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Abstract: Contamination caused by fungi stands out as a significant microbiological issue in the
food industry, particularly leading to premature spoilage across various food segments, including
the dry-fermented meat industry. The emergence of undesired fungi on product surfaces results
in substantial economic losses. Once microorganisms infiltrate the food, contamination ensues,
and their subsequent proliferation can adversely impact the product’s appearance, odor, flavor,
and texture. This, in turn, leads to consumer rejection and negatively affects the commercial brand.
Additionally, concerns persist regarding the potential presence of mycotoxins in these products. Given
the detrimental effects of spoilage fungi in the food industry, practices such as thorough cleaning
and sanitization become crucial to prevent contamination and subsequent premature deterioration.
These measures play a pivotal role in ensuring the quality and safety of food, while also extending
the shelf life of products. This review delves into the advantages, disadvantages, and factors that
may influence the efficacy of commonly used sanitizers in the dry-fermented cured meat industry,
including substances like sodium hypochlorite, peracetic acid, and benzalkonium chloride.
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1. Introduction

Dry-fermented meat products are widely consumed worldwide, and the occurrence of
common molds on their surfaces is generally deemed normal. This can even be considered
a quality indicator, as long as these molds do not synthesize mycotoxins or antibiotics [1].
Fungi play a pivotal role in the technological process by releasing enzymes that elevate the
sensory characteristics of dry-fermented products, resulting in distinctive flavors [2]. How-
ever, a potential drawback exists, as undesirable species capable of producing mycotoxins
may also develop on the product surface, posing a threat to consumer exposure to harmful
compounds [1,3–6].

The capacity of fungi to thrive in acidic pH, along with their resilience to the low pH
and high salt concentration found in dry-fermented meat products, promotes the growth of
filamentous fungi over other microbial groups [4,7]. The richness and diversity of species
existing in raw materials and the production environment of dry-fermented meat products
play a significant role in shaping the mycobiota of the end product [8–10].

Species that produce ochratoxin A are especially undesirable in dry-fermented meat
products. In temperate climates, the most relevant are Penicillium nordicum and Penicillium
verrucosum [4,5,7–9], while in warmer climates, Aspergillus from Section Circumdati (mainly
A. westerdijkiae and A. ochraceus) stands out, both in South America and Mediterranean
countries [4,7,8,10]. The occurrence of both fungi and mycotoxins in these products is linked
to contamination from raw materials, particularly spices, and the air in the maturation
chamber, where products of different ages often mature together [2,8,10–12]. A study
conducted by Almeida [11] demonstrated a two-log increase in the fungal population when
comparing cured sheep ham with spices to ham produced without this raw material.
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Contamination by fungi, encompassing molds and yeasts, is a critical factor con-
tributing to losses and waste resulting from premature fungal spoilage in food. Fungi,
predominantly molds, pervade the entire food production chain and can originate from
various stages, including seed contamination, cultivation, harvesting, post-harvest activ-
ities, food processing, transportation, and storage [3]. This pervasive presence poses a
significant risk, leading to substantial economic losses and potential health hazards for
consumers. Certain fungi have the capacity to produce toxic secondary metabolites, such
as mycotoxins, with adverse effects on both human and animal health [1,4]. Furthermore,
the proliferation of fungi in food is associated with adverse effects on the sensory attributes
of products, such as appearance, texture, and flavor properties [3,5]. These consequences
not only prompt consumer rejection but also contribute to economic losses for producers.

Then, the presence of undesirable fungi in the meat facility environment can lead
to significant economic losses when potential spoilage (especially mycotoxin-producing
species) present in production and processing environments contaminates the fresh pro-
cessed meat product. This contamination can result in the subsequent multiplication
of these agents, leading to undesirable changes and final product deterioration [13]. To
counteract early fungal spoilage, one strategy employed by the food industry involves
the implementation of a good hygiene process that encompasses cleaning methods plus
adequate sanitization [14–17]. The cleaning step is essential for decreasing the amount of
organic load (soil) in the meat processing facility because these compounds can strongly
reduce the sanitizers’ efficacy against fungal species involved in the spoilage of dry-cured
meats [17]. Therefore, the hygiene process applied in a meat processing facility is crucial to
reducing the fungi contaminating the work surfaces and environment to a safe level. This,
in turn, will impact the fungal load in the food, which ultimately can extend the shelf life
of the product [15].

Achieving effective fungi control in a dry-fermented meat products facility relies
heavily on maintaining hygiene in the production and maturation environment, encom-
passing air quality and work surfaces [13,15,17]. Additionally, the use of sanitizing agents
with proven and suitable antifungal properties for work surfaces, air, and processing and
maturation environments is crucial [13,16]. Beyond selecting the optimal active ingredient
through laboratory tests, it is essential to take into account external factors such as exposure
time, temperature, concentration, type of disinfectant, and the presence of organic loads, as
these can influence the antifungal activity of sanitizers [17,18]. The mode of application
(fumigation, liquid application) and the specific fungi targeted also play a role [3].

Emphasizing a study conducted by Bernardi et al. [15], which brought to light the
significant tolerance demonstrated by fungal strains (A. westerdijkiae, Penicillium polonicum,
and Aspergillus pseudoglaucus) isolated from dry-fermented meat products toward widely
used sanitizers in the food industry, even when applied at recommended maximum dosages.
The research indicated that the lowest concentration specified on the product label, closely
aligned with industry hygiene practices, consistently proved ineffective against the tested
spoilage species.

In an effort to elucidate the factors affecting the antifungal efficacy of sanitizers,
Stefanello et al. [18] underscored the importance of an efficient cleaning step preceding
the sanitization process to enhance its effectiveness. The presence of an organic load
was identified as a factor that diminishes the efficacy of most sanitizers. Additionally,
the duration of sanitizer contact is crucial, with a minimum of 15 min of product action
recommended. Temperature variations also play a role, as peracetic acid demonstrates
greater effectiveness at higher temperatures (40 ◦C), while benzalkonium chloride tends to
exhibit optimal action at lower temperatures (10 ◦C).

These findings find support in the work of Silva et al. [17], who evaluated the impact on
P. verrucosum, P. nordicum, and A. westerdijkiae—species identified as significant contributors
to the spoilage of dry-fermented meat products due to their ochratoxin A production.
The study noted a higher sensitivity of the studied Penicillium species compared to the
Aspergillus species. Each sanitizer presents its own set of advantages and disadvantages
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concerning microorganism reduction, cost, and accessibility. Furthermore, each sanitizer
differs in its permitted limits. Table 1 provides a compilation of the most commonly used
sanitizers with approved use in food production environments.

Table 1. Sanitizers, active ingredients, and concentrations indicated by the manufacturer.

Sanitizer Active Principle Suggested Use Concentration

Benzalkonium chloride Benzalkonium chloride 0.3–5%
Sodium hypochlorite Sodium hypochlorite, 10–12% of active chlorine 0.1–1%

Peracetic acid Peracetic acid, hydrogen peroxide, acetic acid 0.15–3%

Hence, the primary goal of this review is to comprehensively discuss the key aspects
and features pertaining to commonly used sanitizers in the food industry: peracetic acid,
sodium hypochlorite, and benzalkonium chloride. The focus is on their efficacy in controlling
spoilage in dry-fermented meat, coupled with insights into the utilization of these sanitizers
for managing fungal spoilage in general. This review aims to provide information on the ad-
vantages and disadvantages of each sanitizer, as well as factors influencing their effectiveness.
By addressing these decisive factors, this review aims to assist the food industry in effectively
managing early fungal spoilage and mitigating associated challenges.

2. Fungal Control through the Hygiene Process

To guarantee the production of high-quality products, predominantly free from micro-
biological pathogens and spoilage agents, the food industry needs to establish measurable
and monitorable limits. These limits should ensure the effectiveness of procedures and the
attainment of predefined objectives [19]. Both the sanitizer and the hygiene process should
facilitate the production of food with an extended shelf life while ensuring the safety of
consumers’ health [20,21].

For the process to be effective, it is crucial to choose sanitizers that contain active
ingredients proven to be effective against the target microorganisms. The concentrations
applied should be adequate for fungal inactivation without unnecessary waste, adher-
ing to microbiological recommendations set with technical criteria for sanitized surfaces,
processing environments, food handlers, and equipment [13,22].

A critical aspect of the sanitization phase within an effective hygiene process is the
careful selection of the sanitizer. Several factors must be taken into account, including
the spectrum of action, antimicrobial or antifungal activity [23], formation of toxic by-
products [24] and whether the sanitizer complies with safety and legal requirements
stipulated by relevant regulatory bodies [14].

A sanitizer can only be registered and authorized for use after demonstrating its
antimicrobial efficacy for the intended purposes. This verification is typically conducted
through efficacy testing on the finished product and in the dilutions specified for use by the
manufacturer on the label. These analyses may follow the methodology of the Association
of Official Analytical Chemists (AOAC) or methods endorsed by the European Committee
for Standardization (CEN) for liquid sanitizers (European Standard n 13697) [25]. For
smoke sanitizers, compliance with the French Standard (NF-T-72281) [26] is essential, as
it outlines the methodology for evaluating the effectiveness of smoke-generating agents.
Figure 1 provides an overview of the sanitizing efficacy analysis scheme based on the
modeling of efficacy tests as described by Bernardi et al. [15,23].

The selection of a sanitizer should take into consideration various factors, including
the type of equipment surface and the specific location to be disinfected, the presence of
residual organic load (soil), temperature, water quantity, contact time, the spectrum of
action of the agent, and the residual efficacy of the product, among other considerations [14].
Unfortunately, it is a common occurrence for sanitizers to be employed in inappropriate
concentrations or combined with multiple products, resulting in formulations that may
compromise the antimicrobial activity of the product [22].
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In the following section, some common sanitizers used for fungal control in the
food industry for the disinfection of work surfaces, air, and production and processing
environments will be discussed, summarizing their advantages and disadvantages in
Table 2.

2.1. Sodium Hypochlorite

Sodium hypochlorite stands out as the most commonly used sanitizer, often serving
as a reference in comparative analyses of sanitizers [24,25]. The mechanisms of action of
sodium hypochlorite are grounded in its physicochemical properties [26]. Sodium hypochlo-
rite (NaOCl) reacts with water to produce hypochlorous acid (HOCl) [27], also known as free
chlorine, through hydrolysis (NaOCl + H2O → HOCl + NaOH−). Subsequently, hypochlor-
ous acid dissociates into the hypochlorite ion (ClO−) and H+ (proton) [28,29]. In solution,
the hypochlorite ion (ClO−), one of the active oxidizing forms, directly acts on microorgan-
isms, rendering them inactive by inhibiting enzymatic reactions, denaturing proteins, and
inactivating nucleic acids within the cells [30]. This agent serves as a chlorine source and is
recognized as a potent oxidizing agent. It is extensively used for cleaning and sanitization in
the food industry. Notable features of this compound include its broad spectrum of activities,
highlighted by its whitening action [31] and cost-effectiveness [32–34], along with its minimal
impact on the nutritional qualities of food [35].

The permissible maximum concentration of sodium hypochlorite for use on food
contact surfaces typically ranges from 0.005 to 0.02% (50 to 200 parts per million) and 0.05
to 0.08% (500 to 800 parts per million) in non-food contact areas. However, efficacy tests
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on non-food contact surfaces have indicated that while sodium hypochlorite effectively
combats bacteria and yeasts, it is unable to achieve a 4-log inactivation of fungal spores
for most tested species [16,18,36,37], including dry-meat spoilage fungal species [17]. This
specified concentration is outlined in legislation for assessing the efficacy of sanitizers
permitted for use in the food industry. Considering these results, sodium hypochlorite may
not be an adequate choice in industries aiming for fungal inactivation, as it exhibits limited
effectiveness in controlling fungal contamination [36–38].

2.1.1. Factors Influencing the Efficacy of Sodium Hypochlorite

Several factors influence the efficacy of a sanitizer, and one of the primary elements
leading to a reduction in the effectiveness of sodium hypochlorite is the presence of organic
loads. The presence of organic loads can generate by-products and diminish the antimi-
crobial action of sodium hypochlorite [39–43]. In vitro results obtained from assessing the
interference of various factors on the antifungal action of sodium hypochlorite against fungi
of the ochratoxin-producing species P. nordicum, P. verrucosum, and A. westerdijkiae, which
are among the most relevant spoilage fungi in dry-fermented meat products, indicated that
organic load was a key factor responsible for diminishing the antifungal action of sodium
hypochlorite [17,18]. The organic load used in these in vitro assessments aimed to simulate
the presence of dirt in industrial environments, and the results demonstrated an increase in
the survival of all fungal species. This underscores the importance of the cleaning stage,
involving the removal of organic loads in food facilities, as a crucial procedure when the
objective is to reduce the fungal load [17,18,44,45].

Another crucial factor for effective antimicrobial action is the concentration of the sani-
tizer in use. Bernardi et al. [23] emphasize the significant importance of choosing the right
concentration to achieve satisfactory results, suggesting that the highest concentration recom-
mended by the manufacturer should be preferably used, as it often demonstrates effectiveness
against fungi. In studies by Ribeiro et al. [46], sodium hypochlorite was considered more
effective than peracetic acid against Aspergillus nomius inoculated in Brazil nuts, even though
it achieved a reduction of less than 2 log CFUs when exposed for 8.5 min at a concentration
of 250 ppm. Similarly, in in vitro efficacy tests, Gonçalves et al. [38] observed that concen-
trations between 500 and 750 ppm of sodium hypochlorite, applied for 15 min, inactivated
between 2 and 2.9 log CFUs of this species. Consistent with the findings of Salomão et al. [47],
who applied this sanitizer to apples inoculated with Penicillium spp., a higher reduction was
achieved by increasing the concentration from 50 to 200 mg/L. In a study conducted by
Bernardi et al. [36], higher concentrations of sodium hypochlorite were applied than typically
recommended, demonstrating that this agent was effective only at concentrations of at least
5000 ppm against Hyphopichia burtonii and 10,000 ppm for P. roqueforti, Penicillium paneum, and
Aspergillus pseudoglaucus, with exposures of 15 min.

The effectiveness of sodium hypochlorite is significantly influenced by the pH of
the environment [42,48–50]. The antimicrobial action of these compounds is typically
associated with the generation of hypochlorous acid following hydrolysis in water. The
formation of hypochlorous acid tends to be higher when the pH is slightly acidic because
this form predominates as the antimicrobial agent, as opposed to the hypochlorite ion,
which becomes dominant at pH values above 7.0. In such alkaline conditions, sodium
hypochlorite-based compounds are less effective [51]. In studies conducted by Salomão
et al. [47], chlorine solutions at a pH of 6.5 resulted in reductions of more than 5 logs
in Penicillium expansum spores in Macintosh, Empire, and Golden Supreme apples at a
concentration of 200 ppm.
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Table 2. Interference factors, advantages, and disadvantages of common sanitizers in the food
industry [14,44,45,51].

Sanitizer Interference Factor Advantages Disadvantages

Belzalkonium chloride

pH.

Temperature.

Concentration.

Anionic detergents.

Low toxicity.

Ability to be formulated for
specific objectives.

Food preservative.

Residual action.

Gram− bacteria tolerance

Unrestricted use

Emerging pollutant.

Toxic to many species of aquatic
and terrestrial organisms.

Sodium hyphoclorite

Organic load

Concentration

Exposition time

pH.

Chloride source.

Low cost.

Low effect on nutritional qualities.

Bleach action.

Toxic to the environment.

Corrosion.

Residual toxicity.

Generation of disinfection
by-products.

Peracetic acid
Temperature

Organic load

Sustainable.

Low environmental impact.

Prevent biofilms.

Slow inactivation kinetics.

Organic content in the effluent.

Microbial regeneration potential.

Formation of acetic acid in
high concentration.

Higher cost.

Damage to skin, eyes and
respiratory tract.

2.1.2. Disadvantages of Sodium Hypochlorite

While higher concentrations of sodium hypochlorite can enhance its antimicrobial
efficacy, such concentrations are not recommended due to the potential generation of
toxic compounds for the environment, corrosion in materials and equipment, the risk of
explosions, and adverse effects on workers’ health [41,43,52,53].

Sodium hypochlorite exhibits residual toxicity, necessitating specific precautions during
its application, handling, and storage. The use of personal protective equipment is advised,
along with thorough hand washing procedures [44,45]. A primary concern associated with
the use of sodium hypochlorite is the reactivity of chlorine with organic loads, resulting in the
generation of disinfection by-products [24,54,55]. These by-products, along with the potential
negative consequences on the environment and human health [24,41–43,52,53,56–58], may
lead to negative sensory effects, such as unpleasant odors and taste in fresh produce [43,59].

Additionally, stability and the potential for damage to equipment surfaces are relevant
factors in the application of chemical products. Sodium hypochlorite, being a major
corrosive agent on metal surfaces, including stainless steel [44], can lead to damage and,
after corrosion, may result in the accumulation of organic load. This accumulation can
make sanitation challenging and contribute to the development of microbial biofilm [36,45].

2.2. Peracetic Acid

Considered an environmentally friendly oxidant and disinfectant with low envi-
ronmental impact [60,61], peracetic acid stands out as a key alternative to chlorinated
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compounds [62–65]. One of its notable advantages is its minimal reactivity with proteins,
effectively preventing the formation of biofilms [66].

Commercially, peracetic acid is available as a mixture containing hydrogen peroxide
(H2O2) (10–40%), acetic acid (3–40%) [24,32,67,68], and water [69]. This agent, known for
its environmental compatibility, decomposes into harmless derivatives (acetic acid, water,
and oxygen) [44], which are swiftly metabolized by microorganisms [70]. Possessing lipid
solubility properties, as highlighted by Lazado et al. [71], peracetic acid acts directly and
robustly on cell membranes through hydroxyl radicals [72]. Reactive oxygen species cause
damage to DNA and lipids, disrupting membranes, and blocking enzymatic and transport
systems [73].

Owing to its demonstrated fungicidal and sporicidal efficacy in various applications,
the use of peracetic acid as a disinfectant in the food industry has gained increased attention
in recent years [74]. It is considered highly effective and is applied in different environments,
including food processing, beverages, water from cooling towers, and wastewater [62]. In
the minimally processed industry, which seeks sustainable alternatives to chlorine [54],
peracetic acid is also applied to food contact surfaces [75]. Furthermore, it finds use in
cheese and meat facilities [15], bakeries [36], and is also effective for controlling mycotoxin-
producing species [38]; usually reaching high fungal inactivation when used in intermediate
to high concentrations.

2.2.1. Factors Influencing the Efficacy of Peracetic Acid

Peracetic acid demonstrates lower susceptibility to the presence of organic loads com-
pared to chlorine [24,76]. It is less affected by water from the process and does not lead
to the formation of disinfection by-products or does so to a limited extent [24,52,69,77,78].
Additionally, it exhibits good stability, a high redox potential (1.8 eV) [79], operates efficiently
across a wide pH range (1 to 8) [24,52,80], and functions effectively within a temperature
range of 0 to 40 ◦C [17,52]. However, it comes with a higher cost compared to chlorine, and its
kinetics of slower inactivation have been noted [81,82].

Over the years, research on the antifungal efficacy of peracetic acid has expanded. Studies
against Penicillium digitatum found effectiveness at concentrations of 72 ppm for 8 min at 25 ◦C
and 216 ppm for 30 s at 35 ◦C [83]. At concentrations up to 3.0%, it demonstrated reductions
between 2 and 4 logs for bakery spoilage fungi [36], and for industrial purposes in thermo-
sensitive strains (Cladosporium cladosporioides, Penicillium commune, Penicillium polonicum, and
Penicillium roqueforti) [23]. In the case of Aspergillus brasiliensis (ATCC 16404), peracetic
acid exhibited satisfactory action, completely inactivating the species under various tested
conditions, such as 30 and 40 ◦C at 1% for 10 and 15 min and a 5 min exposure time at 40 ◦C
in both conditions (with/without organic load) [18].

Observations aligned with studies by Silva et al. [17], which evaluated fungal species
isolated from spoiled meat products, and Stefanello et al. [18], which, dealing with standard
strains, suggested that at higher temperatures, the antifungal action of peracetic acid is
enhanced. For instance, when applied at 40 ◦C for 40 s at a concentration of 100 mg/L, its
action was significantly more pronounced than the same treatment at room temperature
(20 ◦C), completely inhibiting Monilinia fructicola conidia in water [80].

2.2.2. Disadvantages of Peracetic Acid

Research indicates that peracetic acid reacts with amino acids, phenols, and other
aromatic substances in wastewater, leading to the formation of approximately 10–30 µg/L
of aldehydes [83]. In a study by Lee et al. [24], comparing minimally processed lettuce
washing water with sodium hypochlorite and peracetic acid at different concentrations,
it was found that peracetic acid washing generated disinfection by-products, albeit in
smaller quantities compared to sodium hypochlorite. These findings contrast with studies
by Cavallini et al. [84] and Araújo et al. [85], who reported limited or undetectable amounts
of halogenated disinfection by-products during wastewater application. Further research
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is necessary to elucidate the formation of disinfection by-products resulting from peracetic
acid treatment.

The use of peracetic acid may also present other disadvantages [86], including a higher
organic content in the effluent, microbial regeneration potential, reduced efficiency against
viruses and parasites, unpleasant odors generated by the formation of acetic acid in high
concentrations, and potential irritation to the skin, eyes, and respiratory tract [87,88]. The
acetic acid released after decomposition and hydrolysis in water [89] can contribute to
regeneration, resulting in an increase in organic load in wastewater or water treated with
peracetic acid [80,90].

2.3. Benzalkonium Chloride

Benzalkonium chloride belongs to the group of quaternary ammonium compounds
(QACs) [91], specifically from the first generation [36]. Quaternary ammonium compounds
typically have at least one long hydrophobic alkyl chain substituent at one end and a short
alkyl chain (methyl, benzyl, or ethyl benzyl) at the other end of the quaternary ammonium
cation [92]. The antimicrobial activity of these compounds depends on the length of the
alkyl chain, with homologous C12 being effective against yeasts and molds, C14 acting
well on Gram-positive bacteria, and C16 on Gram-negative bacteria [93]. These compounds
can be formulated for specific target microorganisms [94–96] and are known for their
low toxicity [97–100]. In lower concentrations (0.5 to 5 mg/liter), quaternary ammonium
compounds, including benzalkonium chloride, also exhibit fungistatic properties [101].

The performance of benzalkonium chloride against food spoilage fungi has shown
promising results. Evaluations of its efficacy at different concentrations (0.3%, 2.5%, and
5%) against spoilage fungal species from bakery products (such as Penicillium roqueforti,
Penicillium paneum, Hyphopichia burtonii, and Aspergillus pseudoglaucus) revealed its effective-
ness in inactivating strains of P. roqueforti [36]. When exposed to different concentrations
of benzalkonium chloride, fungi associated with the spoilage of dairy and meat prod-
ucts, including A. westerdijkiae, A. pseudoglaucus, Penicillium commune, P. roqueforti, and
P. polonicum, exhibited varying degrees of resistance, with meat product spoilers generally
showing higher resistance to this sanitizer [16]. Studies have also reported its effectiveness
against aflatoxigenic fungi, with benzalkonium chloride proving effective against multiple
strains of Aspergillus spp. [38]. Additionally, it has demonstrated good antifungal action
against heat-resistant strains of Paecilomyces variotii, Paecilomyces niveus, and Aspergillus
neoglaber [37].

2.3.1. Factors Influencing the Efficacy of Benzalkonium Chloride

Quaternary ammonium compounds, including benzalkonium chloride, are known for
their stability over a wide temperature range. They also exhibit some detergency, resulting
in higher stability in the presence of organic loads and greater activity in alkaline pH
conditions [102]. The antifungal action of benzalkonium chloride against ochratoxigenic
fungi, such as P. nordicum, P. verrucosum, and A. westerdijkiae, has shown positive results,
even under different conditions of exposure time, concentration, and temperature. Studies
have reported that benzalkonium chloride exhibits effective antifungal action, particularly
at lower temperatures (10 and 25 ◦C). However, its efficacy can be negatively affected in
the presence of organic loads, simulating a dirty environment [17]. Stefanello et al. [18]
also noted greater efficacy of benzalkonium chloride at low temperatures (10 ◦C) against A.
brasiliensis (ATCC 16404). The favorable action at low temperatures is advantageous for the
food industry, allowing for cost savings as there would be no need to heat washing water.
This enables the use of wells and reservoirs, especially when increasing the temperature
throughout the process is neither desired nor required by legislation.

2.3.2. Disadvantages of Benzalkonium Chloride

Insufficient rinsing and sanitizer residue on the surface of equipment can select more
tolerant populations and lead to the development of resistance in microorganisms. Com-
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post waste of quaternary ammonium has been found in various types of foods, such as
meat, dairy products, fruits, and nuts [103,104]. Due to their wide application, quaternary
ammonium compounds have unrestricted use as active ingredients in many commercial
sanitizers. As a result, it has been considered a type of emerging pollutant [105]. The pres-
ence of quaternary ammonium compounds in soil and water prevents the biodegradation
of natural environments due to their toxicity to many species of aquatic and terrestrial
organisms [100]. Furthermore, there is the exposure of microorganisms to sub-lethal concen-
trations of sanitizer [106], facilitating tolerance acquisition by different species and leading
to co-resistance and cross-resistance to other antimicrobial agents such as antibiotics [107].

3. Conclusions

The search for effective sanitizers against food spoilage fungi remains a challenge for
the food industry. Recent studies have evaluated the in vitro antifungal efficacy of various
active ingredients in sanitizers permitted for use in the food industry to control fungi that
are relevant as spoilage agents. However, a common finding is that most sanitizers achieve
the required fungal inactivation only when tested at the highest concentration specified on
the product label. In practice, the food industry tends to use lower concentrations, which
are often ineffective.

Despite ongoing research, there is still a need for more information on the mechanisms
of action of sanitizing agents on fungal cells, the impact of combining different agents,
efficacy against fungal biofilms, and on-site testing. It’s crucial to recognize that there is
no ideal antifungal sanitizer. Each compound has advantages and disadvantages, and its
action is influenced by various factors. There is a consensus that variability exists in the
sensitivity of fungi to sanitizing agents, emphasizing the importance of using the highest
concentrations recommended on the product label for a satisfactory spectrum of action,
typically for at least 10 to 15 min.

Fungal control in the food industry demands careful attention and commitment from
personnel involved in quality control. Developing hygiene plans that consider the correct
and most common factors influencing the antifungal action of each sanitizer is essential
for achieving the desired results. This involves a comprehensive approach to sanitation to
ensure the production of high-quality, contamination-free food products.
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