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Abstract: Although biogas is a renewable energy source alternative to natural gas, it contains
approximately 40 vol% CO2 and, hence, a low calorific value. The sequestration of CO2 from biogas
is, therefore, essential before its widespread use. As CO2 can be easily solubilized as carbonate and
bicarbonate in alkaline water, in this study, we isolated and characterized alkaliphilic wild microalgae
that grow under high-level CO2 conditions and evaluated their application potential in CO2-removal
from biogas. For this purpose, freshwater samples were enriched with 10 vol% CO2 and an alkaline
culture medium (pH 9.0), wherein almost free CO2 was converted to carbonate and bicarbonate to
yield alkaliphilic and high-level CO2-tolerant microalgae. Ten microalgal strains of Micractinium,
Chlorella, Scenedesmus/Tetradesmus, or Desmodesmus spp. were isolated, some of which demonstrated
good growth even under conditions of >pH 10 and >30 vol% CO2. All algal strains grew well through
fixing biogas-derived CO2 in a vial-scale biogas upgrading experiment, which reduced the CO2 level
in biogas to an undetectable level. These strains yielded antioxidant carotenoids, including lutein,
astaxanthin, zeaxanthin, and β-carotene, particularly rich in lutein (up to 7.3 mg/g dry cells). In
addition, these strains contained essential amino acids, accounting for 42.9 mol% of the total amino
acids on average, and they were rich in unsaturated fatty acids (comprising 62.2 wt% of total fatty
acids). The present study identified strains that can contribute to biogas upgrading technology, and
the present findings suggest that their biomass can serve as useful raw material across the food,
nutraceutical, and feed industries.

Keywords: microalgae; alkaliphile; CO2 tolerance; biogas upgrading; carbon capture and utilization
technology

1. Introduction

Continuous emissions of carbon dioxide (CO2) from industries and in the energy
and transport sectors have been raising the atmospheric level, which is the main cause of
global warming [1]. These sectors are the major source of emitted CO2 and account for
approximately 75% of the total CO2 emission [2]. Besides exhaust gas, biogas contains a
high concentration of CO2 [3]. Biogas is produced from the anaerobic digestion of food
residues, manures, or sewage sludge and is regarded as a renewable substitute for natural
gas. However, it is generally composed of 50–80 vol% methane and 20–50 vol% CO2, with
some minor constituents, such as 0–5 vol% hydrogen, 0–2 vol% nitrogen, 0–1 vol% carbon
monoxide, <1 vol% hydrogen sulfide, and trace amounts of ammonia, depending on the
type of the fermentation substrate, thereby yielding a low calorific value (21.5 MJ/m3) in
contrast to that in natural gas (35.8 MJ/m3) [3]. Therefore, the removal of CO2 from biogas
is essential to improving its calorific value as an alternative energy source in sustainable
social life and industry.

Some technologies for CO2 sequestration are currently under development. For
instance, carbon capture and storage is employed in capturing CO2 from exhaust gas,
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transporting it to a storage site, and depositing it underground [4]. The key technologies for
carbon capture—a process for separating CO2 from exhaust gas—include postcombustion,
precombustion, and oxy-fuel combustion methods [5]. The transportation process involves
sending the captured CO2 to a storage site through pipelines, ships, and trucks. Several
technologies for the storage process have been studied to date, such as geological storage,
ocean storage, and mineral carbonation [6]. However, the relevant practical application is
hindered by the cost involved in each process as well as the related environmental impact
of deposited CO2 [7]. Carbon capture and utilization is, thus, recognized as an additional
strategy via which the captured CO2 can be converted to industrially valuable chemicals.
However, the physicochemical conversion of CO2 to value-added chemicals in this process
remains challenging for commercial viability because of the high production costs, huge
energy consumption, and the need for the use of costly catalysts [8]. In contrast, the
biological conversion of CO2 to value-added chemicals by microalgae has received much
attention owing to its advantages, such as the low production cost, the ability to fix CO2
directly from the exhaust gas via photosynthesis, and the lack of the need for catalysts [9].
However, exhaust gases are rich in CO2, which evokes acidification of the culture medium
and inhibits microalgal growth. Therefore, microalgal strains that are acclimated to high
levels of CO2 are preferred for a successful process. In the culture medium used for algal
production, wastewater is occasionally added to remove nitrogen and phosphorus as well
as to stimulate algal growth [10,11]. Although algal biomass produced in wastewater
can be used as a feedstock for biofuel production, it is not suitable for use as food/feed
additives or nutraceuticals, from the hygienic standpoint. We, thus, believe that microalgal
cultivation in a defined mineral salt medium under high-level CO2 can be suitable for
producing algal biomass for potential application in food/feed industries.

There are several reports on the isolation of microalgal strains that acclimate to high
levels of CO2 and on their evaluation for application to CO2 fixation [12]. The major poten-
tial application of this fixed CO2 is by using biomass as feedstock for biodiesel production
or as animal feed, food additive, and nutraceuticals [10,13]. Several studies on photobiore-
actors for microalgal CO2 sequestration from exhaust gas and biogas have been reported
to date [14]. However, microalgal CO2 sequestration using a photobioreactor has scope
for improvement considering the low solubility of CO2 in the culture medium, because of
which a major amount of CO2 is bubbled out of the reactor [15]. Much effort has been made
to accelerate CO2 solubilization in culture medium via improving photobioreactor devices.

Conversely, the use of an alkaline culture medium may be useful for the same pur-
pose considering that CO2 can dramatically increase its solubility in alkaline water by
changing its form to carbonate (CO3

2−) or bicarbonate (HCO3
−) [16,17]. In water with a

pH > 8.3, dissolved free CO2 rapidly changes to bicarbonate and/or carbonate and reaches
a stable equilibrium, which is an advantageous condition for CO2 sequestration. For in-
stance, the solubility of CO2 in air (0.04 vol% CO2) in water with a pH of 6.0, 7.0, 8.0,
and 9.0 is 2.0 × 10−5, 8.0 × 10−5, 7.0 × 10−4, and 7.0 × 10−3 mol CO2 per 1.0 L of water,
respectively [18]. However, extreme alkaline pH inhibits the growth of most microal-
gae. For instance, the cell growth of the freshwater microalga Chlamydomonas reinharditii
and Auxenochlorella protothecoides is known to be inhibited at a pH of 8.5 and 9.0, respec-
tively [19,20]. The cell growth of several marine microalgae including Cricosphaera elongate,
Asterionella japonica, and Isochrysis galbana was reported to be significantly inhibited at a pH
of 9.0 [21]. Therefore, the use of alkaliphilic microalgal strains that acclimate to high levels
of CO2 appears to be a potential approach to efficient CO2 sequestration from exhaust
gases.

In the present study, we isolated and characterized alkaliphilic wild microalgae that
grow under high levels of CO2 and assessed their application potential in biogas upgrading
through CO2 removal. In addition, algal biomass was evaluated as a raw material in the
food/feed industries based on the analyses of its nutrition profile.
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2. Materials and Methods
2.1. Chemicals

Chemicals, including salts, vitamins, and organic solvents, were purchased from
Wako Pure Chemicals (Osaka, Japan). Molecular biology reagents were obtained from
Toyobo (Osaka, Japan) and Nippon Gene (Toyama, Japan). Glass vials and test tubes were
purchased from Maruemu (Osaka, Japan). Other labware were acquired from commercial
sources.

2.2. Enrichment of Alkaliphilic Microalgae

To isolate alkaliphilic microalgal strains that could acclimate to high levels of CO2, four
different freshwater samples were collected from across the Kanna River, an alkaline river
with a pH in the range of 7.6–9.7, in the Gunma prefecture, Japan, while three freshwater
samples and four freshwater samples were collected from different rivers and ponds,
respectively, in the Hachioji City, Tokyo, as listed in Table 1. Microbial cells were harvested
by centrifuging 40 mL of each freshwater sample at 16,000× g for 10 min at 4 ◦C and
then suspending in 1.0 mL of sterile water. Then, 100 µL of the resulting suspension was
inoculated into a 50 mL Maruemu glass vial containing 10 mL of SOT-C medium (the SOT
medium [22] depleted of sodium carbonate), flushed with 10 vol% CO2 at a flow rate of
5 mL/s for 1 min, and immediately sealed with a butyl rubber stopper and an aluminum
crimp. The vials were shaken on a reciprocal shaker (120 rpm) at 25 ◦C with an illumination
of a 12 h light/12 h dark cycle using fluorescent light (30 µmol photons/m2/s). The SOT-C
medium consisted of the following (in mg/L, unless otherwise stated): NaNO3, 2500;
K2HPO4, 500; K2SO4, 1000; MgSO4·7H2O, 200; Na2EDTA·2H2O, 80; FeSO4·7H2O, 10; NaCl,
1000; CaCl2·2H2O, 40; H3BO4, 2.86; MnSO4·5H2O, 2.17; ZnSO4·7H2O, 0.222; CuSO4·5H2O,
0.079; and Na2MoO4·2H2O, 0.021. The pH of the medium was adjusted to 9.0 with 1.0 M
NaOH.

Table 1. List of sampling locations and isolated algal strains used in this study.

Sample Nos. Sampling Location Isolated Algal Strain

1 Ooyori, the midstream of the Kanna river, Gumma Pref. (36◦13′ N, 138◦94′ E) OY
2 Furuta, the midstream of the Kanna river, Gumma Pref. (36◦10′ N, 138◦87′ E) FR
3 Ueno, the upstream of the Kanna river, Gumma Pref. (36◦08′ N, 138◦79′ E) KU
4 Shimokubo, the downstream of the Kanna river, Gumma Pref. (36◦13′ N, 139◦03′ E) −
5 Fountain pond in Kogakuin University, Hachioji city (35◦68′ N, 139◦32′ E) UF
6 Ornamental pond in Kogakuin University, Hachioji city (35◦68′ N, 139◦32′ E) UP
7 Ornamental pond in Shimizu park, Hachioji city (35◦68′ N, 139◦31′ E) SH
8 Ornamental pond in Ishikawa-higashi park, Hachioji city (35◦68′ N, 139◦37′ E) IS
9 Gotanda, the downstream of the Shiroyama river, Hachioji city (35◦67′ N, 139◦30′ E) SG
10 Yokogawa, the downstream of the Minami-asakawa river, Hachioji city (35◦67′ N, 139◦31′ E) MA
11 Akishima, the midstream of the Tama river, Hachioji city (35◦69′ N, 139◦37′ E) TM

2.3. Isolation of Algal Strains

In order to isolate microalgal strains, grown cultures enriched in SOT-C medium with
10 vol% CO2 were subcultured five times (2 weeks each). The subculture was performed
by inoculating 100 µL aliquots of the culture into 10 mL of fresh SOT-C medium. After
the five-times subculture, 20 µL aliquot of the subculture was inoculated onto SOT-C
medium solidified by 1.5% agar. These samples were cultivated statically at 25 ◦C under
an irradiance of 30 µmol photons/m2/s. Emerging green colonies were purified thrice on
fresh SOT-C agar medium.

2.4. Growth Test for Microalgal Isolates at Various pH

The preculture of the algal isolates was mixed with fresh SOT-C medium with various
pH values (8.0, 9.0, 10.0, 11.0, or 12.0) to prepare an algal suspension with a cell density of
1.0 × 106 cells/mL. Then, 10 mL of the suspension was dispensed into a 50 mL Maruemu
glass vial that was flushed with 10 vol% CO2 at a flow rate of 5 mL/s for 1 min and then
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sealed with a butyl rubber stopper and an aluminum crimp. The vials were shaken on
a reciprocal shaker (120 rpm) at 25 ◦C under the illumination of a 12 h light/12 h dark
cycle, as described above. Next, 10 µL of the algal culture in the glass vial was periodically
sampled with a microsyringe, and its cell density was microscopically determined using a
Thoma hemocytometer (Fukae Kasei, Tokyo, Japan).

2.5. Growth Test for Microalgae under Various CO2 Concentrations

The preculture of the algal isolates was mixed with fresh SOT-C medium, whose
pH was adjusted to optimum for each microalgal strain, so as to obtain a cell density
of 1.0 × 106 cells/mL. Then, 10 mL of the cell suspension was dispensed into a 50 mL
Maruemu glass vial that was flushed with different concentrations of CO2 (5, 10, 20, 30,
and 50 vol%) at a flow rate of 5 mL/s for 1 min and sealed with a butyl rubber stopper and
an aluminum crimp. The vials were shaken on a reciprocal shaker (120 rpm) at 25 ◦C under
the illumination of a 12 h light/12 h dark cycle, as described earlier. The cell density of the
strains during cultivation was microscopically determined, as described above.

2.6. Phylogenetic Study of the Isolates

A cell pellet harvested from the 10 mL pure culture through centrifugation (16,000× g
for 10 min at 4 ◦C) was suspended in 200 µL of Tris-EDTA buffer (pH 8.0) containing
10.0 g/L Triton-X100 in a 2.0 mL screwcap tube (Sarstedt, Nümbrecht, Germany) and
subjected to a BHA-6 bead-beating homogenizer (AS ONE, Tokyo, Japan) at 4350 rpm
for 1 min, heated in boiling water for 10 min, and then chilled on an ice bath. The re-
sulting algal homogenate was subjected to phenol–chloroform extraction [23], and the
water layer was recovered as a DNA solution. PCR was carried out with the KOD One
polymerase (Toyobo) and primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4
(5′-TCCTCCGCTTATTGATATGC-3′), as developed by White et al. [24], to amplify the DNA
fragment (approximately 700 bp) of the nuclear ribosomal gene cluster including internal
transcribed spacer (ITS)-1, 5.8S, and ITS-2 regions of the algal strain, using PCR reactions
of 30 cycles at 98 ◦C for 10 s, 54 ◦C for 30 s, and 68 ◦C for 1 min. Direct sequencing of the
amplified DNA fragments was performed using the BigDye Terminator v3.1 (ThermoFisher
Scientific, Waltham, MA, USA), and similarities of the sequences obtained with known
species through comparison with sequence data across the GenBank, EMBL, and DDBJ
databases were evaluated using the BLAST algorithm [25]. A phylogenetic tree based
on the entire ITS region DNA of the algal strain and type strains of known related algal
species was constructed using the MEGA11 program [26], which contains the MUSCLE
algorithm [27] and the maximum-likelihood method [28] for multiple alignments of DNA
sequences and construction of phylogenetic trees, respectively. The robustness of the topol-
ogy on the phylogenetic trees was evaluated via bootstrap analysis with 1000 replications.
The ITS region DNA sequence of the strains has been deposited in the GenBank database
under accession nos. shown in Figure 1.

2.7. Biogas Upgrading Assay

The preculture of the algal isolates was mixed with fresh SOT-C medium (pH 9.0)
to prepare an algal suspension with a cell density of 1.0 × 106 cells/mL. Then, 10 mL of
the algal suspension was dispensed in a 50 mL Maruemu glass vial, in which a Maruemu
small glass test tube (8.0 mm i.d. × 50 mm) containing 15.0 mg sludge (digested sludge or
excess sludge), 1.35 mL sterile water, and 0.15 mL aliquot of digested sludge-assimilating
and biogas-yielding soil (DABYS) microflora seed culture was subsequently placed, as
illustrated in Figure S1a. The gas phase of the vial was then replaced with nitrogen gas at a
flow rate of 5 mL/s for 1 min and sealed with a butyl rubber stopper and an aluminum
crimp. The cell density of the algal strains after 1 week of cultivation was microscopically
determined, as described above. The composition of biogas generated in the glass vial was
determined using a GC2014-TCD gas chromatography system equipped with a thermal
conductivity detector (Shimadzu, Kyoto, Japan). The settings were as follows: column,
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Shincarbon ST column 50–80 (3.0 mm i.d. × 2.0 m, Shinwa Chemical Industries, Kyoto,
Japan); injection volume, 0.5 mL; injection port temperature, 120 ◦C; carrier gas, argon
(40.0 mL/min); column oven temperature, 120 ◦C; and thermal conductivity detector,
260 ◦C. Peak identification and quantification of methane, hydrogen, and CO2 in biogas
were accomplished using standard pure gasses (GL Science, Tokyo, Japan).
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2.8. Carotenoids Analysis

Further, 20 mg freeze-dried algal cells, 50 mg of 0.5 mm glass beads, 50 mg of 0.1 mm
zirconia silica beads, and 500 µL of chloroform/methanol (2/1, v/v) were mixed in a
Sarstedt 2.0 mL screwcap tube. The mixture was subsequently ground using a BHA-6 bead-
beating homogenizer (AS ONE) at 4350 rpm for 30 s. The resultant cell homogenate was
then centrifuged at 16,000× g for 10 min at 20 ◦C, and the supernatant was pooled into a
15 mL Maruemu glass vial. The extraction procedure was repeated thrice, and the pooled ex-
tract was evaporated to dryness in a stream of nitrogen and dissolved in 500 µL of methanol.
The sample was subsequently mixed with 500 µL of 40 mM NaOH/methanol and kept for
6 h at 25 ◦C in the dark to allow for a complete saponification of carotenoid esters. The
saponified samples were directly subjected to a high-performance liquid chromatography
analysis which was equipped with a UV-970 UV/VIS detector (Jasco, Tokyo, Japan), an MD-
4010 photodiode array detector (Jasco), a PU-1580 pump (Jasco), a CO-1560 column thermo-
stat (Jasco), and a YMC Carotenoid-C30 column (4.6 mm i.d. × 250 mm, 5 µm; YMC Co.,
Ltd., Kyoto, Japan). The mobile phase consisted of eluents A (methanol/acetonitrile/water
= 84/14/2, v/v/v) and B (dichloromethane). The following gradient procedure was used:
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0% B for 14 min; first linear gradient from 0% to 5.0% B from 14 to 25 min; second linear
gradient from 5.0% to 25.0% B from 25 to 30 min; third linear gradient from 25.0% to 26.0%
B from 30 to 35 min; fourth linear gradient from 26.0% to 55.0% B from 35 to 50 min; fifth
linear gradient from 55.0% to 100% B from 50 to 55 min; and then 100% B for 5 min. The
flow rate was 1.0 mL/min, the column temperature was 40 ◦C, and peaks were detected
through absorbance at 450 nm. The injection volume was 20 µL.

2.9. Protein and Amino Acids Analysis

The freeze-dried cells (15 mg) were mixed with 500 µL of 0.1 M NaOH in a Sarstedt
2.0 mL screwcap tube and heated at 80 ◦C for 1 h to lyse microalgal cells and extract protein,
according to the method developed by Matsui et al. [29]. The resultant cell lysate was then
centrifuged at 16,000× g for 20 min at 4 ◦C, and the supernatant was pooled into a 15 mL
Maruemu glass vial. The extraction procedure was repeated thrice. Protein content in the
extract was determined as the total protein of microalgal strains using the bicinchoninic
acid (BCA) method, as described previously [30].

To analyze the amino acid composition of microalgal protein, freeze-dried cells (50 mg)
were hydrolyzed with 2.5 mL of 6.0 M HCl in vacuum-sealed hydrolysis tubes (Ther-
moFisher Scientific, Waltham, MA, USA) at 110 ◦C for 24 h, after which the hydrolysate
was neutralized to a pH of 7.0 by adding 1.0 M NaOH. The resultant hydrolysate was
then centrifuged at 16,000× g for 20 min at 4 ◦C, and the supernatant was subsequently
lyophilized in an FD1000 Freeze Dryer (Tokyo Rika, Tokyo, Japan). The lyophilized ex-
tract was resuspended in 1.0 mL of 0.1 M HCl and analyzed using an Acquity UPLC
H-Class amino acid analyzer (Waters, Milford, MA, USA), according to the manufacturer’s
instruction.

2.10. Fatty Acid Analysis

Total lipid was extracted from freeze-dried cells (20 mg), based on the method of
Bligh and Dyer [31]. In brief, 20 mg freeze-dried algal cells, 300 µL of chloroform, 300 µL
of methanol, and 270 µL of deionized water were mixed in a Sarstedt 2.0 mL screwcap
tube. The mixture was subsequently vortexed using a BHA-6 bead-beating homogenizer
(AS ONE) at 4350 rpm for 30 s. The resultant cell homogenate was then centrifuged
at 16,000× g for 10 min at 20 ◦C, and the chloroform layer as total lipid fraction was
pooled into a 15 mL Maruemu glass vial. The extraction procedure was repeated trice
with the addition of 300 µL of chloroform. The extracted lipid fractions were evaporated
to dryness in a stream of nitrogen and were esterified using the Fatty Acid Methylation
Kit (Nacalai, Kyoto, Japan), according to the manufacturer’s instructions. The resulting
fatty acid methyl esters were purified using the Fatty Acid Methyl Ester Purification Kit
(Nacalai) and analyzed using a GC-2014 gas chromatograph equipped with a hydrogen
flame ionization detector (Shimadzu) and a Precision SL100 hydrogen generator (Peak
Scientific Instruments, Glasgow, UK) under the following conditions: column, Inert Cap
17 capillary column (0.25 mm i.d. × 30 m, GL Sciences, Tokyo, Japan); injection volume,
3 µL; carrier gas, nitrogen (18 mL/min); and temperature gradient, 220 to 250 ◦C for 15 min
(2 ◦C/min) and maintained at 250 ◦C for 15 min.

2.11. Statistical Analysis

Unless noted otherwise, the data for microalgal growth experiments and biochemical
analysis were presented as the mean value and standard deviation of three independent
experiments. Statistical analyses were performed using Student’s t-test.

3. Results and Discussion
3.1. Enrichment of High-Level CO2-Tolerant Alkaliphilic Microalgae

We used a glass vial for the enrichment of high-level CO2-tolerant microalgae from the
collected freshwater samples because CO2 can permeate plastic bottles, and its concentra-
tion in the bottle gradually decreases during cultivation [32]. After 4 weeks of cultivation,
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microalgal growth (indicated by green turbidity) was observed in the vials of the 10 samples,
except for the sample from Shimokubo (sample no. 4; Table 1). Then, 1.0 mL aliquot from
the culture was added to a fresh SOT-C culture medium in a new vial, and subculturing was
performed (4 weeks) five times under the same conditions. The enriched algal subculture
displayed stable growth, and an aliquot of their fifth subculture was inoculated onto the
SOT-C agar medium to isolate the algal strains. A total of 10 isolates were obtained, and
their strain names are shown in Table 1. A microscopic analysis indicated that most strains
were spherical to slightly ellipsoidal with a diameter of approximately 10–30 µm, although
strain OY had a fusiform-shaped cell and a diameter of approximately 20–40 µm (Figure 2).
The strains KU, FR, TM, MA, and SG produced sporangia containing several autospores,
which are the common structures for the propagation of unicellular green microalgae [33].
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3.2. Phylogenetic Identification of the Microalgal Strains

As per a recent report, the ITS region DNA is more accurate in phylogenetic analyses
for microalgae than the 18S ribosomal RNA gene [34]. Thus, the ITS region DNA sequences
were used to determine the phylogenetic position of the isolated strains. The phylogenetic
relationship between the isolates and the known species is illustrated in Figure 1. The
analysis suggested that the strains KU, FR, TM, MA, and SG belong to the genus Micrac-
tinium, and the strain IS belongs to the genus Chlorella. The strains UP, UF, and SH were
suggested as species of the genus Desmodesmus, and strain OY belongs to the Scenedesmaceae
family (genus Tetradesmus or Scenedesmus). Micractinium and Chlorella are closely related
genera of freshwater microalgae that belong to the Chlorellaceae family. The Chrolella strains
have been well studied in wastewater treatment and biofuel production as well as in phys-
iological, ecological, and nutritional studies [35], and strains with alkaliphilic [36,37] or
high-CO2-tolerant [38–40] abilities have also been reported. As for Micractinium species,
two high-CO2-tolerant strains have been reported so far [41,42], but there is no report on
alkaliphilic strains. Desmodesmus, Scenedesmus, and Tetradesmus are genera included in
the Scenedesmaceae family—a green microalgal family ubiquitously found in freshwater
environments like the Chlorellaceae family. They have been extensively studied as tools for
wastewater treatment [43,44] and biodiesel production [45–47]. Alkaliphilic Scenedesmus
sp. strain [48] and high-level CO2-tolerant Desmodesmus, Scenedesmus, and Tetradesmus spp.
strains have also been reported [49–53]. However, there is no article about strains that
possess both alkaliphilic- and high-CO2-preferring characteristics for these five genera.

3.3. Growth Characteristics under Various pH and CO2 Levels

The pH range for strain growth was studied by culturing them in a medium with
various pH values (8.0, 9.0, 10.0, 11.0, and 12.0) using 10 vol% CO2 to determine the optimal
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pH for their growth and to confirm whether they are alkaliphilic strains. The experimental
results are shown in Figure 3. Although the growth rate is different among the strains, all
of them could grow under the various alkaline pH conditions tested. Particularly, each
strain exhibited unique growth characteristics. The optimal pH values for strains KU, SH,
and IS were 8.0, 9.0, and 8.0–9.0, respectively. In contrast, the strains FR, UF, and SG were
found to have an optimal pH range of 9.0–10.0, and the strains UP and TM could grow
well even under a pH of 11.0. The strain MA exhibited good growth under the tested pH
(8.0–12.0), implying its acclimating ability to harsh alkaline conditions. Interestingly, the
strain OY grew well at a pH of 12.0, but its cell density in the 9-day culture (pH 12.0) was
0.57 × 106 cells/mL, which is not as high as that for most of the other strains (in the order
of 106 cells/mL in 5-day cultivation), suggesting that this strain is a slow grower. The slow
growth of strain OY appears to be due to its large cell size (Figure 1), which requires a
longer time for reproduction.

Fermentation 2024, 10, x FOR PEER REVIEW 
 9 of 20 
 

 

 
Figure 3. Growth of the algal isolates under different pH conditions. The data are presented as 
means ± standard deviation of independent triplicates. 

We subsequently cultured the strains at different CO2 concentrations (5, 10, 20, 30, 
and 40 vol%) under their optimal pH so as to determine the range of CO2 concentration 
for their growth (Figure 4). The growth of strains FR and SH was found to be enhanced 
under 5% CO2 but inhibited under 10% CO2. The optimal CO2 level for strains UF and IS 
was 10%. The stains OY, KU, UP, SG, MA, and TM were found to grow well at CO2 con-
centrations of up to 20%, and some of them (SG, MA, and TM) displayed good growth 
even under 30% CO2. Because dissolved CO2 can lower the pH of the culture medium [54], 
it is important to determine whether algal strains grew by favoring high levels of CO2 or 
by an abiotic neutralization of an alkaline medium by a CO2 flush. Therefore, the pH of 
the strain culture grown on the final cultivation day was analyzed (Table 2). When the 
strains grew well under their optimal CO2 level, the pH of grown culture for almost all 
strains, except strain UF, was found to be strongly alkaline (>10 or 11), suggesting that 
they actually favor an alkaline pH for their growth. In contrast, the growth culture of 
strain UF showed a pH of 6.66 on its final cultivation day, indicating that the strain could 
grow in a neutralized medium after a CO2 flush in the vial. 
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We subsequently cultured the strains at different CO2 concentrations (5, 10, 20, 30,
and 40 vol%) under their optimal pH so as to determine the range of CO2 concentration
for their growth (Figure 4). The growth of strains FR and SH was found to be enhanced
under 5% CO2 but inhibited under 10% CO2. The optimal CO2 level for strains UF and
IS was 10%. The stains OY, KU, UP, SG, MA, and TM were found to grow well at CO2
concentrations of up to 20%, and some of them (SG, MA, and TM) displayed good growth
even under 30% CO2. Because dissolved CO2 can lower the pH of the culture medium [54],
it is important to determine whether algal strains grew by favoring high levels of CO2 or
by an abiotic neutralization of an alkaline medium by a CO2 flush. Therefore, the pH of
the strain culture grown on the final cultivation day was analyzed (Table 2). When the
strains grew well under their optimal CO2 level, the pH of grown culture for almost all
strains, except strain UF, was found to be strongly alkaline (>10 or 11), suggesting that they
actually favor an alkaline pH for their growth. In contrast, the growth culture of strain UF
showed a pH of 6.66 on its final cultivation day, indicating that the strain could grow in a
neutralized medium after a CO2 flush in the vial.
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Table 2. Change in the pH value of the strain culture under different CO2 concentrations. Obelisks
indicate the optimal CO2 level for growth of each strain shown in Figure 4.

Strain
Initial pH of
the Culture

Medium

CO2
Concentration
of Gas Phase

pH of Grown Culture
Strain

Initial pH of
the Culture

Medium

CO2
Concentration
of Gas Phase

pH of Grown Culture

Average Stdev Average Stdev

Strain
OY 12.0

5% 7.34 0.02

Strain SH 9.0

5% † 10.85 0.58
10% 10.16 1.58 10% 10.53 0.70

20% † 11.96 0.01 20% 5.68 0.07
30% 6.55 0.13 30% 5.38 0.02
50% 6.33 0.07 50% 5.33 0.05

Strain FR 9.0

5% 11.20 0.05

Strain SG 9.0

5% 7.30 0.19
10% † 11.25 0.04 10% 6.64 0.14
20% 6.26 0.13 20% † 11.11 0.03
30% 6.02 0.17 30% 11.14 0.07
50% 5.37 0.06 50% 5.47 0.02

Strain
KU 8.0

5% 6.90 0.18

Strain
MA

12.0

5% 9.45 0.85
10% 11.34 0.03 10% 11.46 0.02

20% † 11.22 0.10 20% † 11.43 0.05
30% 6.05 0.37 30% 6.99 0.07
50% 5.58 0.06 50% 6.27 0.12

Strain UF 9.0

5% 6.77 0.22

Strain IS 8.0

5% 11.56 0.01
10% † 6.66 0.03 10% † 11.64 0.02
20% 5.78 0.05 20% 5.89 0.08
30% 5.48 0.02 30% 5.62 0.02
50% 5.24 0.02 50% 5.54 0.06

Strain UP 10.0

5% 11.12 0.02

Strain
TM

10.0

5% 6.24 0.09
10% 11.11 0.03 10% 7.63 0.53

20% † 10.22 0.78 20% † 11.19 0.07
30% 5.74 0.17 30% 11.23 0.05
50% 5.46 0.07 50% 5.49 0.09

3.4. Upgrading of Biogas by the Algal Strains

In a previous study, we developed the digested sludge-assimilating and biogas-
yielding soil (DABYS) microflorae that can yield biogas from sewage sludge as a sub-
strate [55]. Accordingly, we assessed whether the algal strains could fix CO2 in biogas
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produced via sludge digestion by the DABYS microflora. An outline of the experiment
is illustrated in Figure S1a. Excess sludge, a raw sewage sludge generated in the second
wastewater treatment, and digested sludge, a sludge residue generated after anaerobic
digestion of excess sludge, served as substrates for vial-scale biogas production. While
algal growth during the biogas upgrading assay is depicted in Figure S1b,c, the result of
the experiment is shown in Figures 5 and 6. When the DABYS microflora was cultivated
anaerobically after being fed with digested sludge in a test tube for 7 days, the algal strains’
seed culture in vials nos. 4 to 13 grew, as indicated by the presence of green turbidity in
their culture medium (Figure S1b). A similar observation was made for the assay in which
the DABYS microflora was fed with excess sludge (Figure S1c). Significant differences were
found between the cell densities for the 0-day and 7-day cultures of each strain (Figure 5a,b).
Green turbidity was not detected in vials nos. 1 to 3, confirming that the green turbidity
observed in the vials was not due to the outgrowth of algal or cyanobacterial contaminants.
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Figure 6. Biogas yields in the glass vials of the biogas upgrading assay. The data for assay using
digested sludge (a) and excess sludge (b) as a substrate are shown. The data are presented as
means ± standard deviation of independent triplicates. The letters on the columns shown in blue,
orange, and gray indicate significant differences at p < 0.05 (Student’s t-test) for hydrogen, methane,
and CO2 gasses, respectively.

Subsequently, the gas phase of each vial was analyzed through GC-TCD to determine
the methane, CO2, and hydrogen yields (Figure 6a,b). When the DABYS microflora was
fed with the digested sludge or excess sludge in a small test tube, the resultant biogas was
composed mainly of methane and CO2 after a 7-day incubation (vials 1 to 3 in Figure 6a or
Figure 6b, respectively). The CO2 contents in the biogas of vial nos. 2 and 3 were partly
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decreased when compared to that in vial no. 1, although no significant difference was
detected among them because of the large standard deviation, which implies that some of
the CO2 was dissolved in sterile water and the SOT-C medium, respectively. In contrast,
CO2 generated via anaerobic digestion in the small test tube was completely dissipated
from the gas phase of the vials during the 7 days of incubation (vials nos. 4–13, Figure 6a,b).
Considering that the gas phase of all vials was replaced with N2 gas at the beginning of
cultivation, we believe that the algal strains in the vials were not affected by toxic biogas
constituents, such as sulfide and ammonia, and that they could grow by fixing CO2 in
biogas generated via the sludge digestion.

Several articles have been published on microalgal CO2 sequestration from biogas us-
ing Chlorella, Scenedesmus, and Tetraselmis monoalgal strains [56,57] or algal–bacteria/fungi
consortia [58–63], and 62–99% of the CO2-removal efficiency was accomplished by improv-
ing their reaction systems. Although the vial-scale experiment in the present study is still
in the fundamental research stage, CO2 was completely sequestered from biogas by algal
strains, indicating their availability as a biogas-upgrading technology in combination with
a sophisticated bioreactor. Furthermore, to the best of our knowledge, this is the first report
on microalgal CO2 sequestration from biogas by Micractinium and Desmodesmus sp. strains.

3.5. Chemical Composition of the Algal Strains

To examine the potential of algal strains for nutraceutical applications, their carotenoid
contents were determined (Figure 7). The strains KU, MA, and TM, all of which belong
to the genus Micractinium, were found to be rich in xanthophyll carotenoids, including
lutein, astaxanthin, and zeaxanthin when compared with other strains. Particularly, their
lutein contents were 6.4, 7.3, and 6.0 mg per 1.0 g of dry cell of strains KU, MA, and
TM, respectively. Lutein and zeaxanthin are antioxidant carotenoids that are exclusively
synthesized by plants and microalgae and are known to exert favorable effects on animal
eye health and are, thus, employed in the pharmaceutical industry [64]. Astaxanthin
is a potent antioxidant carotenoid produced by primary food web producers, including
bacteria, yeast, and microalgae, and it is used in cosmetics and aquaculture industries
as an antiultraviolet skin protectant and natural colorant, respectively [65,66]. Although
there is no report on the lutein or astaxanthin content of Micractinium strains, the strains of
the genus Chlorella (the closest genus for Micractinium) reportedly contain 0.069–10.4 mg
lutein per 1.0 g of dry cells [67,68], implying that the strains KU, MA, and TM are good
lutein producers. Inbaraj et al. reported exceptional accumulation of lutein in Chlorella
pyrenoidosa-derived tablets (125 mg lutein per 1.0 g of the tablets) [69], albeit the production
method for the tables was not disclosed; thus, additional sources of lutein in the tablets
cannot be excluded.

The cellular protein content of the algal strains was determined (Figure 8). It was found
that the strains KU, SG, MA, and TM cells were rich in protein, which was approximately
or more than 300 mg per g of dry cells. In particular, strains SG and TM contained 436
and 534 mg of protein per g of dry cells, respectively, which are comparable to that for
known Chlorella spp. [70]. The amino acid composition of proteins of the strains was
determined (Table 3). The strains were found to possess similar amino acid compositions
and contain most of the essential amino acids for animals, except tryptophan, which
account for ~40 mol% (42.9 mol% on average) of the total amino acids, implying their
potential use as a protein source for humans, livestock, and farmed fish. Additionally,
these strains contain relatively high amounts of leucine, alanine, and glycine. Leucine is a
nutritionally essential branched-chain amino acid that stimulates protein synthesis through
the activation of energy metabolism, including glucose uptake, mitochondrial biogenesis,
and fatty acid oxidation [71]. Interestingly, strains SH and UF were also found to be rich in
arginine and glutamic acid/glutamine, respectively. Although arginine is not an essential
amino acid for humans, it is essential for birds, carnivores, and some mammals, and it acts
as a precursor for ornithine, an important metabolite in the urea cycle, and creatine, which
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plays an essential role in the energy metabolism of muscles and nerves and has specific
effects on wound healing [72,73].
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The fatty acid composition of the strains was determined as shown in Table 4, and
47–73 wt% (62.2 ± 9.4 wt% on average) of the total fatty acids was unsaturated fatty acids.
While the most abundant unsaturated fatty acid in strain IS was oleic acid (C18:1), that
in other strains was linoleic acid (C18:2). More than 30% of the fatty acids of the strains
FR and UP was accounted for by linoleic acid. Linoleic acid is an essential fatty acid for
humans and animals, and clinical studies have suggested that its dietary intake reduces the
risk of cardiovascular diseases [74]. Thus, the algal oil from these strains may be useful as a
nutrient for humans and animals.
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Table 3. Amino acid composition (mol%) of hydrolysates from microalgal strain proteins. Asterisks indicate essential amino acids for humans. Different letters next
to the values indicate significant differences at p < 0.05 (Student’s t-test) in each amino acid content among the tested strains.

Amino Acid
Strain OY Strain FR Strain KU Strain UF Strain UP Strain SH Strain SG Strain MA Strain IS Strain TM

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

His * 2.17 a 0.06 1.83 be 0.04 2.06 c 0.04 1.87 b 0.04 2.17 af 0.03 2.63 d 0.13 2.15 a 0.01 1.73 e 0.08 2.24 f 0.03 2.21 f 0.04
Ser 3.70 a 0.01 4.04 b 0.04 5.03 c 0.05 4.63 d 0.03 3.38 e 0.03 4.12 b 0.09 4.62 d 0.01 4.27 e 0.06 3.54 f 0.05 4.82 g 0.07
Arg 5.49 a 0.06 4.99 b 0.07 5.01 b 0.08 6.48 c 0.03 6.63 c 0.07 12.20 d 0.25 5.02 b 0.01 5.06 b 0.12 5.20 e 0.04 5.05 b 0.03
Gly 13.72 a 0.27 13.12 b 0.09 12.67 c 0.12 12.02 d 0.14 12.74 c 0.02 13.50 a 0.18 13.07 b 0.11 12.70 c 0.31 13.63 a 0.06 13.13 b 0.07

Asp+Asn 4.97 a 0.18 5.33 b 0.13 5.41 b 0.09 5.75 c 0.21 6.13 d 0.09 4.64 e 0.15 5.13 f 0.07 5.79 c 0.35 4.84 ae 0.23 4.64 e 0.17
Glu+Gln 7.81 a 0.29 8.38 b 0.12 7.90 c 0.11 12.14 e 0.14 9.24 f 0.14 9.45 f 0.26 8.34 b 0.12 9.21 f 0.42 7.63 a 0.23 7.83 a 0.19

Thr * 4.97 a 0.01 4.65 b 0.07 4.92 c 0.06 4.91 c 0.06 4.69 b 0.04 5.16 d 0.15 4.63 e 0.03 4.77 b 0.08 4.75 b 0.10 4.94 ac 0.10
Ala 11.51 a 0.25 11.04 b 0.11 11.08 b 0.12 10.97 bc 0.15 10.80 c 0.08 8.73 d 0.33 11.02 b 0.05 10.86 c 0.39 9.84 e 0.12 10.59 f 0.05
Pro 6.18 a 0.01 6.27 b 0.02 6.22 c 0.04 5.84 d 0.04 5.95 e 0.08 5.12 f 0.16 6.13 a 0.07 6.01 e 0.08 6.36 f 0.08 6.23 g 0.08
Cys 0.25 a 0.01 0.08 b 0.00 0.10 c 0.00 0.13 d 0.00 0.20 e 0.00 0.01 f 0.03 0.08 b 0.00 0.07 g 0.00 0.08 b 0.00 0.09 h 0.00
Lys * 4.15 ab 0.36 3.91 a 0.08 4.33 b 0.11 4.14 ab 0.19 4.48 b 0.11 2.34 c 0.36 4.25 ab 0.08 4.46 b 0.42 4.92 d 0.18 4.05 a 0.08
Tyr 2.98 a 0.14 2.87 b 0.03 2.98 a 0.03 2.35 c 0.04 2.85 b 0.01 2.96 a 0.16 2.72 d 0.05 2.89 a 0.17 3.13 e 0.08 2.85 b 0.04

Met * 2.93 a 0.09 2.74 b 0.02 2.69 c 0.02 2.51 d 0.02 2.73 b 0.01 2.85 a 0.10 2.78 e 0.02 2.66 f 0.10 2.70 e 0.03 2.79 e 0.01
Val * 7.47 a 0.02 7.98 b 0.05 7.47 a 0.03 7.17 c 0.02 7.40 d 0.08 6.75 e 0.07 7.61 f 0.01 7.62 f 0.10 7.86 g 0.09 7.65 f 0.05
Ile * 4.98 a 0.03 5.16 b 0.03 4.90 c 0.01 4.46 d 0.00 4.85 e 0.05 4.30 f 0.03 5.00 g 0.03 5.00 g 0.08 5.25 h 0.05 5.06 g 0.04

Leu * 10.18 a 0.12 11.12 b 0.09 10.79 cd 0.00 9.35 e 0.02 9.83 f 0.09 8.79 g 0.08 10.93 h 0.04 10.71 d 0.13 10.99 ch 0.12 11.14 b 0.07
Phe * 6.53 a 0.32 6.51 a 0.08 6.42 a 0.08 5.28 b 0.12 5.94 c 0.05 6.46 a 0.36 6.54 a 0.16 6.18 ac 0.42 7.05 d 0.19 6.94 d 0.12
Trp * <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Essential amino acids 43.39 1.02 43.89 0.47 43.58 0.35 39.69 0.47 42.09 0.46 39.27 1.28 43.89 0.38 43.13 1.42 45.76 0.80 44.76 0.49

Table 4. Fatty acid composition (wt%) of the microalgal strains. Asterisks indicate essential fatty acids for humans. Different letters next to the values indicate
significant differences at p < 0.05 (Student’s t-test) in each fatty acid content among the tested strains.

Fatty Acid
Strain OY Strain FR Strain KU Strain UF Strain UP Strain SH Strain SG Strain MA Strain IS Strain TM

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

Myristic acid
(C14:0) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.27 0.02

Palmitic acid
(C16:0) 28.62 a 3.19 16.65 b 0.13 15.48 c 0.53 25.83 d 2.67 26.46 d 3.15 21.39 e 6.12 17.31 f 0.57 14.89 g 0.13 22.63 e 0.85 15.71 c 0.09

Palmitoleic acid
(C16:1) 6.50 a 0.53 17.33 b 0.05 12.24 c 2.86 9.45 d 0.85 11.46 c 1.79 12.15 c 2.72 16.54 e 0.50 16.83 e 1.16 7.07 f 0.24 15.76 g 0.18

Hexadecaenoic
acid (C16:2) 5.72 a 0.58 6.75 b 0.19 6.38 c 0.48 4.15 d 0.23 3.66 d 0.79 4.15 d 1.43 7.06 be 0.87 6.28 c 0.42 7.17 be 0.63 7.01 e 0.12

Stearic acid
(C18:0) 18.83 a 0.78 1.46 b 0.03 0.92 be 0.53 15.28 c 0.34 10.09 d 0.86 11.75 d 9.36 1.36 b 0.42 0.86 e 0.07 4.03 f 0.08 1.68 g 0.02

Oleic acid
(C18:1) 4.47 a 0.38 15.98 b 0.09 24.72 c 2.01 13.43 d 0.50 9.31 e 0.20 16.98 bdf 4.78 18.02 f 0.63 21.61 g 0.50 30.92 h 0.11 22.38 i 0.27

Linoleic acid
(C18:2) * 30.34 a 0.93 32.45 b 0.19 20.41 c 1.61 25.13 d 1.19 32.97 e 0.37 26.54 d 2.40 28.28 f 0.72 28.11 f 0.68 9.11 g 0.04 26.68 d 0.25

Linolenic acid
(C18:3) * <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Unidentified fatty
acid 5.52 9.38 19.48 6.37 6.05 7.03 11.43 11.42 19.06 10.50

Unsaturated fatty
acids 47.03 2.42 72.51 0.51 63.76 6.96 52.16 2.78 57.39 3.15 59.83 11.33 69.90 2.72 72.83 2.76 54.28 1.02 71.83 0.82
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4. Conclusions

In this study, almost all strains preferred alkaline pH for growth and propagated
efficiently at high CO2 concentrations. The strains sequestered CO2 in biogas generated
by the anaerobic digestion of sewage sludge in the glass vial, leading to the successful
upgrading of biogas. The strains produced several valuable bioactive chemicals, such as
lutein, essential amino acids, and unsaturated fatty acids, that have potential applications
in the nutraceutical, food, livestock, and aquaculture industries. The strains SG, TM, and
MA are particularly suitable for the purpose of CO2 use as they grow in a wide range of
alkaline pH and under high levels of CO2, potentially facilitating efficient CO2 capture and
fixation, thereby tackling the increasing atmospheric CO2 levels. The strains’ ability to grow
in an extremely alkaline pH mineral–salt medium and under high CO2 concentrations is
advantageous as it can reduce the risk of overgrowth of algal and cyanobacteria contami-
nants. However, to establish the optimal culture conditions to maintain efficient microalgal
CO2 sequestration and improve the technologies required for the practical applications of
these strains, further studies are warranted.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/fermentation10030134/s1, Figure S1: Outline of the biogas upgrading
assay (a) and photographs of algal growth observed in the tested glass vials in which a small test
tube dispensed with DABYS microflora and digested sludge (b) or excess sludge (c).
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