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Abstract: Chemical analysis of grape juice and wine has been performed for over 50 years in
a targeted manner to determine a limited number of compounds using Gas Chromatography,
Mass-Spectrometry (GC-MS) and High Pressure Liquid Chromatography (HPLC). Therefore, it only
allowed the determination of metabolites that are present in high concentration, including major
sugars, amino acids and some important carboxylic acids. Thus, the roles of many significant but less
concentrated metabolites during wine making process are still not known. This is where metabolomics
shows its enormous potential, mainly because of its capability in analyzing over 1000 metabolites in
a single run due to the recent advancements of high resolution and sensitive analytical instruments.
Metabolomics has predominantly been adopted by many wine scientists as a hypothesis-generating
tool in an unbiased and non-targeted way to address various issues, including characterization of
geographical origin (terroir) and wine yeast metabolic traits, determination of biomarkers for aroma
compounds, and the monitoring of growth developments of grape vines and grapes. The aim of
this review is to explore the published literature that made use of both targeted and untargeted
metabolomics to study grapes and wines and also the fermentation process. In addition, insights are
also provided into many other possible avenues where metabolomics shows tremendous potential as
a question-driven approach in grape and wine research.

Keywords: winemaking; metabolite profiling; non-targeted analysis; classical chemical analysis;
metabolic modelling; yeast physiology and metabolism; vineyard management

1. Introduction

Targeted metabolite analysis of grape juice and wine has been carried out for a long time,
specifically after the development of gas chromatography and mass spectrometry (GC-MS) [1]. Most
of these studies were performed to determine the variety of wine based on its aroma composition [2–8].
Some studies have also focused on the overall composition of grape juice and determined mainly
the amount of sugars, amino acids and some important carboxylic acids using different enzymatic
methods or high pressure liquid chromatography (HPLC) [9–12]. By using classical chemical analytical
methods, it was only possible to determine the specific groups of metabolites that were present usually
in high concentration in both grape juices and wines. The unavailability of appropriate analytical
instruments and suitable methods to determine the concentrations of lower abundant metabolites
were the main reasons behind this scenario [13] Therefore, the exact contribution of many significant
but low-concentration metabolites to the wine fermentation process was not identified. On the
contrary, comprehensive and unbiased approaches of metabolomics are now providing thorough
information about many different groups of compounds in grape juices and wines and are therefore
more advantageous than traditional targeted analysis [13,14].

As one of the most newly introduced “-omic” technologies, metabolomics was initially proposed
as a tool in functional genomics [14]. The other “omics”, technologies: genomics, transcriptomics and
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proteomics are focused on genes, RNA and proteins, respectively, whereas metabolomics is the study
of the most downstream products of cells called metabolites [13] (Figure 1). Metabolomics is typically
known as an unbiased, non-targeted and holistic analysis of cell metabolites [15]. However, application
of targeted metabolomics analysis is also on the rise [16–19]. It is now an emerging research area with
application in different fields including functional genomics and systems biology [14,18,20–26].
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understanding about the biological system (adopted from Pinu [13]).

As a question and data-driven approach, metabolomics already shows tremendous potential in
food and agricultural sciences although the application of metabolomics has started just over a decade
ago [27,28]. Within this time period, it has proven to be an important and powerful approach and has
been used to analyze metabolites in agricultural (and food) products in both targeted and untargeted
ways [16,29–33]. Like other food and agricultural products, the introduction of metabolomics in
grape and wine research also garnered considerable attraction, mostly as a hypothesis-generating
tool [30,34–39]. The main aim of this review is to re-visit the available published literature where either
targeted or untargeted metabolomics has been applied to study grapes, wines and microorganisms
associated with winemaking. Existing challenges and ways to overcome those are also provided in
addition to discussing the future perspectives of metabolomics in grape and wine research.

2. Advancements in Metabolomics as an Emerging Tool within the Last Decade

The main difference among genomes, transcriptomes, proteomes and metabolomes is their
chemical diversity (Figure 1) [13]. Both transcriptomes and genomes provide information on the
polymeric molecules composed of only four bases, while proteomes deal with the analysis of proteins
that are developed by 20 different amino acids. In contrast, the metabolome is exceptionally chemically
diverse and contains 1000 to 200,000 different chemical structures [40,41]. Moreover, metabolites are the
downstream products of cell metabolism and provide links with many diverse pathways that happen
within a cell [13]. Many metabolites are often produced at the same time and the same metabolite can
have roles in multiple pathways [42]. Metabolites produced by the cells often provide phenotypic
information of the cells in response to different environmental and genetic changes [43]. Therefore,
metabolite analysis is very important and provides an integrative overview of the cellular metabolism
and phenotypic characteristics of the cells [13].

The metabolomics community has adopted two different ways of determining metabolome of any
biological sample. Metabolite profiling is one of them and it is one of the most powerful approaches
that is mainly used for untargeted metabolite analysis. In general, an untargeted metabolite profile
usually contains information about both identified and unknown compounds [44]. Recently, targeted
analyses of metabolites have become popular and are often combined with untargeted metabolomics
data. A comparison between untargeted metabolite profiling and targeted analysis is given in Table 1.
Both of these tactics are extensively used for the metabolite analysis of complex samples such cells,
blood, urine and beverages.
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Table 1. Different approaches of metabolite analysis.

Approach Advantages Disadvantages

Targeted
metabolite

analysis

• Low limit of detection
• Usually quantitative
• Data analysis and interpretation are easier
• Metabolite data can be connected

with pathways

• Limited number of compounds can
be targeted

• Non-targeted compounds are
not considered

• Purified standards of targeted compounds
are required for quantification

Untargeted
metabolite
profiling

• Unbiased and comprehensive
• High-throughput
• Allows the discovery of new compounds

not expected to be in the sample or not
expected to be associated with the
biological question

• Semi-quantitative
• Larger number of false positives and

false negatives
• Many unknowns
• Data interpretation can be challenging

This information was collated from [13,15,16,18].

2.1. Development of Sensitive and Reproducible Separation and Detection Techniques

During the last 10 years, the field of metabolomics has achieved a very significant improvement
in terms of the analytical capability, particularly MS technologies. Now, it is possible to measure as
many metabolites as possible using only a minimal amount of samples with high-throughput and
exceptional sensitivity [45]. In mass spectrometry, samples can be introduced in different ways and
sometimes chromatographic separation (e.g., GC, liquid chromatography and capillary electrophoresis)
is a preferred method to allow maximum separation of metabolites in a complex biological sample [13].
However, direct infusion (DI) is also widely used for metabolite profiling, which is usually referred
to as metabolic footprinting or fingerprinting depending on whether the analysis is of extra- or
intracellular metabolites [43,46]. Due to the development of interfacing systems like atmospheric
pressure ionization (API), DI-MS can be used to analyze a sample to obtain mass spectra of metabolites
within a few seconds [43]. The requirement for a small amount of sample is the major advantage
of using DI-MS. Moreover, no derivatization is required for this analysis and more metabolites are
detected by DI-MS compared to GC-MS, making this technique best suited for high throughput
non-targeted metabolite profiling [47]. However, DI-MS shows poor reproducibility when analyzing
complex mixtures due to the matrix effect. The identification of metabolites by DI-MS is also very
troublesome and stereoisomers cannot be resolved using this technique [43,48,49].

A variety of ion sources are available for MS: electrospray ionization (ESI), electron impact
ionization (EI), chemical impact ionization (EI), matrix assisted desorption ionization (MALDI),
thermospray ionization, atmospheric pressure chemical ionization (APCI), fast atom bombardment
(FAB) ionization, field desorption ionization, etc. Among these, EI and ESI are the most commonly
used in metabolomics [50]. The mass analyzers that have also advanced significantly and that are
widely used by the scientific community are: quadrupole (Q), quadrupole ion-trap (QIT), time of
flight (ToF), orbitrap, ion mobility spectrometry (IMS) and fourier transform ion cyclotron resonance
(FT-ICR). Quadrupole mass analyzers are very robust, low cost and simple to use, but they offer lower
mass resolution and accuracy compared to other mass analyzers [43]. On the other hand, ToF, FTICR
and orbitrap, are considered extraordinary instruments that offer the highest mass resolution among
all other mass analyzers [13].

NMR is another analytical instrument that has been extensively used by the metabolomics
community particularly for untargeted metabolite profiling of complex mixtures (i.e., fruit juices,
wines, spirits, urine and blood) [35,51–54]. The efficacy of NMR spectroscopy has been increasingly
renowned for its non-invasiveness (non-destructive), throughput and linearity [55]. Moreover, NMR
spectroscopy also provides structural, chemical-kinetics and other information in multidimensional
applications [56]. Thus, high resolution NMR spectroscopy along with multivariate data analysis
has been used for direct characterization of fruit juices, wine [54,57,58], grape berry [59,60] olive
oil [61,62] and beer [63,64]. To obtain a global metabolite profile of a complex samples, NMR needs to
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be coupled with another non-targeted analytical approach (e.g., MS) [65]. Recently, Bruker developed
and launched an instrumentation platform, scimaX MRMS, that combines the capability of NMR and
MS and provides superior resolution and mass accuracy albeit the high expense.

2.2. Advancements in Data Analysis Pipelines

Mirroring the advancements of the analytical instrumentation platforms, metabolomics data
analysis pipelines have also been improved significantly within last 10 years. Particularly, many efforts
have been made to make data analysis more efficient and user friendly by a few prominent research
groups [45,66,67]. In metabolomics, a few steps are usually involved in the whole data analysis process
after raw data are generated using a suitable instrument. As such, raw data need to be preprocessed
and annotated prior to statistical analysis. Post-processing steps including data filtering, imputation,
normalization, data centering, scaling and transformation are also undertaken [68]. Either in-house or
publicly available or commercial software or tools are used for all these steps. Therefore, data analysis
generally requires a considerable amount of resources including the time of researchers, purchasing a
suite of commercial software or developing the in-house tools.

The type of data analysis software or tools that need to be used generally depends on the
instrumental approach used to generate the data. For instance, data generated by NMR usually are
processed by specific tools designed for aligning and annotating NMR spectra and are provided mainly
by the instrument manufacturers [69]. Databases also are built based on type of samples analyzed
to facilitate the process of identifying particular bin/s within NMR spectra [69,70]. Similarly, many
software and tools also have been developed for the analysis of GC-MS and LC-MS data [71,72].

Open source software and web interfaces are now providing much better platforms for data
analysis, starting from data mining to data interpretation [67,73]. Spicer, Salek, Moreno, Cañueto and
Steinbeck [68] recently published a review article stating most of the freely available software tools
for metabolomics data analysis. Their review covered tools that are used for data pre-processing,
annotating, post-processing and statistical analysis, and readers are advised to consult that review to
obtain a wide overview of the open source software [68]. Most of the available software tools are either
R based [71,74–76] or Python based [72,77,78].

Metabolomics data analysis, like any other omics approaches, is moving towards cloud-based
analysis. According to Warth, et al. [79], cloud computing provides multiple advantages over
downloadable desktop based software mainly because of the straightforwardness of data sharing,
transferring, managing and archiving. They also reinforced the fact that cloud computing allows a
better standardization of data formatting and distribution in addition to ensuring global access of the
data without the need for confined high-end computational hardware [79]. However, this process
does not come without challenges as it requires a consistent and fast internet connection and often
may face security issues in terms of intellectual property [79]. Regardless of the associated risks, cloud
computing is becoming very popular for metabolomics data analysis and there are already platforms
that make use of this approach, such as XCMS online [67] and Metaboanalyst [80]. Researchers
across the different continents are now making use of these cloud-based metabolomics data analysis
pipelines. For instance, Metaboanalyst was used by 60,000 researchers from 2000 cities around the
world over the past 12 months, and approximately 6000 jobs per weekday or 150,000 jobs/month
are usually submitted to this web interface [80]. XCMS online has over 4500 registered users from
120 different countries [67]. These data clearly indicates the popularity and usefulness of cloud-based
metabolomics data analysis. The rise of cloud-based data analysis is not only allowing us to handling
more data with ease, it is also helping us to tease out the biological meanings from the metabolomics
data. However, we are still far from unravelling the true potential of all the datasets available within
metabolomics community.

Continuous development of analytical instrumentations and data analysis platforms together
is now providing us access to enormous amount of metabolomics data. This brings forward
another important issue, and the metabolomics community is now discussing how to manage the
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openly available metabolomics data [81]. Community-based initiatives (e.g., MetaboLights and
Metabolomics Workbench) develop tools that would allow the storing and exchanging the huge amount
of heterogeneous data [82,83]. In addition, efforts of standardizing data sharing and reporting also
began in 2007 by a metabolomics community driven initiative, the Metabolomics Standards Initiative
(MSI) [84]. Recently, another initiative, COSMOS (Coordination of standards in metabolomics),
has started its journey to fill the existing gaps in data reporting and sharing by taking some examples
from other omics approaches [85]. Therefore, the metabolomics community is well aware of existing
and upcoming challenges due to the omics revolution. This will in turn encourage the further
improvements of data analysis pipelines.

3. Application of Metabolomics in Grape and Wine Research: State of the Art

The analysis of grape juice or wine samples can be problematic due to the complex matrix
arising from either a high sugar or alcohol content. The detection of compounds present at very
low concentrations in grape juice and wine can be hampered. Therefore, the matrix effect (ME) may
result in poor and unreliable data as it has significant effect on the reproducibility, linearity and
accuracy of the methods used by various analytical instruments [86]. ME is a key concern for the
analysis of complex biological samples by LC-MS and many studies already have been undertaken
to address this issue [87–93]. A sample clean-up step using SPE or SPME or liquid extraction is
usually performed to avoid or reduce ME prior to analysis of samples by other methods [93]. More
efficient chromatographic separation is also suggested by Trufelli, Palma, Famiglini and Cappiello [86].
However, these pre-analytical steps are time-consuming, arduous and often can cause loss of analytes,
which is not appropriate for an unbiased profiling approach [86,87,94]. Details on sample preparation
of grapes, wines and related microorganisms are provided in Lloyd, Johnson and Herderich [38].

Despite ME being a major issue for the analysis of grape juices and wines, comprehensive
metabolite profiling is becoming an important tool these days. This approach has been efficaciously
applied to distinguish white wines [95], to observe vintage effects on juices [96] and also to obtain
information about grape chemical composition, wine typicity and quality [97]. Howell, et al. [98] also
used metabolite profiling by GC-MS to determine the connections of different Saccharomyces species
during wine fermentation. Comprehensive metabolome analysis of Sauvignon blanc grape juices and
wines also revealed some new insights on the relationship of juice metabolites with key wine volatile
metabolites [34]. Hence, untargeted metabolite profiling is indeed a favorable tool in grape and wine
research. In addition, many researchers are using a targeted approach to determine specific groups of
metabolites in grape juices, wines and wine yeasts [31,99,100]. However, it is noteworthy that even a
targeted analysis using a high-resolution analytical platform is able to provide information of over
hundreds of metabolites. For instance, lipidomics is one of the branch from targeted metabolomics
that allows the determination of wide ranges of lipid species and fatty acids (often over 500) using a
suitable analytical instrument [101]. On the other hand, an untargeted approach is gaining popularity
for the analysis of volatile compounds in different biological samples, including wines, and often,
this area is referred to as a “volatilome” [30,102–104]. Table 2 represents the comparisons between
commonly used analytical instruments and their application in grape and wine research [13].

One of the major outcomes from metabolomics is the development of methods for the analysis of
different groups of metabolites in complex grape and wine samples [33]. While targeted metabolomics
led to the development of methods suitable for the analysis of particular group of metabolites
with accuracy and sensitivity, untargeted metabolomics is now enabling us to detect thousands
of metabolites just in a single run. Metabolomics has been applied to different areas of agriculture and
food sciences albeit the number of publications is much lower compared to other areas (e.g., biomedical,
cancer research). Based on the data obtained from Web of Science (on 4th October, 2018), a total of
198 and 154 articles (research and review) have been published in wine and grape metabolomics,
respectively, within the last 13 years (Figure 2).
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Table 2. Comparisons among different analytical instruments used in targeted and untargeted
metabolite analysis of grape juices and wines.

Analytical
Technique Advantages Disadvantages Use in Grape and

Wine Research

GC-MS

• High chromatographic resolution
• Sensitive and robust
• Simultaneous analysis of different

groups of metabolites
• Large linear range, availability of

commercial and in-house
MS libraries

• Derivatization is required for
non-volatile metabolites

• Unable to analyze
thermolabile compounds

[8,30,31,34,98–110]

LC-MS

• High sensitivity, Derivatization not
usually required

• Large sample capacity
• Thermo-labile compounds can

be analyzed

• Average to poor
chromatographic resolution

• De-salting may be required
• Limited commercial libraries
• Tough restrictions on LC eluents
• Matrix effects

[36,111–119]

NMR

• Rapid analysis
• Non-destructive
• Minimal sample preparation
• Quantitative

• Low sensitivity
• More than one peak

per component
• Identification is laborious due to

complex matrix

[59,60,95,107,120–
123]

CE-MS

• High resolution, small volume of
sample required

• Rapid analysis
• Usually no derivatization required

• Poor reproducibility
• Poor sensitivity
• Buffer incompatibility with MS
• Difficulty in interfacing with MS
• Limited commercial libraries

[124,125]

Interestingly, approximately 70% of these articles were published within last five years, which
clearly shows that grape and wine researchers are more interested in adopting metabolomics either in
a targeted or in an untargeted manner (Figure 2). Based on this published research, some of the most
interesting applications are discussed below mainly by highlighting those published in last five years.
Readers are also recommended to consult three other review articles where the potential applications
of metabolomics in different aspects of grape and wine research have been discussed [35,37,38].

3.1. Untargeted Metabolomics As A Hypothesis-Generating Tool in Grape and Wine Science

The journey of metabolomics as an omics tool started over 20 years ago, mainly as a data- and
question-driven approach. Therefore, most of the earlier publications in grape and wine metabolomics
also aimed to determine as many metabolites as possible in order to develop some new insights into
grape growing and winemaking [34,105,117,120]. In 2008, a technology feature was published in
Nature that coined a word “wine-omics” to discuss a research project by Kirsten Skogerson at the
University of California, Davis, where metabolomics was used as a data-driven approach [126]. Since
then, many others adopted untargeted metabolomics to generate hypotheses regarding the role of
wine yeasts and grape juice components in the development of wine aroma compounds. For instance,
both GC-MS- and NMR-based methods were developed for the untargeted analysis of Sauvignon
blanc grape juices and wines [34]. Combined data allowed the authors to generate some data-driven
hypotheses for the role of different juice metabolites in the major wine aroma compounds (varietal
thiols). The results from a simple juice manipulation experiment confirmed the hypotheses and showed
the capability of metabolomics as a hypothesis-generating tool [34]. Similarly, Arapitsas, et al. [127]
applied an untargeted LC-MS based metabolomics platform to study the role of micro-oxygenation
during winemaking. They formulated hypotheses on the development and reactivity of wine pigment
and the role of different primary and secondary metabolites in this matter, thus revealing the benefits
of using unbiased, untargeted metabolomics to advance their understanding of wine chemistry [127].
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Since the beginning, there was an ongoing need to develop improved analytical platforms
that would allow the determination of a large number of metabolites within the grape and
wine metabolome. The use of high-resolution MS instrumentations, such as, fourier transform
mass spectrometry (FTICR-MS) and ultra-high performance liquid chromatography coupled
with quadrupole time-of-flight mass spectrometry (UPLC-Q-ToF-MS) in wine analysis in an
untargeted manner is now making it possible to detect metabolites with high precision and mass
accuracy [32,116–118,128]. In addition to revealing the true complexity of the wines, this approach is
now adding another dimension in terms of obtaining exact mass for formula calculation with retention
time information of unknown molecules [117]. Liu, Forcisi, Harir, Deleris-Bou, Krieger-Weber, Lucio,
Longin, Degueurce, Gougeon, Schmitt-Kopplin and Alexandre [128] also applied untargeted metabolite
profiling using FTICR-MS and UPLC-Q-ToF-MS to determine the outcomes from the interaction of
malolactic bacteria and yeasts that either stimulate (MLF+) or inhibit (MLF−) malolactic fermentation.
In this study, they were able to detect 3000 discriminant masses that characterized the phenotypes of
both MLF+ and MLF− yeast strains in addition to determining MLF− biomarkers. A combination of
both targeted and untargeted metabolomics approaches was also found to be beneficial in determining
the role of ethanol stress in an off-odor producing yeast, Dekkera bruxellensis, and also in generating
new knowledge on this contaminant yeast [129].

An untargeted metabolomics approach usually provides an opportunity to look at the system in a
holistic way and encourages thinking outside the box and not to be reductive. Therefore, the application
of this approach generated a mammoth amount of data in grape and wine research [33,34,109,130].
In the near future and with the development of suitable data analysis platforms, these data can be
explored to their full potential. Thus, it shows the promise of new innovation and generation of new
knowledge to fill the current gaps.

3.2. Study of Terroir, Authenticity and Originality of Grapes and Wines Using a Metabolomics Approach

Wine is a comparatively expensive commodity in modern society, and winemaking is considered
not only a science, but also an art. Therefore, both originality and terroir are important aspects for the
wine producers, particularly for wine makers from old world countries (e.g., European countries).
Metabolomics approaches have been applied in this area of wine science to provide analytical tools
that would allow differentiation among different wine growing regions [59,118,131], quality control
and authentication of wines [55,132]. In a review article published in 2015, Alanon, Perez-Coello
and Marina [35] provided a comprehensive discussion on the application of metabolomics by using
different instrumentation platforms on wine traceability. Therefore, this section will mostly highlight
the works in this subject matter published from 2014 until now.

NMR was the instrument of choice for most of the studies that dealt with terroir, authenticity
and originality of grapes and wines [58,60,123,131] and Amargianitaki and Spyros [132] provided
an excellent overview of application of NMR-based metabolomics in this area. Some of the most
recent studies [60,133] that made use of NMR-based metabolomics again re-inforce the fact that
NMR is a powerful instrumental approach with high reproducibility and requires minimum sample
preparation [55]. For instance, Cassino, Tsolakis, Bonello, Gianotti and Osella [133] applied 1H
NMR-based metabolomics and chemometrics to differentiate the grapes produced within the Barbera
regions of Italy. In addition, they also determined the influence of different climatic factors on the
wine composition. One of the interesting studies from Picone, Trimigno, Tessarin, Donnini, Rombola
and Capozzi [60] reported the differences among grapes produced by different cultivation systems
(biodynamic and organic) using comprehensive NMR analysis. They found a lower amount of sugars,
coumaric and caffeic acids and higher concentrations of proline, valine and γ-aminobutyric acid
(GABA) in biodynamic grapes than in organic ones. These results clearly indicate that cultivation
practices alter the grape metabolome and as a result will also have significant effect on wine quality.
Although NMR is widely used for grape and wine analysis, it is noteworthy that this instrument is
mainly capable of detecting metabolites that are usually present in higher concentrations [34].
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In comparison to NMR, MS provides far better coverage of metabolites present in any biological
samples and many studies have been published last five years to demonstrate the application
of MS-based metabolomics in determining growing regions of grapes and wines. For example,
Roullier-Gall, et al. [134,135] developed analytical platforms using high-resolution MS techniques that
were able to detect over thousands of features in grape and respective wine samples. Using these data,
they showed the effects of geographical location and vintages on the grape and wine composition
produced in Burgundy regions. Bokulich, et al. [136] reported another interesting study demonstrating
the relationship between berry microbiome and metabolome and their combined effect on wine terroir.
They surveyed over 200 commercial wine fermentations within Napa and Sonoma wine counties and
determined the wine metabolite profiles using UHPLC-QTOF-MS. Using machine learning models,
they showed that the bacterial and fungal consortia in wines correlate with the chemical composition
of the finished wines, thus directly influencing the regional characteristics of the wines [136].

A combination of different MS-based metabolomics approaches also seemed to be successful
in finding out the terroir effect on grapes and wines. Anesi, et al. [137] applied both GC-MS- and
LC-MS-based metabolomics to analyze grape berries from a single clone of the Corvina variety grown
in seven different vineyards, located in three macrozones, over a 3-year trial period to determine the
effect of terroir. Their results showed that the berry metabolome is mainly affected by the vintage.
While some of the non-volatile (e.g., stilbene, anthocyanins and flavonoids) and volatile metabolites
showed a trend of plasticity over the three vintages, other metabolites including procyanindins and
flavan-3-ols seemed to be much more stable.

3.3. Study of Yeast Metabolism and Aroma Compound Development during Wine Making

The use of both targeted and untargeted metabolite analysis provides a snapshot of any
microbial metabolism based on the growing environment [108,138]. The fermentation process during
winemaking is mainly dominated either by a single inoculated commercial wine yeast strain or by a
number of wine yeasts already present in the grape juices [139]. Regardless of the type of fermentation,
the environmental condition is generally not favorable for any types of yeasts considering grape
juice is a high sugar (hyperosmotic stress) and low nitrogen (nutrient limited) growth medium [140]
(Figure 3). Moreover, once the fermentation begins and ethanol is produced, wine yeasts go through
oxidative stress and ethanol toxicity [108] (Figure 3). As metabolomics allows the analysis of hundreds
of metabolites in a single run, it is an excellent tool for the study of the metabolic behavior of wine
yeast strains.

Over the past decade, many metabolomics studies have been carried out to determine effect of
juice or growth media composition on overall wine yeast metabolism, with particular attention on
the developments of fermentation end products [107,108,141]. For instance, two publications from
a research group of the University of Auckland reported changes before and after fermentation in
Sauvignon blanc juices and how juice composition influences the major varietal aroma compound
production by Saccharomyces cerevisiae EC1118 [34,107]. Based on a combination of comprehensive
metabolite analysis by two different analytical platforms (GC-MS and NMR), they analyzed 63 grape
juices and respective wines produced over six different seasons and showed that assimilation of
different nitrogen and carbon sources by EC1118 depended on the overall grape juice composition [107].
Moreover, their studies provided some new insights into the metabolism of a wine yeast strain and
generated new hypotheses about the potential roles of juice metabolites on the development of varietal
aroma compounds. Their data together with other published information provided knowledge
on how the biosynthetic pathways of secondary metabolites (e.g., thiols) are expected to be highly
interconnected to primary central carbon metabolic pathways. Therefore, any alterations in one or
more of these primary metabolic pathways are likely to influence the biosynthetic tariffs of secondary
metabolites (Figure 3).
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Figure 3. The anticipated metabolic network related to varietal thiol pathways in Saccharomyces
cerevisiae based on the metabolomics data published by Pinu, Edwards, Jouanneau, Kilmartin, Gardner
and Villas-Boas [34]. This figure shows the transport mechanisms of different metabolites into the
yeast cells. The amino acid transporters regulated by Ssy-Ptr3-Ssy5 (SPS) genes are shown in purple
and the transporters regulated by nitrogen catabolite repression (NCR) are shown in blue. It also
presents the major pathways of yeast metabolism and how they are connected to the formation of
volatile thiols. The red (solid) arrows indicate the suggested ways for the transportation of putative
precursors to the yeast cells, while the dashed red arrows indicate which metabolites (e.g., nitrogenous
compounds, organic acids and fatty acids) influence the production of varietal thiols in Sauvignon blanc
wines. The information for this figure was collated from Pinu [13], Aliverdieva, et al. [142], Crépin, et
al. [143], Cooper [144], Hofman-Bang [145], Henscke and Jiranek [146]. Here, cys-3MH and cys-4MMP
denote the cysteinylated precursors of 3-mercaptohexanol (3MH) and 4-mercapto-4-methylpentan-2-ol,
respectively, and GSH-3MH is the glutathionylated precursor of 3MH.

The influence of different groups of metabolites, particularly amino and fatty acids, and
fermentation conditions on winemaking and also on wine yeast metabolism is a well-studied
area [108,141,147–151]. A considerable amount of new knowledge has been generated in this matter
mostly by using targeted metabolomics or a metabolite-analysis approach. Most of these studies
were performed either using a natural grape juice medium [108,141] or grape juice-like synthetic
media [149,150]. Casu, Pinu, Fedrizzi, Greenwood and Villas-Boas [108] investigated the effect of
pre-fermentative supplementation of an unsaturated fatty acid, linoleic acid, on the metabolism and
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aroma compound production by three different wine yeast strains. Using a GC-MS-based metabolomics
approach, they showed that increased concentration of linoleic acid affected different primary
(e.g., amino acids) and secondary metabolites (e.g., varietal thiols and acetate esters) in a strain-specific
manner. Another experiment from the same laboratory also revealed that pre-supplementation of
different saturated and unsaturated fatty acids during Sauvignon blanc fermentation significantly
affected the metabolism of wine yeast and as a result, end product formation [141]. These metabolomics
studies together generated an awareness for the wider wine industry to select wine yeast based on the
juice composition in order to obtain wines with desired aromatic profiles.

The effect of temperature and micro oxygenation/oxygen impulse on wine yeast metabolism
is another area of wine science where metabolomics was used as a tool [150,152]. For example,
López-Malo, Querol and Guillamon [150] compared the metabolome of commercial wine yeast strains
(S. cerevisiae, S. bayanus var. uvarum and S. kudriavzevii) at 12 ◦C and 28 ◦C in a synthetic grape
must medium. Their data confirmed that cryotolerant yeast species (S. bayanus var. uvarum and
S. kudriavzevii) responded differently to the temperature difference than the S. cerevisiae strain and the
main difference was observed in carbohydrate metabolism. Moreover, an elevated shikimate pathway
activity was found in S. bayanus var. uvarum, while NAD+ synthesis increased in S. kudriavzevii in
response to cold temperature. Another study from Rollero, Bloem, Camarasa, Sanchez, Ortiz-Julien,
Sablayrolles, Dequin and Mouret [152] reported the development of a model to predict the combined
effect of nutrition (nitrogen and lipid) and temperature on the production of fermentative aroma
compounds by S. cerevisiae EC1118 during winemaking. Their results again proved the complex effect
of different environmental parameters on non-volatile and volatile metabolites and shed new light on
the synthesis and regulation of secondary metabolites.

3.4. Combination of Metabolomics and Transcriptomics to Unravel New Knowledge

As a metabolomics approach provides information on the most downstream products of a cell
system, the combination of this tool with other omics approaches can be extremely powerful and may
allow the generation of unique knowledge or help to fill the knowledge gaps [139]. Many multi-omics
integration studies have already been performed to elucidate more details of S cerevisiae metabolism as
a cell factory. This integrated approach is still under-utilized in grape and wine research compared to
other food and agricultural sectors and only few publications can be found. However, a combination of
metabolomics and transcriptomics has been adopted to study different wine yeast strains under wine
fermentation-like conditions to develop new insights into the role of oxygen impulse on S cerevisiae
wine strains [153,154] and to explore the aroma profiles of wines produced by different S cerevisiae
strains of diverse origins [155].

Stuck fermentation can be a huge problem in winemaking and various technologies are already in
use to re-start the fermentation process. Among those, oxygen impulse is often used to avoid the loss
of a whole batch of wines. Using integrated metabolomics and transcriptomics, Aceituno, Orellana,
Torres, Mendoza, Slater, Melo and Agosin [153] investigated the effects of different ranges of dissolved
oxygen on the metabolism of S cerevisiae EC1118 grown under a carbon-sufficient but nitrogen-limited
medium. They showed that an increase in dissolved oxygen from 1.2 to 2.7 µM caused the yeast
cells to change their metabolism from a fermentative to a mixed respiro-fermentative one, which was
characterized by a shift in the process of the tricarboxylic acid cycle (TCA) and an activation of NADH
transferring from the cytosol to mitochondria. They also observed a significant change in several key
respiratory genes, and also in genes related to proline uptake, cell wall remodelling, and oxidative
stress. In addition, their results indicated that respiration was accountable for a large portion of the
oxygen response in yeast cells during alcoholic fermentation. Another study from the same group also
showed the physiological response of S cerevisiae EC1118 strain to the sudden increase of dissolved
oxygen in a carbon-sufficient but nitrogen-limited medium [154]. Their results confirmed the induction
of genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress and the
repression of mannoprotein coding genes in response to the increased amount of dissolved oxygen
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in the growth medium. However, the authors highlighted the fact that oxygen plays a dual role in
winemaking considering some potential detrimental effects on wine aroma, although their integrated
omics approach provided some new knowledge on the beneficial influence of oxygen availability on
wine yeast metabolism [154].

Integration of transcriptomics and metabolomics data can also be used for the generation of
new insights into the yeast metabolism and fermentation process, particularly aroma compound
development. For instance, Mendes, Sanchez, Franco-Duarte, Camarasa, Schuller, Dequin and
Sousa [155] performed a comparative transcriptomics and metabolomics analysis of four yeast strains
from diverse origins (e.g., wine, sake, cacha double dagger and laboratory) at two time points. They
used a multivariate factorial analysis to identify new markers that can be used for improvement of
aroma production. The combined omics data allowed them to differentiate all the yeast strains at
both the metabolic and transcriptomic level and extended their knowledge on the production of wine
aroma and flavor. They also identified new genes associated with the development of flavor active
compounds, primarily those related to the production of fatty acids, and ethyl and acetate esters [155].

3.5. Application of Metabolomics to Study Grape Growth Developments and Grape Vine Disease

Metabolomics is comparatively a new tool for viticultural studies and only a few publications are
available that show the suitability of this omics approach, mostly in a targeted manner to study the
vine and grape berry development [59,110,156,157]. Recently, Cuadros-Inostroza, Ruíz-Lara, González,
Eckardt, Willmitzer and Peña-Cortés [110] published a GC-MS based metabolomics study that aimed
at gathering more information on primary metabolites during the grape berry development in different
cultivars. They analyzed grape berry samples of two cultivars across six stages (from flowering to
maturity) using an untargeted metabolite profiling approach. They identified 115 metabolites in
those samples and showed that the changes in metabolite composition were growth stage specific
and particularly more distinct during fruit setting and pre-veraison. Moreover, they performed a
network analysis and confirmed again that network connectivity of primary metabolites was stage
and cultivar dependent. Therefore, they suggested some association between primary metabolites
during berry developmental processes between different grapevine cultivars [110]. Another study
from Hochberg, Degu, Cramer, Rachmilevitch and Fait [156] also determined the differences in berry
metabolism in Shiraz and Cabernet Sauvignon vines under shortfall of irrigation by determining
berry skin metabolite profiles using both GC-MS and LC-MS. They clearly observed different types of
effect of water deficit on berry metabolism between these two cultivars and showed that water deficit
increased the production of stress-related metabolites (e.g., proline, beta-alanine, nicotinate, raffinose
and ascorbate) more in Shiraz than the Cabernet Sauvignon grapes. Moreover, water stress affected the
polyphenol metabolism uniquely for each cultivar. This metabolomics study revealed a link between
the vine hydraulics and water stress-related differences in berry skin metabolism [156].

In addition to grape berry development, early detection of grape vine disease through
metabolomics may become an important area of research. A recent study reported some interesting
findings on a grape vine disease (grape vine downy mildew) pathosystem using a multi-omics
(genomics, transcriptomics and metabolomics) approach [158]. The combination of multiple omics
data allowed the authors to characterize the pathosystem of downy mildew causing pathogen,
Plasmopara viticola, in a molecular and biochemical level. They also determined a potential
RNA-based marker that can be used to screen novel resistant grape varieties. Other earlier work by
Benheim, et al. [159] also showed the capability of the metabolomics approach in determining potential
biomarkers for an early detection method for phylloxera infestation in grapevine. They identified four
flavonoid compounds: isorhamnetin glycoside, rutin, kaempherol glycoside and quercetin glycoside
in grape vine leaf using LC-MS and validated the specificity of these compounds against phylloxera
through field and glasshouse-based trials against nutrient and water stress. A further NMR based
metabolomics study of grape vine leaves from phylloxera infested and uninfested vines also revealed
the key metabolic changes that occur in the grape vine [160]. For instance, they found that sucrose,
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caffeic acid and quercetin were up-regulated in infested grapevines while glucose and leucine were
downregulated. Based on both of these studies, they suggested quercetin as a potential marker that
could be used for the early detection of phylloxera infestation in grape vines.

4. Future Perspectives

In comparison to classical chemical analysis of grape juices and wines, targeted and untargeted
metabolomics approaches are more beneficial as these approaches are able to cover more metabolites,
including those present in very small concentrations. Both analytical platforms and data analysis
pipelines have improved considerably; therefore, our knowledge on different types of metabolites and
related pathways has also advanced considerably compared with the last decade. The application of
untargeted metabolomics in grape and wine research resulted in the generation of huge amount of data.
However, it is still unfortunate that we are currently unable to identify many of the metabolites present
within the grape and wine metabolome. Without identification, the interpretation of the metabolomics
data is not complete and sometimes meaningless as it is impossible to connect metabolites without
identity with pathways [161]. This somehow caused confusions and many are adopting targeted
metabolome analysis of specific groups of metabolites within grape and wine research. With targeted
analysis, it is now possible to detect and identify over hundreds of metabolites in a single run,
particularly using MS-based analytical techniques.

Further developments of analytical instrumentations and data analysis platforms within the next
years will allow the generation of even larger data sets. However, the metabolomics community is
now well aware of the upcoming issue of omics data revolution and many research groups are now
building platforms to make metabolomics data more accessible and manageable [81]. There is also a
growing interest in making metabolite identification more robust [161]. This will indeed support the
notion of making more sense out of the data obtained from any metabolomics experiment. For instance,
machine learning and deep learning approaches are improving; this will in turn be useful to tease out
those ever increasing data sets by determining the key features, thus allowing better interpretation of
metabolomics and other omics data [162,163].

Efforts have already been made to create databases of metabolites present within a particular
system (e.g., food metabolome) [164]. Similarly, grape and wine metabolite databases will also
be publicly available, thus providing more information on how grape juice and respective wine
composition varies from season to season and region to region [33]. For example, in New Zealand,
a comprehensive research program on Sauvignon blanc grape juices and wines has been conducted
with the help of the government, and industry provided funding that built a nationwide collaboration
among universities and research institutes. Under this program, a database has been created that
contains metabolite and other compositional data sets of over 400 grape juices and wines collected over
three different seasons and from all the wine-producing regions. This database also harbors information
provided by the grape growers and weather stations. Further work on building a predictive tool for
the winemakers is ongoing by using these data sets (data not yet published).

It is clear that the application of single omics is still unable to provide a holistic overview of
any biological system. Therefore, combinations or the integration of omics methods is becoming
increasingly popular although there are still many limitations. The future of grape and wine research
will also benefit from the adoption of multi-omics or system biology approaches [140]. Metabolomics
combined with genomics, proteomics and transcriptomics could be an extremely powerful tool to
study wine yeast metabolism and the overall fermentation process. Connection of metabolites with
related genes, proteins and RNAs could lead to the generation of new knowledge on metabolism
of wine yeast and other related microorganisms in addition to discovering or improving different
microbial strains via metabolic engineering to be used during fermentation.

The field of genome scale modelling is substantially developed [165], and this platform can
be used to connect genes, proteins and related metabolites. A genome-scale metabolic model
(GEM) or reconstruction of different industrially significant microbes (e.g., S cerevisiae) is already
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available [166,167]. Over 12 genome-scale metabolic reconstructions are available for S cerevisiae [168].
Professor Eduardo Agosin’s research group from Pontifical Catholic University of Chile has done
a considerable amount of work on creating GEMs for different wine microorganisms including
Oenococcus oeni and Pichia pastoris [169–172]. Therefore, guidelines are already available and this
approach can be easily applied to microbial strains used in winemaking. Predictive tools for the
winemakers can be developed by integrating metabolic modelling and metabolomics approaches. The
wine research community and wine industry will benefit if such tools could be available to aid decision
making on what type of juice or yeast strain should be used for the production of wine styles based on
consumers’ demand.

5. Conclusions

Due to the availability of analytical instruments with high resolution and exceptional sensitivity,
the analysis of metabolites either in an untargeted or a targeted manner allows us to determine a
large number of metabolites. Data analysis pipelines have also developed significantly; therefore,
application of metabolomics in grape and wine research is increasing exponentially. Although the
ever-increasing number of unknown metabolites is hindering the data interpretation process, this
can be overcome in the near future, and community efforts are already underway to deal with this
particular issue. As mentioned earlier, the application of metabolomics in grape and wine research is
more recent and many are exploring the potential of this approach. However, metabolomics combined
with other omics approaches is becoming extremely useful and can be applied in all sectors of grape
and wine research. Thus far, we have already generated a significant amount of data and knowledge
on grape and wine production systems. In future, this area will most probably lead towards the
development of approaches to combine genome-scale metabolic modelling with metabolomics and/or
integration of multiomics.
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