pro-
teins. The sensory evaluation revealed no significant difference between the bioaugmented
group fermented for 120 d and the non-bioaugmented group fermented for 150 d. These
findings indicated that bioaugmented Kedong sufu reached maturity 30 d earlier than their
non-bioaugmented counterpart.

4.4. Producing Bioactive Compounds

As the demand for healthy foods increases, consumers are seeking more functional sea-
sonings. The selection of strains that yield high levels of bioactive compounds for fortifying
seasonings can enhance the bioactive compound content in the resulting products. Tetram-
ethyl pyrazine, the primary bioactive compound in vinegar and a main component of the
Chinese herbal medicine Chuanxiong, demonstrates therapeutic efficacy against cardiovas-
cular and cerebrovascular diseases, diabetes, liver injury, headache, and dizziness [97]. The
concentrations of acetoin, a tetramethyl pyrazine precursor, can be significantly increased
by introducing lactic acid bacteria and acetic acid bacteria [78]. During soy sauce fermenta-
tion, a combination of A. oryzae HG-26 and A. niger HG-35 was chosen for koji production.
Higher levels of total phenols, total flavonoids, and three soybean isoflavone glycosides
were observed during brine fermentation compared to koji produced with A. oryzae HG-26
alone, along with a notable enhancement in the antioxidant activity [98].

Studies have shown that Limosilactobacillus reuteri (former Lactobacillus reuteri) can
increase the vitamin B12 content in soybean products [99]. In response to the variability in
the vitamin B12 content in sufu, Bao et al. [100] investigated the effect of Lm. reuteri inocula-
tion. The results revealed that the growth of microorganisms harboring complete genes for
vitamin B12 synthesis, such as Streptococcus, Enterococcus, and Lactobacilli, was stimulated.
The vitamin B12 content in sufu inoculated with Lm. reuteri (141.7 ng/g) significantly
exceeded that in the control group (36.0 ng/g). Levilactobacillus brevis (former Lactobacillus
brevis) demonstrates a notable capacity for γ-aminobutyric acid (GABA) production [101].
Consequently, Bao et al. [59] introduced Lv. brevis into the sufu fermentation. The findings
revealed that the samples inoculated with Lv. brevis exhibited a substantially higher GABA
concentration 10 d after ripening in comparison to the control group.

4.5. Improving Safety

Traditional fermented seasonings are susceptible to safety issues due to their pro-
duction in a semi-open environment and the prolonged production process. Mycotoxins,
particularly aflatoxins, may be present during fermentation, and the concentrations of bio-
genic amines often exceed the standard limits. These challenges can be partially addressed
through the application of bioaugmentation technology.

Aflatoxins, potent carcinogens, pose great threats to human health [102] as they easily
contaminate grains, beans, and other raw materials and can therefore be found in fermented
foods. Various physical, chemical, and biological methods can be employed to remove
aflatoxins [103,104]. The selection of microorganisms capable of degrading aflatoxins
to enhance the fermentation process undoubtedly offers a safe and economical solution.
During the production of Sichuan doubanjiang, Feng et al. [105] inoculated a co-culture
of Lp. plantarum DPUL-J5 and Pichia kudriavzevii DPUY-J5 in a brine fermentation system
containing Bacillus subtilis DPUL-J2. Following fermentation, the doubanjiang product
fermented by the three strains exhibited a 65% reduction in aflatoxin B1 levels compared
to the product solely inoculated with B. subtilis DPUL-J2. Similarly, the co-inoculation of
Lp. plantarum DPUL-J8 and P. kudriavzevii DPUY-J8 during the fermentation of northeast
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doujiang resulted in an approximately 70% decrease in the AFB1 content compared to the
uninoculated control group [106].

Biogenic amines are nonvolatile, low-molecular-weight nitrogen-containing organic
compounds primarily formed by the decarboxylation of the corresponding amino acids.
They are frequently found in fermented foods [107]. The raw materials used in fermented
bean seasonings are rich in protein, which can be easily hydrolyzed into large amounts of
free amino acids and peptides. Microorganisms, such as lactic acid bacteria, can produce
amino acid decarboxylase, leading to higher levels of biogenic amines. The consumption of
foods containing high concentrations of these substances may result in food poisoning, char-
acterized by symptoms such as headache, nausea, and fluctuations in blood pressure [108].
Consequently, there is widespread concern regarding the management of biogenic amines.
Several studies have improved the fermentation process by introducing strains capable
of degrading biogenic amines, thereby reducing their production during fermentation
(Table 3). For instance, Feng et al. [109] introduced two mixed-culture starters, named
Starter I and Starter II, into the production of Kedong sufu. Starter I consisted of K. kristinae
F7, K. rosea KDF3, M. luteus KDF2, and M. luteus KDF4, while Starter II comprised K.
kristinae F8, K. rosea KDF1, M. luteus KDF1, and M. luteus KDF3. The utilization of Starter I
and Starter II led to reductions of 27% and 35%, respectively, in the total biogenic amine
content in sufu, as compared to the traditional back-slopping fermentation method.

Table 3. Efficacy of bioaugmentation technology on the safety of traditional Chinese fermented
seasonings.

Seasoning Microorganisms Bioaugmentation Strategy Efficacy on Safety Reference

Soy sauce
Staphylococcus

piscifermentans QR19

S. piscifermentans QR19 was
inoculated into the fermentation

mash at the beginning of
fermentation.

The biogenic amine content
decreased by 63.25% compared

to soy sauce without S.
piscifermentans. Additionally,
they were 81.19% and 71.87%
lower, respectively, than two

commercial soy sauces.

[110]

Z. rouxii, T. halophilus

During brine fermentation, T.
halophilus (2.5 × 106 CFU/g) and
Z. rouxii (2 × 106 CFU/g) were

inoculated into moromi.

The biogenic amine content
was reduced by 52.36~55.05%. [111]

Cantonese soy
sauce

T. halophilus
CGMCC3792,

Z. rouxii CGMCC21865

At the beginning of the brine
fermentation, T. halophilius (2.1 ×
106 CFU/g) and Z. rouxii (1.6 ×

106 CFU/g) were inoculated into
moromi.

The biogenic amine content
was reduced by 67.68%. [112]

Sufu Lv. brevis (formerly
Lactobacillus brevis)

Lv. brevis (3.8 × 106 CFU/mL) was
added to the mixture of brine and

yellow tofu serofluids.

The biogenic amine content
was reduced significantly. [59]

Doubanjiang

Lp.
plantarum (formerly

Lactobacillus plantarum)
DPUL-J5

Lp. plantarum DPUL-J5 (2%) was
inoculated into brine containing

2% B. subtilis DPUL-J2.

The biogenic amine content
was reduced significantly. [105]

B. amyloliquefaciens
1-G6, Bacillus

licheniformis 2-B3

Each strain (106 CFU/g) was
inoculated on the third day of

fermentation.

Inoculation with B.
amyloliquefaciens 1-G6 led to a
29% reduction in the biogenic

amine content, while
inoculation with B.

licheniformis 2-B3 resulted in a
16% decrease in the biogenic

amine content.

[113]
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Table 3. Cont.

Seasoning Microorganisms Bioaugmentation Strategy Efficacy on Safety Reference

Dajiang

Lp.
plantarum (formerly

Lactobacillus plantarum)
HM24

The Lp. plantarum HM24
supernatant (4%) was inoculated
into a mixture of koji and brine.

The degradation rates of
tryptamine, phenethylamine,

putrescine, cadaverine,
histamine, and tyramine were

35.31%, 43.14%, 30.18%,
33.44%, 32.74%, and 39.91%,

respectively.

[114]

S. carnosus M43,
Pediococcus acidilactici

M28

A mixed bacteria solution of each
strain at 107 CFU/g was prepared
at a ratio of 1:1 and inoculated for

fermentation.

The biogenic amine content
decreased by 39.69%. [115]

Lp.
plantarum DPUL-J8,

P. kudriavzevii DPUY-J8

Lp. plantarum DPUL-J8 and P.
kudriavzevii DPUY-J8 were

co-inoculated.

The biogenic amine content
decreased by 67.15%. [106]

Douchi

Bacillus tropicus A11,
Bacillus siamensis D11,
B. subtilis T2, B. subtilis

U2

Each strain was inoculated into
soybeans at 3% (v/m).

Through the
mono-fermentation of B.

tropicus A11, B. siamensis D11,
B. subtilis T2, and B. subtilis U2,

the contents of biogenic
amines decreased by 74.38%,
61.85%, 82.13%, and 65.43%,

respectively.

[116]

Mucor racemosus (M1),
Mucor wutungqiao (M2),

Actinomucor elegans
(M3), A. oryzae 2339
(A1), A. oryzae 41380
(A2), A. oryzae 40188

(A3)

Each strain was cultivated in
potato-dextro agar at 28 ◦C for 3 d.

Subsequently, 1 mL of sterilized
water was added to the agar to

obtain the spore suspension,
which was then incorporated into
the bran medium and incubated at

28 ◦C for 3 d. Following this, a
mixture of 0.3~0.5% (w/w) of the

bran medium containing the
strains was mixed with steamed

soybeans.

The biogenic amine content
decreased by 38.76%, 32.11%,
36.27%, 21.44%, 25.06%, and
21.27% for douchi inoculated

with A1, A2, A3, M1, M2, and
M3, respectively.

[117]

5. Conclusions and Prospects

The increasing demand for high-quality fermented seasonings has drawn significant
attention to their safety and nutritional attributes. Bioaugmentation technology shows
great potential in addressing these concerns. This review examines the primary microorgan-
isms in six types of traditional Chinese fermented seasonings and evaluates the impact of
bioaugmentation on product quality. The findings demonstrate the effectiveness of bioaug-
mentation technology in enhancing the flavor, nutritional value, and safety of fermented
seasonings. Furthermore, this approach contributes to a better utilization of raw materials
and a reduced ripening time, thereby enhancing the economic sustainability of the products.
These results offer a theoretical basis for the industrial advancement of bioaugmentation in
the field of fermented foods.

The variations in raw materials, production processes, fermentation conditions, and
geographical environments among different fermentation seasonings are noteworthy. As a
result, the selection of bioaugmentation strains should be guided by the specific attributes
and product requirements of the fermentation products. Additionally, the assessment of
the strain performance, such as safety, enzyme and ester production, and salt resistance,
is crucial for identifying the most suitable strain. The limitations of using a single strain
for bioaugmentation are evident as it can only enhance one aspect. In contrast, a naturally
occurring microbial consortium is more robust to environmental challenges, has a reduced
metabolic burden, and exhibits more complex functions [118]. These advantages can be
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harnessed in the development of fermented seasonings through the construction of tailored
microbial consortia, thereby addressing the diverse requirements for product enhance-
ment [119]. Limited research has been conducted on the bioaugmentation mechanism of
particular functional strains, which is essential for the precise control of the fermentation
process in the production of fermented foods. Moreover, the inoculation strategy, including
method, order, and timing, yields diverse effects on bioaugmentation. Therefore, it is
crucial to explore the optimal bioaugmentation parameters to ensure the quality and safety
of fermented foods.
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