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Abstract: Numerous studies have shown a link between the consumption of fermented dairy foods
and improved health outcomes. Since the early 2000s, especially probiotic-based fermented functional
foods, have had a revival in popularity, mostly as a consequence of claims made about their health
benefits. Among them, fermented dairy foods have been associated with obesity prevention and in
other conditions such as chronic diarrhea, hypersensitivity, irritable bowel syndrome, Helicobacter
pylori infection, lactose intolerance, and gastroenteritis which all are intimately linked with an
unhealthy way of life. A malfunctioning inflammatory response may affect the intestinal epithelial
barrier’s ability to function by interfering with the normal metabolic processes. In this regard, several
studies have shown that fermented dairy probiotics products improve human health by stimulating
the growth of good bacteria in the gut at the same time increasing the production of metabolic
byproducts. The fermented functional food matrix around probiotic bacteria plays an important
role in the survival of these strains by buffering and protecting them from intestinal conditions such
as low pH, bile acids, and other harsh conditions. On average, cultured dairy products included
higher concentrations of lactic acid bacteria, with some products having as much as 109/mL or g.
The focus of this review is on fermented dairy foods and associated probiotic products and their
mechanisms of action, including their impact on microbiota and regulation of the immune system.
First, we discussed whey and whey-based fermented products, as well as the organisms associated
with them. Followed by the role of probiotics, fermented-product-mediated modulation of dendritic
cells, natural killer cells, neutrophils, cytokines, immunoglobulins, and reinforcement of gut barrier
functions through tight junction. In turn, providing the ample evidence that supports their benefits
for gastrointestinal health and related disorders.

Keywords: dairy; milk; functional food; probiotics; fermentation; disease models

1. Introduction

Milk and dairy products are known to contain bioactive compounds that are needed
for many biochemical and physiological processes [1]. Because of this reason, they are an
important part of a healthy diet. Fermented dairy functional foods, when consumed in
enough proportions as part of a balanced diet on a regular basis, provide health benefits.
In addition, this functional food also provides the body with critical nutrients such as
vitamins and minerals [1]. Since fermented dairy functional foods are one of the fastest-
growing parts of the food industry, it is important to know what they are. In addition to
providing nutrients and energy, functional foods have a positive effect on one or more

Fermentation 2022, 8, 425. https://doi.org/10.3390/fermentation8090425 https://www.mdpi.com/journal/fermentation

https://doi.org/10.3390/fermentation8090425
https://doi.org/10.3390/fermentation8090425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com
https://orcid.org/0000-0003-3024-9379
https://doi.org/10.3390/fermentation8090425
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com/article/10.3390/fermentation8090425?type=check_update&version=2


Fermentation 2022, 8, 425 2 of 25

specific biological functions, either by improving a particular physiological response or by
lowering the risk of disease, mostly by protecting the gut epithelial layer and maintaining
the balance for gut immune homeostasis [2]. The epithelial cells in the gut serve as primary
barrier surfaces that separate hosts from their external environment and have a substantial
influence on the formation and function of the mucosal immune system.

Dietary components have the utmost influence on the intestinal environment due to
their ability to modulate the intestinal barrier and perform various biochemical processes
such as antimicrobial, antihypertensive, antioxidant, and anticancer [3]. Many studies have
been undertaken to investigate the role of dietary components of fermented functional
foods in intestinal permeability to identify potential correlations between diet, permeability,
obesity, and inflammatory bowel disease and other diseases. Additionally, fermented
dairy products are ideal for delivering probiotic bacteria to the human gut and provide the
optimal environment for their growth [4]. Probiotics are described as “live microorganisms
that bestow a health benefit on the host when provided in sufficient doses” [5,6]. Lactic
acid bacteria (LAB) such as Lactobacillus, Streptococcus, Lactococcus, Bifidobacterium, and
Leuconostoc are most common probiotic bacterial strains in fermented dairy products, either
as starter cultures or naturally existing components of the raw material. Fermentation
preserves and enhances the viability and production of microorganisms while retaining
their probiotic characteristics [7,8]. The molecular components of probiotics associated
with fermented foods influence disease-regulating mechanisms either as prophylactics or
therapeutically, and such foods are often known as nutraceuticals, foodiceuticals, functional
foods, or medifoods [9]. Recently, extensive research has been conducted on the effect of
fermented functional products on human health, including epidemiological, observational,
and clinical investigations. This review focuses on the importance of dietary fermented
functional foods and their role in maintaining the homeostasis of gut microbiota and the
associated immune system.

2. Dairy-Based Functional Food: Its Composition and Application in Human Health

Milk is the richest source of nutrients coupled with bioactive functional characteristics
which contributes to the growth and nourishment of infants. In milk, whey accounts for
around 85–95 percent of milk’s volume and maintains 55% of milk nutrients. Of these,
lactose (4.5–5 percent w/v), soluble proteins (0.6–0.8 percent w/v), lipids (0.4–0.5 percent
w/v), and mineral salts (8–10 percent w/v of dry extract) are the most prevalent nutrients.
Whey contains more than half of total milk solids, lactose, and water-soluble vitamins as
well as whey protein (20% of total protein), which is rich in essential amino acids such
as lysine, isoleucine, threonine, and tryptophan [10]. Beta-lactoglobulin (BLG) (58%) and
alpha-lactalbumin (13%), together with trace levels of immunoglobulin, serum albumin,
and protease peptone, are the predominant whey proteins. It includes a variety of anti-
microbial peptides and other compounds that have a beneficial effect on a number of
diseases [11,12]. Most whey salts are composed of sodium chloride and potassium chloride
(>50%), and calcium salts (mainly phosphate). In addition to these, whey contains lactic
(0.5% w/v) and citric acids, non-protein nitrogen molecules such as urea and uric acid, and
B group vitamins.

Studies also suggested that the fermentation of whey produces protein hydrolysates
that are more absorbable than complete proteins, improve gastrointestinal health, reduce
allergies/intolerance-related symptoms, and have immune-boosting effects [13]. Using
mass-spectrometer-based high throughput analysis, it was shown that the milk whey
contains 6210 unique proteins that are engaged in a wide variety of biological activities [14].
In addition to a high number of milk proteins, it also known to contain omega-3 fatty
acids, phytosterols, isoflavins, conjugated linoleic acid, minerals, and vitamins, and so has
a significant impact on the creation of functional foods. In vitro and in vivo studies have
observed that fermented dairy products assisted in the maintenance of normal mucosal
homeostasis and provide protection against various metabolic and pathogen-mediated
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diseases through their anti-oxidative, anti-microbial, anti-fungal, anti-inflammatory, anti-
diabetic, and anti-atherosclerotic properties (Table 1).

Table 1. The studies demonstrating the effectiveness of fermented products containing healthy
bacteria and health-promoting components against particular diseases and deficiencies.

Food Matrices Microorganism Health-Promoting
Compounds Disease Reference

Kimchi Lactobacillus plantarum
(L. plantarum)

Several prebiotics and the
presence of vitamins, minerals,

and dietary fibers
and O-linked

β-N-acetylglucosamine
(O-GlcNAc)

Colon cancer [15]

Whey L.rhamnosus MTCC 5897 Probiotic released metabolites Ulcerative colitis [16]

Milk Bifdobacterium breve Bacteria and released
components Ulcerative colitis [17]

Milk L. rhamnosus NCDC 17 and
L. rhamnosus GG Metabolites

STZ-induced diabetic
Wistar rats in high-fat

diet (T2DM)
[18]

Koumiss L. helveticus NS8 Bacterial surface components Gastrointestinal health [19]

Skimmed milk Lactococcus lactis strain
NRRL B-50571

ACE 3 inhibitory peptides and
GABA

Anti-hypertensive
activity [20]

Milk,
yogurt LAB and Bifidobacteria species Folate (vitamin B9), vitamin K,

riboflavin (vitamin B2) Vitamin deficiency [21,22]

Cashew apple
juice,

kimchi

5 probiotic strains
(Lb. acidophilus, Lb. casei,

Lb. plantarum, Lb. mesenteroides
and B. longum)

Vitamin K (Phylloquinone) Vitamin deficiency [23,24]

Milk L. casei DN-114 00 - Common infectious
diseases (CIDs) [25]

Milk L. acidophilus and L. casei - Alleviation of lactose
intolerance [26]

Milk L. helveticus LH511 Bioactive components in
supernatant Barrier dysfunction [27]

Shrikhand L. acidophilus NCDC14 - Gastrointestinal health [28]

Kefir

Lactobacillus lactis subs.,
Leuconostoc subs., Streptococcus
thermophilus, Lactobacillus subs.,

and yeast of kefir

- Inflammatory bowel
disease (IBD) [29]

Milk L. paracasei CNCM I 1518 - Cirrhosis [30]

Milk L. fermentum NCDC 400 and
L. rhamnosus NCDC 610 - Obesity and other related

metabolic syndromes [31]

Milk L. rhamnosus MTCC 5897 - Hypercholestrolemia [32]

Milk

L. acidophilus, L. amylovorus,
L. bravis, L. bulgaricus, L. casei,

L. curvatus, L. fermentum,
L. gasseri, L. helveticus, L. lactis,

L. paracasei, L. plantarum,
L. rhamnosus, L. reuteri,

L. salivarius, B. lactis, B. breve,
B. bifidum, B. longum, B. infantis,

Pediococcus pentosaceus, and
Streptococcus thermophilus.

- Cardiometabolic diseases
(CMDs) [33]
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Table 1. Cont.

Food Matrices Microorganism Health-Promoting
Compounds Disease Reference

Yogurt, capsules L. rhamnosus GG (ATCC 53013) Long chain fatty acids
Acute pediatric diarrhea,

antibiotic-associated
diarrhea

[34]

Squacquerone
cheese L. crispatus BC4 Calcium, vitamins with

antimicrobial properties Vaginal infections [35]

Cream cheese L. chungangensis CAU28 Short chain fatty acid Atopic dermatitis [36]

Cheddar cheese Lacticaseibacillus rhamnosus and
Lc. paracasei γ aminobutyric acid (GABA) Gastrointestinal digestion [37]

Milk B. longum subsp. longum
YS108R; L. paracasei PS23

Exoplysaacharide (EPS); short
chain fatty acids (SCFA) Ulcerative colitis [38,39]

Milk Lactobacillus spp. Free amino acids and lactate Bone health [40]

Milk L. brevis DL1-11
γ aminobutyric acid (GABA),

short-chain fatty acids (SCFAs),
such as butyric acid

Insomnia [41]

Milk L. acidophilus
Phenolic compounds, GABA 1,

peptides, CLA 2, folates
(vitamin B9)

Antioxidant activity
related disorders [42]

Fermented whey is not only a source of nutrients; it also plays a role in the regulation
of several physiological activities in the body [43]. This is particularly true for the intesti-
nal tract, which is constantly in contact with dietary antigens. Numerous health benefits
linked with fermented whey or whey protein ingestion have been well documented, includ-
ing decreased inflammatory gene expression, protection against diarrhea caused by DSS
(sodium trimethylsilylpropanesulfonate) [44], and significant influence in gut microbiota
modification. These positive benefits may also be mediated by whey protein extract, which
promotes mucosal innate immunity in childhood [45].

2.1. Other Dairy-Based Fermented Products

Another important product arises from the dairy industry is yogurt. The yogurt
itself is not a probiotic food, but it could have non-probiotic bacteria that grew from milk
fermentation. However, it can also be made better by adding probiotic bacteria. Probiotic
yogurt is a combined mixture of probiotic (L. rhamnosus GG) and prebiotic (dietary fiber),
and its consumption aids in the improvement of inflammatory bowel syndrome (IBS) and
the maintenance of normal fecal microflora in patients with decreased putrefactive bacteria
Clostridium difficile and E. coli. Recent research found that fermented probiotic yogurt
improved IBS symptoms such as constipation, stomach pain, and frequency of bowel
movements within six weeks of intake [46]. Another common fermented dairy product that
has the ability to assist the human digestive system is cheese. It has a higher pH, a lower
titratable acidity, a greater buffering capacity, a more solid consistency, a larger fat content,
increased nutritional availability, and a lower oxygen concentration than yogurt. These
characteristics serve to safeguard probiotic microorganisms throughout storage and transit
through the gastrointestinal system [47,48]. Kefir can be produced using dairy culture as
well as koumiss. In the industrial production of kefir, dairy culture is used more often
than kefir grain. In addition, koumiss and kefir are almost identical when both are made
using yeast and lactic acid fermentation [49,50]. Recently, Li et al. discovered that koumiss
resolves thymus and spleen atrophies, increases the number of leukocytes, lymphocytes,
and CD4+/CD8+ ratio of peripheral blood lymphocytes in an immunosuppressed rat
model. In addition, it was able to efficiently enhance the structure of the small intestine
mucosa, indicating that koumiss might serve as a therapeutic agent with a beneficial
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impact on intestinal immune function in immunocompromised conditions [51]. A study by
Tiss et al. (2020) showed that under kefir fermented drink, in vivo and in vitro conditions
showed a decrease in intestinal and pancreatic lipase activity, leading to a reduction in total
cholesterol and LDL-cholesterol, and an increase in HDL-cholesterol rates, as well as body
weight loss [52] (Table 2).

Table 2. The beneficial effects of probiotic-fermented products on human health showing in vivo and
in vitro studies.

Formulation Probiotic Strain Associated Mechanism Disorder Model
Organism Reference

Kefir drink
Commercial kefir

starter culture
(Danisco®)

Fermented kefir ameliorates the
colitis-induced symptoms in

dose-dependent manner, relieves
from disease-induced diarrhea and

macroscopic damages caused in
mucosal wall

Inflammatory
bowel disease

(IBD)
Rat [29]

Whey drink L. rhamnosus
MTCC 5897

Increases the anti-inflammatory
cytokines to ameliorate the

colitis-induced inflammation,
enhances the tight junctional

epithelial barrier integrity in mice

Ulcerative colitis Albino mice [16]

Fermented
milk

B. longum subsp.
longum YS108R

Reduces inflammatory cytokine
concentrations in serum as well as

their mRNA expression levels in the
colon by increasing tight junction

protein and MUC2 expression

DSS-induced
colitis C57BL/6J mice [38]

Fermented
milk

L. rhamnosus
MTCC: 5957 and

L. rhamnosus
MTCC: 5897

Reduces the high-cholesterol diet
(HCD)-induced body weight,

hyperlipidemia, and hepatic lipids
(total cholesterol and triacylglycerol),

decreases the TNF-alpha, IL-6
in the liver

Diet-induced hy-
percholesterolemia Wistar rats [32]

Fermented
milk L.paracasei PS23

Strengthened tight junction through
the modification of specific cecal

bacteria and upregulation of
short-chain fatty acids

DSS-induced
colitis Mice [39]

Fermented
milk L. fermentum Bioavailability of zinc Zinc depletion Wistar rats [53]

Milk;
fermented

milk
L. fermentum Improvement in the

hypercholesterolemic effect Hypercholesterolemic Wistar rats [54]

Cream cheese L. chungangensis
CAU28

Maintains Th1 and Th2 balance as
well as reduces IgE immunoglobulin
associated with immune homeostasis

Atopic dermatitis Balb/c mice [36]

Fermented
milk

L. paracasei CNCM
I 1518

Decreases bacterial translocation, gut
dysbiosis, and ileal oxidative damage

and increases ileal β-defensin-1
expression in rats treated with CCl4

Cirrhosis
Sprague-
Dawley

rats
[55]

Fermented
milk Lactobacillus spp.

Improves amino acid absorption that
in turn enhances postprandial MPS
via Akt-independent mechanisms

Skeletal muscle
protein anabolism

Sprague-
Dawley

rats
[40]
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Table 2. Cont.

Formulation Probiotic Strain Associated Mechanism Disorder Model
Organism Reference

Yogurt and
fermented

milk

FMP: Lactobacillus
helveticus;

-Streptococcus
thermophilus and

Lactobacillus
delbrueckii subsp.

bulgaricus

Greek-style yogurt protein (YP)
increased the expression of genes

involved in jejunal and ileal
immunity and integrity in WT mice;
as well as YP also improved insulin

sensitivity by 65% in LRKO mice,
Lactobacillus helveticus fermented milk
protein (FMP) and YP both modulate

the intestinal microbiota

Cardiometabolic
markers and

intestinal
microbiota

C57BL/6J
wild-type (WT)

and
atherosclerotic
(LRKO) male

mice

[56]

Fermented
milk

Lacticaseibacillus
casei CRL431

Probiotic-fermented milk (PFM) had
the highest percentages for CD4+ and

CD4+ CD8+ cells. While IL-10,
TNF-α, IFN-γ, and IL-6

concentrations decreased significantly
in the PFM group that increased in

mice from the milk group

Breast cancer Female
BALB/c mice [57]

Fermented
milk

Lactobacillus brevis
DL1-11

Modulates the composition of the gut
microbiota, such as significant

increases in the relative abundances
of Ruminococcus, Adlercreutzia, and

Allobaculum. Moreover, these
changes may be associated with

significant increases in the
production of SCFAs in the intestine

Insomnia Rat [41]

2.2. Positive Influence of Fermented Whey-Based Products

In addition to essential nutrients, fermented whey includes a wide range of natural
bioactive chemicals such as lactalbumin, lactoferrin, lactoperoxidase, lysozyme, EGF, and
TGF [58]. A milk-derived whey protein concentrate rich in TGF has been developed by
the food industry to stabilize epithelial barrier function and protect the intestinal barrier
from inflammatory damage in infants and children [59]. TGF-1 boosted the activity of the
claudin-4 promoter and protected HT-29/B6 cells against IFN-γ-induced barrier damage in
a dose-dependent manner [60]. Furthermore, fermented whey supplementation protects
intestinal integrity by decreasing the production of pro-inflammatory cytokines in the
intestinal tract and increasing the expression of TJ proteins such as occludin and ZO-1 in
LPS-treated pigs.

The anti-inflammatory properties of goat whey were investigated in a mouse model of
colitis induced by 2,4-dinitrobenzenesulfonic acid (DNBS). Goat whey alleviated intestinal
inflammatory symptoms, by lowering the disease activity index, colonic weight/length, and
leukocyte infiltration. Additionally, goat whey boosted the expression of mucins, occludin
proteins, and suppressors of cytokine signaling [61]. Bovine WPE (whey protein extract)
inhibited apoptosis in human blood neutrophils and had a dose-dependent priming impact
on these cells, enhancing their adhesion, chemotaxis, phagocytosis, oxidative burst, and
degranulation capacities in response to further stimulation. Not only did WPE stimulate
neutrophil chemotaxis, but it also raised the surface expression of CD11b, a mediator of
neutrophil adherence to endothelial cells [62].

On the other hand, the bioactive forms of proteins and growth factors found in low-
heat-treated whey protein concentrate (WPC) promote cell proliferation and immune
response enhancement. Lactoferrin and TGF-2 were retained at a higher concentration
level in low-heat-treated WPC compared to regular WPC in in vitro conditions [63]. Gly-
cated Whey Protein Concentrate (G-WPC) generated by a non-enzymatic Maillard process
exhibited no cytotoxic effect on RAW264.7 macrophage cells but elevated the production
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of several cytokines (i.e., TNF-α, IL-1, and IL-6 mRNA) that were shown to promote
phagocytosis [64]. Interleukin-2 receptor surface expression and interferon production may
also be inhibited when modified WPC is added to T and B cell cultures [65]. The NF-kB and
MAPK pathways in neutrophils treated with whey protein extract generated more IL-1Ra
than IL-1 [66]. Low-heat-treated WPC from acid whey substantially boosted cytokine re-
sponse and proliferation in intestinal epithelial cells (IEC) as compared to low-heat-treated
sweet whey [67]. WPC’s bioactive peptides promoted innate immunity in children by
largely elevating CD8+ IEL (intestinal intraepithelial lymphocytes) and NK cells (natural
killer cells) in the mucosal location [43]. Goat whey inhibited the production of many
proinflammatory markers such TNF-α, IL-1, and IL-6 in the colonic tissue of mice with
DNBS-induced colitis, as shown by [61]. Moreover, Rusu et al. found that WPE induced
a time-dependent phosphorylation of inhibitory kappa B (IκB), the inhibitor of NF-B in
neutrophils, which released IkB from NF-κB and activated NF-κB, thereby activating the
immune response [62].

Recent research by Gupta et al. [68] showed that the fermented probiotic L. rhamnosus
MTCC 5897 whey exhibited anti-inflammatory properties against E. coli-induced inflamma-
tion in intestinal epithelial cells (Caco-2) [68]. Similarly, Kaur et al. found that
L. rhamnosus MTCC 5897 fermented whey had an intriguing effect on enhancing the intesti-
nal epithelial barrier function in ulcerative colitis rats. Additionally, it may increase the
RBC and lymphocyte counts in cases of anemia, which is critical for the body’s capacity to
fight against infections [16]. In pregnancy, during the third trimester, the administration of
a probiotic-fermented milk containing Streptococcus thermophilus, Lactobacillus bulgaricus,
Lactobacillus acidophilus LA5, and Bifidobacterium animalis subsp. lactis BB12 has been associ-
ated with a decreased risk of maternal insulin resistance. In addition, yogurt intake has
been associated with immunological advantages, such as a lower level of inflammatory
markers in pregnant women [69] and has been shown to alter both humoral and cellular
immunity [70].

2.3. Fermented Dairy Product as a Probiotic Vehicle

Fermented dairy products provide an ideal atmosphere for delivering probiotic bacte-
ria to the human body (Figure 1). Probiotic fermentation combines the health benefits of
fermented food with the benefits of good bacteria by increasing the amount of bioactive
peptides that are released [71]. Additionally, because of the presence of high levels of lactic,
butyric, citric, and acetic acids found in dairy products including cream, cheese, yogurt,
acidophilus-bifidus milk, koumiss, kefir, and fermented drinks, these items have long been
regarded the ideal matrix for probiotic microorganisms [72]. Rezac et al. observed a wide
range of fermented foods and discovered that most of them had at least 105–7 LAB per
milliliter or gram, but that this number varied greatly depending on sampling time and
location. Bacteria at quantities of up to 109/mL or g were often found in cultured dairy
products [8]. Understanding the distinguishing characteristics of these species is greatly
aided by cutting-edge omics technologies [73]. As a result, it very important to understand
the genomics and proteomics profile of lactobacillus probiotics bacteria in order to gain
insight into their beneficial properties [74–79].
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Figure 1. Fermented dairy-based product health benefits.

According to Swanson et al. [80], guidelines for the minimum viable count of each
probiotic strain per gram or milliliter of probiotic products differ in terms of providing
probiotic-organism-related health benefits [80]. To begin, fermented dairy products such as
probiotic yogurt are often believed to contain living microorganisms because, unlike many
other fermented foods, dairy products are usually not pasteurized or heated at the point of
manufacture, ensuring microbial viability [81]. Additionally, bacterial growth and survival
in dairy products have been extensively researched [82]. A recent study demonstrated
that the culture bacteria did not decrease in quantity after frozen storage of low-fat yogurt
including the probiotic strains Streptococcus thermophiles and L. acidophilus [83]. Yogurt’s
composition, which includes milk proteins, fat, and lactose, among other components, has
proven to be an ideal environment for microbes. Its efficiency is enhanced by its frozen
state and the recommended pH of yogurt is from 5.5 to 6.5 to ensure the viability of the
lactic cultures during storage. Additionally, the lowered acidity promotes client acceptance,
especially among those who choose milder products [84]. Therefore, fermented dairy
products are the most effective probiotic delivery system (Figure 1).

Similarly, fermented milk treated with lemon and orange fibers boosted L. acidophilus
numbers and improved cold storage stability when compared to the control group [85].
Likewise, fermented dairy cheese has a great potential for introducing beneficial microor-
ganisms into the human gut owing to its unique physicochemical properties as described
earlier in the text. The valuable physiochemical qualities of cheese keep probiotic microor-
ganisms safe while they are stored and move through the gastrointestinal system [47,86].
In this way, it is safe to report that fermentation permits the maintenance and optimization
of microbial viability and production while preserving probiotic properties [87].

2.4. Health Benefits of Probiotic Functional Food

Fermented probiotics are live microbial dietary additives that provide several health
advantages by assisting in the stability and maintenance of the gut microbiota’s compo-
sition and enhancing resistance to pathogen infection [15]. Probiotics are also considered
as potential functional foods since they give much more health advantages than standard
nutritional diets [88]. As public knowledge of the influence of nutrition on health rises, the
market for probiotic functional foods increases swiftly and persistently [89,90]. Probiotics
have been shown to be effective in treating a variety of diarrheal illnesses, modulating
immunological function, preventing colon cancer, and alleviating other chronic gastroin-
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testinal inflammatory disorders, as shown by a growing body of high-quality, scientific
clinical research [91,92]. The potential effectiveness of probiotics is increasing the interest
in determining the activities and therapeutic benefits in a wide variety of neurological
diseases too [93] (Figure 2).
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2.4.1. Obesity and Diabetes

Diabetes is a major public health problem worldwide. Several reports have suggested
the anti-diabetic properties of probiotic food containing L. paracasei and L. rhamnosus [94].
LAB alone dramatically decreased hyperinsulinemia, hyperglycemia, and glucose intoler-
ance, suggesting a viable preventative treatment option for metabolic syndrome. According
to Alihosseini et al. [95], diabetic patients who consumed probiotic-fermented milk (kefir)
had lower fasting blood glucose and HbA1C levels than those who received conventional
fermented milk [95]. In other research, when administered orally to 8-week-old diabetic
male rats, fermented milk containing the L. casei strain AP was as effective as the com-
monly used diabetes drug metformin [96]. Another study demonstrated that consumption
of probiotic fermented milk containing L. rhamnosus (MTCC 5897), L. fermentum (MTCC
5898), and L. rhamnosus (MTCC 5957) had an anti-diabetic effect both individually and
in combination by regulating glucose metabolism, inflammation status, and serum lipid
profile in diabetic rats compared to the control group [97].

2.4.2. Lactose Intolerance

Even in nations where the majority of the population can digest lactose without issue,
lactose intolerance may manifest as a medical disease. Symptoms comparable to celiac
disease may develop in individuals who are lactose intolerant due to the toxicity of lactose
and the damage it causes to the intestinal mucosa [98]. Considering the widespread occur-
rence of lactose intolerance, it is preferable that milk has as little lactose as possible [99].
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Because fermented milk often has lower quantities of lactose than low fat milk, it may be
tolerated by those who otherwise cannot consume lactose [100]. It has been hypothesized
that lactase-containing bacteria present in fermented milk persist in the digestive tract
and aid in the digestion of ingested lactose [101]. Drinking fermented milk products,
especially yogurt and acidophilus, was advocated for the health of Swedish volunteers
aged 18–50 [102]. When planning meals for those who are lactose intolerant, it is important
to keep in mind that neither yogurt nor acidophilus milk were reported to cause any gas-
trointestinal distress among the responders [100]. Similarly, probiotic ingestion shortened
the duration of diarrhea, reduced inflammatory responses, and fostered the growth of
beneficial microbes in the digestive tract [103].

2.4.3. Allergies

Consumption of probiotic-fermented foods alleviates the symptoms of food allergies in
vulnerable people. A meta-analysis evaluating the effects of supplementation with various
lactobacilli combinations on atopic dermatitis in normal and allergic risk groups revealed
beneficial effects [62]. Consumption of probiotics such as L. gasseri KS-13, B. bifidum G9-1,
and B. longum MM-2 in placebo-controlled research showed an anti-allergic effect in young
people suffering from seasonal allergies through immune response regulation [104]. Further,
Liu et al. [105] demonstrated that administration of the probiotic B. infantis CGMCC313-2
inhibited allergen-induced IgE antibody secretion as well as Th2 cytokine secretion and
further attenuated allergic inflammation in a mouse model of allergen-induced airway
inflammation and lactoglobulin-induced food allergies [105]. Saliganti et al. found that
L. rhamnosus (MTCC 5897), another probiotic, reduced ovalbumin-induced allergy reactions
in weanling mice [105] (Figure 3).
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2.4.4. Oxidative Stress

Bioactive peptides produced by probiotics are effective antioxidants that may reduce
the effects of free radical damage. The probiotic B. animalis 01 improved anti-oxidative
enzyme efficiency and reduced lipid oxidation in elderly mice by decreasing MDA, lipo-
fuscin levels, and monoamine oxidase activity [106,107]. According to the findings of
Wang et al., Bacillus amyloliquefaciens SC06 has an anti-oxidative effect on intestinal porcine
epithelial cells via decreasing reactive oxygen species (ROS) and regulating the Nrf-2
and Keap-1 pathways [108]. To inhibit ascorbate auto-oxidation and the generation of
amino butyric acid, Garcia et al. [69] isolated L. plantarum DM5 from fermented beverages
and demonstrated its anti-oxidative activity by decreasing hydroxyl radicals [69]. An-
other study reported that consuming fermented goats’ milk over the course of 21 days
boosted overall antioxidative activity, reduced peroxidized lipoproteins, oxidized LDL, 8-
isoprostanes, and the glutathione redox ratio, and improved anti-atherogenicity in healthy
human individuals [109].

2.4.5. Skin Repair

Probiotic L. paracasei NCC 2461 supplementation reduced skin irritation and enhanced
skin barrier function in female groups during a two-month placebo-controlled study [110].
A recent study has shown that the cell wall components isolated from L. rhamnosus GG
were shown to have immunomodulatory effects against UV radiation and to inhibit the
formation of skin cancers [111]. In 2019, Khmaladze et al. [112] looked at how probiotic
L. reuteri DSM and its cell lysate affected overall skin health. The researchers found
that the anti-inflammatory and antibacterial characteristics of probiotic bacteria helped
reduce photoaging and provided greater protection against UVR-B-mediated inflammatory
pathways [112]. Additionally, oral administration of L. rhamnosus GG improved skin health
by reducing water loss and preserving moisture [113].

2.4.6. Hypercholesterolemia

Cardiovascular diseases (CVDs) are the major cause of mortality worldwide and are
continually growing, spreading, and becoming more frequent around the globe. By 2030,
the WHO predicts that CVDs would account for up to 40% of all fatalities, impacting
roughly 23.6 million people worldwide. Indeed, people with hypercholesterolemia have
a threefold increased risk of heart attack compared to those with normal blood lipid
levels [114]. To prevent hypercholesterolemia, there has been significant interest in dietary
and pharmacological interventions that block cholesterol absorption [115]. Dairy-fermented
products with LAB are expected to reduce circulating cholesterol levels, hence lessening
the population’s risk of cardiovascular disease. These microbes must be bile resistant and
capable of deconjugating and binding bile acids and cholesterol. If these parameters are
satisfied, fermented dairy products may be beneficial for lowering elevated cholesterol
levels and avoiding CVDs [116].

2.4.7. Gastrointestinal Disorders

Probiotic strains for treating inflammatory bowel illness are Lactobacillus, Bifidobacterium,
and designer probiotics are most commonly used in supplemented fermented foods [117].
Probiotics promote gut health by restoring a healthy balance to the intestinal flora and
decreasing the probability of colonization by pathogenic microorganisms [118]. Likewise,
Dore et al. investigated the effect of administering a specific dose of L. acidophilus affected
ulcerative colitis symptoms in colitis mice by altering the microbiota composition in the
distal colon [119]. In functional dyspepsia patients, fermented milk containing the probi-
otic Bifidobacterium bifidum YIT 10347 improves stomach and lower abdominal symptoms
associated with the formation of gastro-protective mucin [120]. According to Eales et al.,
frequent use of probiotic food with the specific B. lactis DN-173 010 strain may improve
gastrointestinal well-being and digestive symptoms in adult women with mild digestive
illnesses [121].
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3. Probiotic-Fermented Products: Stimulation and Regulation of the Immune System

Inflammation is the immune system’s response to infections, damaged cells, and toxins,
among other adverse stimuli. It is a common cause of several chronic diseases, including
cardiovascular disease, diabetes, rheumatoid arthritis, inflammatory bowel disease, and
cancer [122]. It is essential to consume foods that possess anti-inflammatory properties.
Therefore, consuming fermented probiotic foods monitors the creation of beneficial anti-
inflammatory compounds. In this regard, the notable very good example is the process
of fermentation of food especially by some LAB strains which potentially results in the
elimination of lactose and galactose from fermented milk, hence reducing the risk of lactose
intolerance and galactose buildup. At the same time, the most important aspect to note is
that lactose is converted into lactic acid, which, in addition to other bioactive components,
has anti-inflammatory and immunomodulatory characteristics [123].

3.1. Probiotic-Fermented-Product-Mediated Modulation of DCs

It was reported in many studies that fermented probiotics have a positive effect on
intestinal epithelial cells (IECs). IECs are essential in driving the development of tolerance
by suppressing DC activation, which subsequently controls the suppressive function of T
regulatory cells (Tregs). IECs have also been designated to stimulate the development of
CD103+ DC. This population of tolerogenic DCs induces Foxp3+ Treg cells and is depen-
dent on TGFβ (Figures 3 and 4). Under the effects of probiotics and commensal microbiota,
the activated DCs induce the appropriate immune response (e.g., naïve CD4 T cells to Treg
cell differentiation), which generally inhibits Th-1, Th-2, and Th17-mediated inflammatory
response [124]. In vitro models based on cell lines or individual immune cells are especially
appealing. These models could also be useful to quantify the development of nonspecific
and specific immune responses by monitoring parameters such as cytokine and media-
tor production by antigen-presenting cells and biological markers for distinct cell types.
Through a TLR-2 signaling route, cell-free concentrated whey from B. breve C50-fermented
milk (BbC50sn) generated a unique interleukin-10 (IL-10)-rich cytokine profile and ex-
tended DC survival. The anti-apoptotic BbC50sn signal outperforms lipopolysaccharide’s
pro-apoptotic action on DCs [125]. In a recent study, Jeffrey et al. showed that milk fer-
mented with L. rhamnosus R0011 enhanced regulatory cytokine release from LPS-challenged
U937 and THP-1 macrophages, while simultaneously upregulating the production of IL-1β
and expression of DC-SIGN and CD206, a profile characteristic of polarization into the
immunoregulatory M2 macrophage phenotype [126]. L. salivarius Ls33 stimulated the
CD103+ DCs and CD4+ Foxp3+ regulatory T cells’ development in an IL-10-dependent
manner [127]. Purification of peptidoglycan (PGN) from L. salivarius Ls33 demonstrated
that the protective effects of L. salivarius were NOD2-dependent but MyD88-independent.
Another study has identified a probiotic mixture, IRT5 (Streptococcus thermophilus, L. reuteri,
B. bifidium, L. acidophilus, and L. casei), which upregulates the generation of CD4+ Foxp3+
regulatory T cells (Tregs) from the CD4+ CD25− population [128]. Overall, the data indi-
cate that fermented probiotic factors and their bacterial components may stimulate DC
maturation. In addition, evidence suggests that fermented probiotics have a specialized
function in regulating intestinal DCs.
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3.2. Probiotic-Fermented-Product-Mediated Modulation of NK Cells

Natural killer cells (NKs) play a crucial role in the immune response and regulation
of homeostasis. They can distinguish between normal to abnormal cells with altered or
missing MHC class I molecules (Figure 4). As people become older, their immune functions
begin to deteriorate. It has been claimed that probiotic supplementation may reduce or
reverse these age-related alterations. To confirm, a systematic meta-analysis reported that
short-term probiotic supplementation (duration ranged from 3 to 12 weeks) in the elderly
adults improves the cellular immune response via polymorphonuclear cell phagocytic
capacity or natural killer (NK) cell tumoricidal activity [129]. Recently, another study
by Gui et al. showed that probiotic Lactobacillus interventions alone or in combination
with Bifidobacterium enhances the natural killer (NK) cell function in healthy elderly
individuals [130]. A study conducted in Japan by Shida et al. on healthy volunteers
showed that regular consumption of L. casei Shirota-fermented milks orally for three weeks
resulted in the improved NK cell activity [131]. It found to be very helpful for individuals
with low NK cell activity and in turn help in the overall better health and reduction in
illness, as measured in peripheral blood mononuclear cells (PBMC). In a separate study, the
administration of L. casei Shirota (LcS) to patients whose colonic polyps had been surgically
removed has shown a significant reduction in the recurrence of colorectal cancer. The
results also showed the specific mechanisms of action of LcS on positively correlated NK
cell activity via induction of IL-12 and TNFα production [132].

However, ingestion of a combination of eight strains of sonicated probiotic bacte-
ria named sAJ2 (Streptococcus thermophiles, B. longum, B. breve, B. infantis, L. acidophilus,
Lactobacillus plantarum, and L. casei) by patients demonstrated improvement in the NK
function both in terms of IFN-γ secretion as well as NK-cell-mediated cytotoxicity after
four weeks of consumption [133]. The relevance of bacteria-mediated enhancement of
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immune activation and restoration of immunological function in patients is shown by
the increased activity of NK cells observed in both in vitro and in vivo investigations. In
addition, researchers had shown earlier, in vivo, in the humanized-BLT mouse model that
the consumption of AJ2 probiotic bacteria improved NK cell activity and linked with the
reduction or disappearance of oral and pancreatic cancers [134]. The primary effect of LAB
on NK cells is the elevation of their cytotoxic activity and, therefore, antitumor responses,
as opposed to the rise in NK cell count. In accordance with this, a number of human inves-
tigations have shown that LcS supplementation increases NK cell function, with in vivo
studies revealing that this is due to IL-12 [135]. This information suggests that certain LAB
initiate NK interactions effectively, which improves the cytolytic capacity of NK cells in
mucosal immunity.

3.3. Probiotic-Fermented-Product-Mediated Modulation of Neutrophils

Neutrophils are crucial for innate immunity and pathogen identification and response.
They are short-lived myeloid cells that readily combat infection by means of oxidative-
dependent generation (ROS), also known as oxidative burst, and phagocytic clearance;
both of which are assisted by neutrophil extracellular traps (NETs). Probiotic bacteria on
neutrophils are likely to target its effector functions: ROS production, phagocytosis, NET
formation, hydrolytic enzyme activity, chemokine-mediated recruitment, and inflamma-
tory cytokine secretion; thus, having a profound effect on neutrophil-mediated responses
associated with acute infection and chronic infection/immunopathogenesis. L. rhamnosus
GG has also been demonstrated to inhibit NET formation and, as a result [136], caused
decreased ROS generation and avoidance of tissue death by chronic inflammation, with the
reduction of ROS production indicating an inhibitory impact on NF-κB.

Additionally, it was shown that cell-wall extract of L. gasseri ATC33323 upregulated
the expression of TNF-α, IL-1β, MIP-1α, and MCP-1 in a Sprague-Dawley rat model of
sepsis [137]. L. brevis enriched with selenium nanoparticles was found to be capable of
reducing liver metastasis in a metastatic mouse (BALB/c) breast cancer model. The study
is of relevance to neutrophils since the immune responses are in the form of elevated IFN-γ
and IL-17 cytokine levels and enhancement of NK cell activity [138]. Recently, Li et al.
reported that oral administration of microbial metabolite butyrate markedly ameliorated
mucosal inflammation in DSS-induced murine colitis through inhibition of neutrophil-
associated immune responses [139]. Further, in vitro studies confirmed that butyrate
suppressed neutrophil migration and formation of NETs from both CD and UC patients.
B. animalis MB5 and L. rhamnosus GG strains have been shown to suppress enterotoxigenic
E. coli K88 induction of the NFκB-dependent inflammatory mediators TNFα, IL-1β, IL-8, Gro-
α, and ENAP-78, resulting in a corresponding inhibition of neutrophil transmigration [140].

3.4. Probiotic-Fermented-Product-Mediated Modulation of Cytokines and Immunoglobulin

Following the ingestion of fermented milks, several LAB strains have been shown
to enhance both innate and adaptive immunity in animal models. Probiotic-fermented
products are being studied for their immunomodulatory properties in a number of animal
and human clinical studies. The effects of LAB depend on the strain, and many lactobacilli
work on payer patches to improve IgA synthesis, phagocytosis, and anti-inflammatory and
anti-allergic properties by stopping the production of cytokines and immunoglobulin E
(IgE) [141]. In a mouse colon cancer model, yogurt intake reduces tumor development by a
reduction in inflammatory response, an increase in IL-10-secreting cells, apoptosis, and a
decrease in procarcinogen enzymes [142].

Yogurt administration to DMH-injected mice causes a reduction in IgG and CD8
T cells while increasing IgA and CD4 T lymphocyte numbers in the lamina propria of
the large intestine. Given that IgA is regarded as a crucial barrier in colonic neoplasia,
the rise in IgA-secreting cells in the bowel of mice given yogurt but not IgG cells aid
to control the inflammatory response. On the other hand, bioactive peptides in kefir
cause macrophage activation, phagocytosis, and the generation of nitric oxide (NO) [143].
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In healthy young women, regular consumption of fermented milk rich in probiotic and
prebiotic bacteria showed favorable benefits on the skin by reducing dryness and on the
intestines by encouraging bowel movements and cutting down on phenol synthesis by gut
bacteria [144].

In a mouse model, animals administered Malleable Protein Matrix (MPM), a novel
fermented whey protein-based product, demonstrated a substantial reduction in ear inflam-
mation with minimal side effects when compared to mice given hydrocortisone. Blood poly-
morphonuclear cells and the quantity of myeloperoxidase in the ear showed that the MPM
seemed to prevent neutrophil extravasation into tissue [145]. According to Cristofori et al.,
feeding mice B. breve for 9 days before generating DSS colitis lowers inflammation by
altering the makeup of T cells in the distal colon by boosting T-reg-related cytokines and
decreasing Th1-related cytokines [146]. In mice, oral treatment of the probiotic L. casei
CRL 431 exhibited a protective effect by raising IFN-α, IL-6, and IL-10 production in the
lamina propria of the small intestine and lowering TNF production [147]. Similarly, the
fermented whey dairy beverage therapy significantly improved animal survival in the
mouse model (70%) and reduced pathogen translocation to the liver (2/10). It also resulted
in fewer lesions in the animal’s histology and provided inflammatory protection against
Salmonella Typhimurium infection [148]. Furthermore, Nipa vinegar’s active ingredients, par-
ticularly the polyphenols, were found to enhance the anti-inflammatory, hypolipidemic,
and weight loss effects in obese mice when compared to synthetic acetic acid vinegar,
demonstrating that bacterially fermented Nipa vinegar has a favorable impact on inflamma-
tion and lipid metabolism [149]. Hunsche et al. investigated the immunological response
in BALB/c mice fed milk fermented by L. casei DN-114001, L. delbrueckii subsp. Bulgaricus,
or S. thermophilus over a period of 98 days. According to the results, oral consumption of
fermented milks increased the number of intestinal samples with IgA+ TNF-α, interferon
IFN-γ, interleukin IL-12, and interleukin (IL-10) generating cells. In the lamina propria
of the gut, CD4+ and CD8+ cell populations were also increased [150]. However, mu-
cosal areas outside of the gut lacked any alterations. Additionally, it has been shown that
adherent cells derived from Peyer’s patches and peritoneal macrophages both produce
more cytokines in vivo when exposed to kefir solids (which include bacteria) and liquid
supernatant [151].

3.5. TLR-Mediated Immune Response and Probiotic-Fermented Products

Toll-like receptors contribute to IEC homeostasis by governing appropriate host re-
sponses to the intestinal microbes. LAB are capable of triggering TLR-2/TLR-6 signaling
pathways, 16 different LAB strains of food and human origins were characterized and tested
for their interactions with specific TLRs [152]. L. plantarum-purified DNA also modulates
the immune response of host cells by interacting with TLRs, as reported by Kim, whose
studies show that L. plantarum-purified DNA inhibits LPS-induced TNF-α production in
THP-1 cells. Furthermore, L. plantarum-purified DNA blunt the expression of TLR4, TLR2,
and TLR9, which induce NF-κB activation through the LPS signaling pathway, leading to
pro-inflammatory cytokine upregulation [153]. Recently, Jia et al. showed that probiotic
L. salivarius AR809 could attenuate the inflammatory response produced by S. aureus
by elevating autophagic protein level and blocking the TLR-mediated NF-κB signaling
network [154]. Supernatant from B. breve C50 strain culture (BbC50sn) induced maturation
and activation of human DCs, but only after fermentation of a milk whey-based medium.
BbC50sn induced a specific interleukin-10 (IL-10)-rich cytokine profile and prolonged DC
survival via a TLR2 pathway [155]. Probiotic L. fermentum (MTCC-5898) exerts immunosup-
pressive effects in the presence of E. coli by inhibiting pro-inflammatory cytokines release
and enhancing the expression of anti-inflammatory cytokines via TLR-2/TLR-4 and the
NF-κB signaling pathways [156].

In summary, probiotics are bacteria found in fermented products that regulate immune
responses by interacting with dendritic cells (DCs), monocytes/macrophages, and lympho-
cytes, resulting in an increase in IgA response [157]. Fermented foods rich in probiotics
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stimulate the production of antimicrobial peptides by host cells, including bacteriocins
and beta-defensins, which serve as an infection defense. They also generate lactic acid
and acetic acid, both of which have potent antibiotic effects on a range of Gram-negative
bacteria. Probiotic-fermented items stop the colonization of harmful bacteria by blocking
the mucosal attachment site or denying the bacteria food. This behavior is referred to
as competitive exclusion. The integrity of the epithelial barrier is therefore changed by
components generated from dairy-fermented probiotic bacteria, and tight junction protein
synthesis is promoted by TLR regulation. Thus, the mucosal layer, antimicrobial peptide,
secretory IgA, TLRs, and cytokines make up the overall intestinal barrier defense, all of
which are crucial for maintaining the equilibrium of the gut’s immune system [158]. In
addition, the complete nature and breadth of the probiotics and TLR signaling were both
covered in the recently published review paper [159].

4. Probiotic-Fermented-Product-Mediated Reinforcement of Gut Barrier Function

Probiotic fermentation combines the health benefits of microorganisms with those
of fermented foods [160]. Consuming probiotic bacteria via fermented milk is also a
magnificent way to restore balance to the gut flora and preserve the epithelial barrier
function [161]. By encouraging the production and assembly of tight junction proteins,
probiotics and released metabolites improve barrier function. They also guard against
disruption of tight junctions brought on by inflammatory stimuli. Additionally, they cause
a variety of cell signaling pathways to be activated, which strengthens tight junctions and
the barrier function [162].

4.1. Modulation of Tight Junctional Barrier Integrity

The paracellular gap is sealed by a circumferential belt made of tight junctions, which
prevents macromolecules from diffusing across the epithelium [162]. Recently, Kaur et al.
showed that L. rhamnosus fermented whey was important in maintaining barrier integrity
in a mouse model of DSS-induced colitis. Prior to the induction of colitis, ingestion of
whey fermented with the probiotic L. rhamnosus (PFW) substantially decreased the disease
activity index and enhanced the histology scores. The considerably diminished levels
of pro-inflammatory markers (IL-4, TNF-α, CRP, and MPO activity) and the enhanced
levels of the anti-inflammatory cytokine TGF-β with IgA in the intestine upon feeding
PFW appeared to prevent inflammation on colitis induction (Figure 2). This protection is
mediated by the pathogen recognition receptors TLR-2, which result in the upregulation of
tight junctional genes (ZO-1, occludin, and claudin-1) and the localized distribution of junc-
tional (claudin, occludin, and ZO-1) and cytoskeleton (actin) proteins, thereby enhancing
immune homeostasis and intestinal barrier integrity. In addition, PFW ingestion resulted
in lower serum concentrations of the FITC-dextran marker, which directly confirmed the
host gut’s better health [16]. In a similar manner, after consuming probiotic-fermented
milk products, certain microorganisms (such as B. longum) become a permanent part of the
human intestinal microbiota, while others, such as L. casei, exert their effects transiently
as they pass through by remodeling or influencing the community of microbes that are
already present [163].

Additionally, it was found that the broth prepared by fermentation of L. acidophilus
in the presence of enhanced extracts from E. sativa seeds has a high concentration of
glucoerucin and significantly decreased CXCL-8 expression in Caco-2 cells after EHEC
infection, as well as epithelial disruption caused by EHEC infection [164]. L. casei BL23
and milk cooperate synergistically to protect the integrity of the epithelial barrier against
pro-inflammatory cytokines [165]. Likewise, ingestion of L. plantarum Lp91 in the form
of fermented dairy products may enhance the intestinal barrier’s function in both normal
and enteric infection circumstances. Modulation of critical regulatory receptors TLR-2 and
TLR-4, as well as upregulation of tight junction genes and secretory components mucin-2,
-defensin-2, and cathalicidin, indicated the mechanism of protection against infection [166].
The L. paracasei 01 fermented milk beverage decreased macromolecule permeability and
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improved intestinal epithelial integrity that has been damaged by dextran sodium sulfate.
Additionally, fermented milk beverages containing live L. paracasei 01 enhanced intestinal
epithelial cell (Caco-2) proliferation, reduced lipopolysaccharide/tumor necrosis factor
(TNF-α)/interferon (IFN-γ)-induced Caco-2 cell death, and raised the production of the
chemokine CCL-20 [167].

The administration of B. longum subsp. longum YS108R fermented milk was shown
to alleviate DSS-induced colitis through its anti-inflammatory properties, by protecting
mucosal barrier integrity, and maintaining gut microbiota homeostasis. It also signifi-
cantly decreased the expression of IL-6 and IL-17A and maintained the tight junction
proteins, while increasing the expression of mucin2 [38]. Jeffrey et al. evaluated the im-
munomodulatory activity of culture supernatants obtained from milk fermented by various
LAB (L. helveticus, L. casei ssp. Casei 31, L. casei subsp. rhamnosus 4008, L. acidophilus 41,
L. delbrueckii subsp. bulgaricus 1208, and Streptococcus). Additionally, the effect of fermented
milk supernatant by L. helveticus R389 regulated calcineurin expression and epithelial bar-
rier strengthening [126]. The findings suggested that the supernatant of fermented milks
improved gut mucosal immunity by bolstering the epithelium and nonspecific barriers
as well as gut function at infection sites. This is an important signal in the network that
activates the gut immune system [168].

4.2. Modulation of Gut Permeability

The gastrointestinal epithelium offers a structural and immunological barrier against
the broad spectrum of noxious and immunogenic substances present in the gut lumen.
Compromised intestinal mucosal integrity and breakdown of gastrointestinal mucosal
barrier function, the condition generally referred to as “Leaky Gut Syndrome” [169].
Lactobacillus helveticus ASCC 511 (LH511)-fermented milk enriched with citrulline enhances
the intestinal epithelial barrier function and inflammatory response in IPEC-J2 cells caused
by pathogenic E. coli. It restored the transepithelial electrical resistance (TEER) and reg-
ulated the expression and distribution of tight junction (TJ) proteins (zonula occluden-1
(ZO-1), occludin, and claudin-1), toll-like receptors (TLRs) (TLR2 and TLR4), and negative
regulators of the TLR signaling pathway (A20 and IRAK-M) [170].

Consumption of L. plantarum Lp91 in the form of fermented dairy food could increase
the functioning of the intestinal barrier in normal health as well as enteric infection condi-
tions. Protection against infection was demonstrated by the modulation of key regulatory
receptors TLR-2, TLR-4 and by upregulating the expression of the tight junction genes along
with secretory components, mucin-2, β-defensin-2, and maintaining gut permeability [166].
L. paracasei PS23-fermented milk (PS23 FM) and its heat-killed counterpart (HK PS23 FM)
could protect or reverse the increased epithelial permeability by strengthening the ep-
ithelial barrier function in vitro by increasing transepithelial electrical resistance (TEER).
In vivo analysis of the regulation of intestinal physiology demonstrated that low-dose
L. paracasei PS23-fermented leads to upregulation of short-chain fatty acids which ame-
liorated DSS-induced colitis. This anti-colitis effect may be exerted by deactivating the
inflammatory cascade and strengthening the tight junctions that cause the decrease in gut
leakage [171]. Milk fermented with Lactococcus lactis ssp. cremoris JFR1 resulted in increased
transepithelial electrical resistance, which remained constant for the duration of infection
(up to 3 h), illustrating a protective effect on Salmonella invasion of intestinal epithelial cell
cultures [172].

Moreover, L. casei BL23 and milk work synergistically to prevent damage to epithelial
barrier integrity reduced losses to transepithelial electrical resistance (TEER) induced by
pro-inflammatory cytokines [173]. Pretreatment of Caco-2 cell monolayers with L. plantarum
significantly attenuates phorbol ester-induced redistribution of ZO-1 and occludin from
the intercellular junctions and the increase in permeability. The surface layer lattice, being
the cell’s outermost structure, is typically regarded to be the first bacterial component
to interface directly with the intestinal epithelium. SLPs may preserve the intestinal
barrier by altering F-actin distribution and modifying tight junctional proteins at the
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mRNA and protein levels [174]. Previous research has identified that in combination
with fermented and probiotics foods, diet containing fruits, vegetables, and whole grains
are essential modulators of gut microbes due to their high fiber, phenolic chemical, and
prebiotic content [175]. Additionally, diets that include fermentable fibers and resistant
starches promote gut fermentation and SCFA (short chain fatty acid) synthesis. Increased
SCFA synthesis, in turn, would improve epithelial protection by strengthening the barrier
through increased TJ protein and TEER, as well as reduced permeability and bacterial
translocation [176,177]. Therefore, probiotic-fermented foods are well positioned in the
market because they have strong consumer acceptability. As a result, research into this
kind of product is attractive since it shows long-term promise. However, well-designed
and relevant clinical trials are needed to find out more about how probiotics affect the
gut-immune system.

5. Conclusions

Fermented functional foods are those that may provide extra health benefits beyond
the nutrients they already contain. The classification of dairy-fermented products as
functional foods represents a large potential for the dairy industry. Studies have shown
that fermented dairy foods have a beneficial impact on gastrointestinal health and have
the ability to improve the immune system. These benefits have been known for a long
time. The frequency of gut disorders has grown in recent years due to the Western lifestyle
and the eating habits linked with commercial items, which promote gut permeability and
antigen transcytosis and produce inflammation, ulceration, and apoptosis. Milk is rich
in LAB and bifidobacteria, which makes it an excellent environment for the growth of
probiotic bacteria. This is one of the reasons why milk is used to create functional meals.
The consumption of fermented dairy products has the potential to improve the health of
the body in a range of diseases, including diarrhea, obesity, high cholesterol, cardiovascular
health, and others. Fermentation also increases the amount of helpful bioactive peptides,
vitamins, and other elements generated by bacteria, which are all beneficial to the body’s
overall health. Probioactives are bioactive compounds related with the food matrix and
probiotic microorganisms that are present in foods. The administration of fermented dairy
foods with or without probiotic bacteria is essential for human health by preventing or
treating inflammatory diseases, as proven by a range of strains, according to preclinical and
clinical studies that promote health. As a result, fermented dairy foods have the potential
to evolve into a “functional food package” with extended shelf life and sensory qualities
for the benefit of humankind as a whole.
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