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Abstract: The present study aimed to optimize the production of L-asparaginase from Aspergillus
arenarioides EAN603 in submerged fermentation using a radial basis function neural network with
a specific genetic algorithm (RBFNN-GA) and response surface methodology (RSM). Independent
factors used included temperature (x1), pH (x2), incubation time (x3), and soybean concentration
(x4). The coefficient of the predicted model using the Box–Behnken design (BBD) was R2 = 0.9079
(p < 0.05); however, the lack of fit was significant indicating that independent factors are not fitted
with the quadratic model. These results were confirmed during the optimization process, which
revealed that the standard error (SE) of the predicted model was 11.65 while the coefficient was
0.9799, at which 145.35 and 124.54 IU mL−1 of the actual and predicted enzyme production was
recorded at 34 ◦C, pH 8.5, after 7 days and with 10 g L−1 of organic soybean powder concentrations.
Compared to the RBFNN-GA, the results revealed that the investigated factors had benefits and
effects on L-asparaginase, with a correlation coefficient of R = 0.935484, and can classify 91.666667% of
the test data samples with a better degree of precision; the actual values are higher than the predicted
values for the L-asparaginase data.

Keywords: L-asparaginase; Aspergillus arenarioides; submerged fermentation; organic soybean

1. Introduction

L-asparaginase (E.C. 3.5.1.1 L-asparagina amidohydrolase) is a recognized drug for
the treatment of acute lymphoblastic leukemia [1]. L-asparaginase acts by catalyzing the
substrate of asparagine which is essential for the survival of leukemia cells to ammonium
and L-aspartic acid. L-asparaginase has appeared as an excellent antineoplastic agent with
anti-carcinogenic activity and has a high potential in medical applications [2]. Several
substrates have been used to produce L-asparagine from fungi. Soybean (Glycine max) is
among the substrates with high contents of protein (~35–40%), lipids (~20%), dietary fiber
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(~9%), and moisture (~8.5%), which support the fungal growth and induce the enzyme
production. The potential of soybean substrate as a perfect substrate for L-asparaginase
production has been reported in the literature [3–5]. However, the limitations lie in the
production cost which depends on the fungal strain and optimization of the solid-state
fermentation process to achieve a high production rate. This issue is being overcome by
using novel fungal strains and selecting the factors that influence the production process.

The L-asparaginase enzyme has been isolated from A. niger [6], Sarocladium strictum [7],
Fusarium sp. [8], Talaromyces pinophilus [9], Trichosporon asahii [10], A. terreus [11], A. tub-
ingensis [12], Lasiodiplodia theobromae [13], and A. oryzae [14]. A. arenarioides EAN603 is
a new strain among six new fungal strains, including Purpureocillium lilacinum EAN601,
Parengyodontium album EAN602, Penicillium pedernalense EAN604, A. iizukae EAN605, and
Paraconiothyrium brasiliense EAN202 obtained from peat soil [15]. A. arenarioides EAN603
exhibited unique characteristics and the secondary metabolite products of this fungal strain
in a pumpkin peel medium were used for synthesizing Cu–Zn bio nanocomposites [16].

The enhancement of L-asparaginase production from a fungal strain was perfected
in previous studies using response surface methodology (RSM) [4]. They optimized the
production of L-asparaginase from Streptomyces brollosae in solid-state fermentation using
the Plackett–Burman experimental design with 16 independent variables. The study
revealed that the actual production of L-asparaginase was 145.57 U gds−1 compared
to 149.97 U gds−1 predicted by the regression model, with a coefficient of 97.06% and
standard error (SE) less than 5% between the actual and prediction models. However,
the optimization process with 16 factors needs huge numbers of the experimental run
which increase. Recently, Sharma and Mishra [17] investigated Aspergillus niger with
de-oiled cake as the sole substrate. The optimization process was conducted with four
factors including moisture content, autoclaving time, pH, and temperature using RSM and
an artificial neural network (ANN). The best operating parameters for high production
(34.65 ± 2.18 IU g−1d−1) were obtained with moisture content after 30.3 min at pH 6.2 and
30 ◦C. The artificial neural network (ANN) model showed superior prediction with a low
mean squared error (MSE) of 0.072, and R2 0.99. However, different independent factors
might affect positively or negatively on the optimization process.

The hybrid radial basis function neural network (RBFNN) is established with the
metaheuristic technique called the genetic algorithm (GA). The RBFNN is a feed-forward
neural network and it is the best network compared to other networks, such as the Hopfield
neural network (HNN) [18] and multilayer perceptron neural network (MLP) [19]. The
RBFNN has been widely utilized in many fields due to its simpler network structure,
better approximation capabilities, and faster learning speeds [20]. The GA is the robust
evolutionary paradigm that has attracted much research in maximization and optimization
problems [21]. The GA combines the idea of reproduction, cross-over, and mutation [22].
Therefore, the GA can be implemented in the RBFNN to become the best mathematical
model and one of the good models to be used in prediction or classification. This study
provides the best model called the neural network of the radial basis function with a specific
genetic algorithm (RBFNNGA) to improve the production of L-asparaginase.

In the present study, the optimization of L-asparaginase enzyme from a new fungal
strain A. arenarioides EAN603 in the submerged fermentation process was optimized using
RSM to evaluate the effects of multiple factors and their interactions on one or more
response variables. The application of an algorithm, such as those provided in MATLAB
or other software, might be not accurate to provide the prediction results compared to the
actual results, which are supposed to be verified in the laboratory and confirm the fitness
and efficiency. Moreover, a statistical approach was employed through the RBFNN-GA
hybrid artificial neural network (ANN) with a specific genetic algorithm model used to
find significant variables influencing the production, and this emphasizes the novelty of the
current work. The efficiency and accuracy of the predicted models of RSM and RBFNN-GA
were validated in the laboratory, while the difference between predicted results and actual
results was evaluated based on the determination of errors using RMSE, standard error
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of prediction (SEP), mean absolute percentage error (MAPE), mean absolute error (MAE),
Akaike information criterion (AIC), correlation coefficient (R), and accuracy.

2. Materials and Methods
2.1. Fungal Strains and Cultural Conditions

A total of six fungal strains including P. lilacinum EAN601, P. album EAN602, A. arenarioides
EAN603, P. pedernalense EAN604, A. iizukae EAN605, and P. brasiliense EAN202 recovered from
the peat soil sample were cultured on a modified Czapek Dox (MCD) agar medium [15]. The
fungal strain spores were suspended in 20% (v/v) glycerol and kept at −20 ◦C.

2.2. Semi-Quantitative Screening for L-asparaginase Production

The screening for the production of L-asparaginase was performed using a plate assay
with MCD that has 1 mL L−1 (v/v) of phenol red (0.25%, w/v dissolved in 96% ethanol),
and L-asparagine was the only nitrogen source; the pH of the medium was adjusted to
pH 6.2 [23]. The cultured medium was incubated for one week at 30 ◦C, while the change
in color from yellowish to pink was examined daily. The positive fungal colonies were
sounded in the pink zone. The colony and color change into pink due to L-asparaginase ac-
tivity zone diameter was measured for each fungal strain. The confirmation of L-asparagine
production by the fungal strains was carried out using bromothymol blue (BTB) [24,25]. In
brief, 10 mL of 0.04% (w/v) BTB stock solution was added to 90 mL DW, and 1 mL of the
dilution was supplemented in 1 L of the MCD medium. The fungal strains were cultured in
agar media plates and incubated for one week at 30 ◦C. The L-asparaginase activity index
was calculated according to Equation (1).

Zone Index =
Zone diameter

Colony diameter
(1)

2.3. Production of L-asparaginase in Submerged Fermentation

The production by the most potent fungal strains (P. lilacinum EAN601, A. arenar-
ioides EAN603, P. pedernalense EAN604, A. iizukae EAN605, and P. brasiliense EAN202),
which showed positive results in the rapid plate assay, was carried out in a submerged
fermentation medium (SmF).

A fixed volume (2 mL) of spore suspension in a 5-day-old MCD broth medium
(containing 109 spores / mL for each fungal strain) was transferred to 250 Erlenmeyer
flasks having 100 mL of MCD broth containing 1% (w/v) L-asparagine and incubated for
one week at 28 ◦C and 120 rpm on a rotary shaker. The culture supernatant was separated
using filter paper and used to determine the enzyme production.

The enzyme production was determined based on measuring ammonia released by
Nesslerization as described by Hatamzadeh et al. [26]. A fixed volume (100 µL) of culture
supernatant was mixed with 200 µL of asparagine substrate (0.04 M), 100 µL of (1 M, Tris
HCl (pH 7)), and 100 µL of sterile distilled water (SDW) and incubated at 30 ± 2 ◦C for
one hour. The enzymatic reaction was stopped by adding 100 µL of trichloroacetic acid
(1.5 M, TCA), while the blank was prepared in the same procedure without asparagine
substrate. To determine the enzyme activity in the mixture, 100 µL of the mixture was mixed
with 300 µL of Nessler’s reagent and 750 µL of sterile distilled water. Pure L-asparaginase
was used as a positive control. The absorbance of the mixture was determined at A450 nm
using a UV–visible spectrophotometer after the incubation period of 20 min at 28 ± 2 ◦C.
The enzyme concentrations were expressed as a unit of L-asparaginase required to release
1 µmol of ammonia per minute at 30 ± 2 ◦C [26].

Enzyme
(

Units
mL

)
= (µmol of NH3 liberated)(0.6)/((0.1) (60) (0.2)) (2)

where 0.6 is the initial enzyme mixture (mL), 0.1 is the enzyme mixture in the final reaction
(mL), 60 is the reaction time (min), and 0.2 is the enzyme (mL).
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The standard curve used for the L-asparaginase activity was prepared by dissolving
47.15 mg (NH4)2SO4 in 0.25 L DW. Different dilutions were prepared from the stock solution,
and a fixed volume (25 µL) from each solution was mixed with 3 mL of DW and 1 mL
of Nessler reagent. The absorbance was determined at A450 nm with a UV–Vis DR6000
spectrophotometer (Hach, Ames, IA, USA).

2.4. Optimizing L-asparaginase Production by A. arenarioides EAN603 Using a Box–Behnken Design

The Box–Behnken design (BBD) was used to determine the interactions between
and among all the variables and their combined effect on asparaginase production by
A. arenarioides EAN603, which was selected as the most potent fungal strains that produce
large amounts of the enzyme during the screening process. Four independent factors
were involved in the optimization process, including temperature (x1) (28–34 ◦C), pH (x2)
(5.5 to 8.5), incubation time (x3) (5 to 7), and substrate concentration, and soybean (x4)
(2.5 to 10) with three ranges for each factor (low (−1), medium (0), and high (1) levels). For
each factor, two experimental runs were used as a control conducted at a value less than and
greater than the range. The production process was carried out at each run suggested by the
BBD in 50 mL Erlenmeyer flasks (SmF process) with 2.5 g of organic soybean powder, and
15 mL of phosphate buffer (0.01 M) was added to ensure the stability of the pH medium,
while the pH was adjusted to 8.5. The sterilized production medium was inoculated with
2 mL of spore suspension inoculum, while the production process was carried out at 28 ◦C
for 5 days. After each experimental run, the fungal biomass was separated by a filtration
process using Whatman No. 1, and the supernatant with the crude enzyme was mixed
with 90 mL of sodium phosphate buffer (0.1 M) (pH 7) and agitated for 1 h at 25 ± 2 ◦C in
a rotary shaker (150 rpm). A total of 2 mL of the mixture was transferred to the Eppendorf
tube and centrifuged at 10,000× g for 10 min to obtain the crude enzyme and determine
the enzyme concentrations as described in Section 2.3.

2.5. Radial Basis Function Neural Network with a Specific Genetic Algorithm (RBFNNGA)

The study methodology of the hybrid RBFNNGA model in L-asparaginase data was
carried out as presented in Figure 1. The training data set of L-asparaginase y included
temperature (x1), pH (x2), incubation time (x3), and substrate concentration (x4), and
divided the data to 60% training data set and 40% testing data set in the RBFNNGA. This
is the robust model for predicting output value (dependent variable) given a set of input
variables (also known as independent variables). The center of the hidden neuron in the
RBFNNGA was calculated using Equation (3):

ci =
1
m

N

∑
i = 1

xi (3)

The width of each hidden neuron was calculated using Equation (4):

σ2
i =

1
m

√√√√ N

∑
i = 1

( xi − ci)
2 (4)

The activation function of RBFNN values was calculated using Equation (5):

ϕi(x) = e
−

∥∥∥∥∥∥ N
∑

j = 1
w
′

ji xj − ci

∥∥∥∥∥∥
2

2σ2
i (5)

The initial output was obtained using Equation (6):

f (x) =
j

∑
i = 1

xi ϕi(x) (6)
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The GA algorithm was used to optimize the output of the RBFNN.
The population of chromosomes was initialized as follows:

xi = (x1, x2, x3, x4) (7)

The value of the objective function of each chromosome produced in the step of
initialization was evaluated according to Equation (8):

f (xi) = ∑ xi ϕi(x) − yi (8)

The fitness value of each of the chromosomes was evaluated using the following Equation:

f iti =
1

(1 + f (xi))
(9)

The fittest chromosomes that have a higher probability of surviving to the next gener-
ation were selected according to Equation (10):

pi =
f iti

n
∑

i = 0
f iti

(10)

During the crossover phase, the information about the parent’s chromosomes was
exchanged to produce new chromosomes. In this step, the number of cross-populations
will be determined according to the crossover rate.

xnew
i =

{
xi = xk, pi, i = 1, 2, 3, . . . n
xi = xm, 1 − pi

(11)

Mutation used the parameter of mutation rate to determine the number of chromo-
somes that have the mutation in the population. During the mutation phase, the chromo-
some information will randomly change one value from the chromosome value, which
leads to improving the solution (output) of the RBFNNGA.

xnew
m =

{
rand(−5, 5), rand(0, 1) < r
xi, rand(0, 1) ≥ r

(12)

All performance evolution and calculation of the best error and result were obtained.
The following complete flowchart in Figure 1 shows the methodology of the RBFNNGA in
this study.

In L-asparaginase data, the network is required to find the best output by solving the
linear equation that consists of L-asparaginase data. In this case, the RBFNNGA is used to
improve the solution of the output. The solution (best output) in the RBFNNGA generated
by the GA is called a chromosome. These chromosomes in the GA will be undergoing
mutation and crossover until the chromosome’s fitness is optimal (an error is diminished).
Throughout this phase of crossover, the information of the parent’s chromosome will be
exchanged to produce new chromosomes with higher fitness and lower error. During the
mutation phase, the information of the chromosome will randomly change one value of the
output to improve the solution (best output) of the RBFNNGA. The GA after that will be
undergoing 10,000 iterations (i.e., generations) to enhance chromosomes until the SRBFNN
output is less or equivalent to the target output.
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The experiments were performed with Microsoft Windows 10 Professional 64-bit,
with a 500 GB hard drive specification, 4096 MB of RAM, and a 3.40 GHz processor.
The simulations are performed on the Microsoft Visual Dev C++ Express program. The
effectiveness of the training model was estimated using various time counts. In this study,
seven different metrics, RMSE, MAPE, SEP, MAE, AIC, R, and accuracy, were used to
evaluate the performance of our model for training and testing L-asparaginase data. The
model’s capacity to test the L-asparaginase data set depends on the accuracy and the
correlation coefficient (R).

RMSE =

√√√√√ n
∑

i = 1
( f (xi) − yi)

2

n
(13)

MAPE =
100%

n

n

∑
i = 1

∣∣∣∣ f (xi) − yi
f (xi)

∣∣∣∣ (14)

SEP =

√
1

n − 1

n

∑
i = 1

( f (xi) − yi)
2 (15)

MAE =
n

∑
i = 1

1
n
| f (xi) − yi| (16)

AIC = n × log(

√√√√√ n
∑

i = 1
( f (xi) − yi)

2

n
) + 2 × k (17)

R =
n ∗ ∑ C ∗ I − ∑ C ∗ ∑ I√

[n ∗ ∑ C2 − (∑ C)2] ∗ [n ∗ ∑ I2 − (∑ I)2]
(18)

Accuracy =
Number o f the correct induced logic

Total number o f testing data
× 100% (19)

The RBFNNGA was used to optimize L-asparaginase production.

2.6. Purification and Characterization

L-asparaginase was purified from the fungal supernatant by mixing with (NH4)2SO4.
A new production medium (5 L w/v) was inoculated with the A. arenarioides EAN603
spore suspension and incubated at the best operating parameters recorded during the
optimization study (Section 2.4). The fungal biomass was removed from the culture
medium by a filtration process, the culture supernatant was centrifuged at 10,000 rpm for
10 min at 4 ◦C, and the enzyme activity was detected according to the method described in
Section 2.3. The supernatant obtained after the centrifugation was divided into 5 fractions
(100 mL per fraction). A fixed weight of (NH4)2SO4 20 (20), 40 (40), 60 (60), and 80 g
(80%) was added separately. The mixture of supernatant and (NH4)2SO4 was placed
on hot plate magnetic stirrers for 10 min for homogenizing at 100 rpm for dissolving
(NH4)2SO4. The centrifugation process was performed again for each fraction, and the
crude enzyme concentrations in the precipitation and supernatant for each fraction were
detected according to the method described in Section 2.5 at 4 ◦C to avoid the denaturation
of the enzyme. The precipitation with high enzyme concentrations was suspended in
50 mL of a Tris-HCl buffer (50 mM) overnight, dialyzed against tap water overnight, and
then transferred to a container has sucrose to remove the water content [27,28]. The final
precipitant was dissolved in a 50 mL sodium phosphate buffer (0.1 M) (pH 7) and utilized
for studying the characteristics of the crude enzyme. The total protein concentration
in the cell-free extract (supernatant) and crude enzyme in the sodium phosphate buffer
was determined by the NanoDrop 2000 C spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) at A280 nm consuming bovine serum albumin (BSA) 10 mg/mL as the
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standard. In summary, 2 µL of enzyme samples were pipetted directly onto the Nanodrop
measurement pedestal [29].

The characteristics of the crude L-asparaginase enzyme as a response to pH and
temperature were determined by using an asparagine substrate (0.04 M) as described
in Section 2.3. pH values used were 3, 4, 5, 6, 7, 8, 9, and 10. The buffers used were
glycine-NaOH (9.0–10), Tris-HCl (8.0–9.0), sodium phosphate (6.0–8.0), and citrate phosphate
(pH 3.0–7.0), while the incubation period was conducted for 20 min at 30 ◦C. The temperature
used to study the enzyme stability was 10, 20, 30, 40, 50, and 60 ◦C for 20 min at pH 7.

3. Results and Discussion
3.1. L-asparaginase Production by Fungal Strains

Aspergillus arenarioides EAN603 exhibited the highest color change into pink due
to the L-asparaginase activity zone around the grown colony (37.2 mm), followed by
A. iizukae EAN605 (33.5 mm) with a zone index of 2.1, while growth in P. lilacinum EAN601
(22 mm colony diameter) was compared to P. brasiliense EAN202 (19 mm) and A. arenarioides
EAN603 (18 mm) (Table 1).

Table 1. L-asparaginase activity diameter, colony diameter, and zone index of L-asparaginase
produced from six fungal strains in the study.

Name of Fungi
L-asparaginase

Activity Diameter
(mm)

Colony Diameter
(mm) Zone Index

P. lilacinum EAN601 24.0 22 1.09
P. album EAN602 ND 18 ND

A. arenarioides EAN603 37.2 18 2.1
P. pedernalense EAN604 21.4 16.2 1.3

A. iizukae EAN605 33.5 18 1.86
P. brasiliense EAN202 30.1 19 1.58

ND: non-detected.

These findings indicated that fungal growth is not correlated to enzyme production.
The semi-quantitative method is a primary screening used to detect the presence or ab-
sence of the enzyme from the microorganism. However, the process should be followed
by the production of the enzyme in the liquid medium, and the enzyme concentration by
spectrophotometric methods with a specified substrate. The semiquantitative has several
limitations including the low relationship between the cleared zone diameters and the
enzyme activities and the difficulty to detect by the eye. Therefore, the rapid plate assay
method was used to confirm the production and concentration of the enzyme in the broth
medium. Among the five fungal strains used in the secondary screening process, A. are-
narioides EAN603 produced the highest enzyme 168.2 IUmL−1 compared to the positive
control (pure enzyme) 90.6 IUmL−1, followed by P. lilacinum EAN601, where 45.5 IUmL−1

of L-asparaginase (Table 2). Doriya and Kumar [12] revealed that four fungal strains pro-
duced L-asparaginase according to semiquantitative methods with phenol red and BTB; the
maximum enzyme production was 33.59 U mL−1 and 1.57 of the zone index. In comparison,
the fungal strains used in the present study showed more potential to produce compared to
that reported by Doriya and Kumar [12]. However, Aspergillus carneus, Penicillium camember-
tii, and Cladosporium tenuissimum exhibited high enzyme production. C. tenuissimum in a
glucose-containing medium produced 5558 U mL−1 [30]. The differences might be related
to the culture medium and fungal strains which have different enzyme production.
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Table 2. The concentration of released ammonium in the final solution (mM) and crude enzyme (IUmL−1).

Fungal Strain Average O.D
Concentration of

Ammonium in the
Final Solution (mM)

Crude Enzyme
(IU mL−1)

P. lilacinum EAN601 0.307 0.091 45.5
A. arenarioides EAN603 1.084 0.336 168.2
P. pedernalense EAN604 0.150 0.042 21

A. iizukae EAN605 0.158 0.045 22.5
P. brasiliense EAN202 0.199 0.056 28

Positive control 0.580 0.181 90.6

3.2. Optimal Conditions for Producing L-asparaginase by A. arenarioides EAN603

Four independent factors were involved in the optimization process including tem-
perature (x1) (28–34 ◦C), pH (x2) (5.5 to 8.5), incubation time (x3) (5 to 7 days), substrate
concentration, and soybean (x4) (2.5 to 10). Maximum production was observed at 28 ◦C,
pH 8.5, after 7 days and with 10 g L−1 of soybean as a production substrate; the predicted
and actual production was 134.19 vs. 142.64 IU mL−1 (Run 26) followed by Run 17 at 28 ◦C,
pH 8.5, after 5 days and with 10 g/L of soybean as a production substrate; predicted and
actual production was 131.17 vs. 124.54 IU mL−1. These findings indicated that the main
factors contributing in enzyme production are the incubation period (Table S1).

In a view of a single effect of each independent factor, it was noted that the factors
exhibited a linear and secondary significant role in the production process (p < 0.05), except
for pH which occurred only a linear effect, and temperature which exhibited more influence
as a secondary factor (Table S2).

The linear effects of temperature have a negative relation with enzyme production and
increasing temperature contributes to the reduction in enzyme production, while increasing
substrate concentration is associated with reducing enzyme production as a secondary
factor. The interaction analysis revealed that the pH and incubation period had a significant
negative interaction (p < 0.05), the increase in the incubation period might lead to a change
in the production medium pH and then the enzyme production. The increasing of pH
might be associated with high degradation of the substrate and increased enzyme reduction;
both factors exhibited a synergistic effect on enzyme production (p < 0.05). Similar findings
were noted between the incubation period and the production substrates where the fungi
needed more time to degrade the substrate and produce the enzyme; this might be related
to the production stage of L-asparaginase production as an inducible enzyme product.

The RSM of enzyme production as a function of independent factors is depicted in
Figure 2. It was observed that pH had a greater influence on enzyme production than
temperature (Figure 2A), while time and temperature had a similar trend in their effects on
enzyme production, with a negative impact at a temperature between 30–32 ◦C (Figure 2B).
The substrate concentration exhibited more influences on the enzyme production compared
to temperature (Figure 2C), and a slight difference was recorded between the effect of pH
and time (Figure 2D).
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between pH and time (D); Interaction between pH and Soybean concentration (E); Interaction between
time and Soybean concentration (F).
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These findings indicated that the main factor contributing to enzyme production was
soybean concentration and pH; enzyme production of the enzyme increased as soybean
concentration increased to 10 g L−1 and pH increased to pH 8.5 (Figure 2E). The time
and soybean concentration exhibited similar trends; their contribution occurred more
at high soybean concentrations (10 g L−1) and after a long incubation period (7 days)
(Figure 2F). Shanthipriya et al. [31] revealed that pH 7.0 was optimal for L-asparaginase
production from Scytalidium thermophilum, Malbranchea cinnamomea, and Thielavia terrestris
(thermophilic caprophilous fungi), while the optimal temperature was between 45 and
50 ◦C. In our study, the optimum temperature was 28 ◦C, which is like the soil tempera-
ture. Based on the F value, soybean concentrations contribute to enzyme production by
34.39%, while time contributes by 9.23%, and both factor as a primary effect (Figure 3). In
contrast, the temperature was effective as a second factor by 19.05%. In comparison with
previous studies, Vimal, and Kumar [32] found that the main factor in the production of
L-asparaginase from Penicillium lilacinum was pH first (24.55%), substrate 21.28, and tem-
perature 15.28%. These differences belong to different fungal strains used in the production
of the enzyme.
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Figure 3. A Pareto diagram showing the main factors and their interaction effects on L-asparaginase
production (in SmF) in ascending order along with the percentage contribution of each parameter.

The quadratic equation for the enzyme production as a response to the independent
factor is presented below.

yEnzyme = + 81.82 − 6.16 x1 + 8.21x2 + 11.28x3 + 21.77x4 − 1.26x1x2 +

4.30x1x3 + 4.64x1x4 + 12.78x2x3 + 10.47x2x4 − 10.80x3x4 + 15.16 x2
1 −

5.05x2
2 + 5.47x2

3 − 7.05x2
4

(20)

The coefficient of the predicted model by BBD was R2 = 0.9079 (p < 0.05); however,
the lack of fit was also significant (p < 0.05). These findings indicated that the effect of
the independent factors on enzyme production is not fitted with the quadratic model.
These results were confirmed during the optimization process, which revealed that the
SE of the predicted model was 11.65 while the coefficient was 0.9799, at which 145.35 and
124.54 IU mL−1 of the actual and predicted enzyme production was obtained at 34 ◦C,
pH 8.5 after 7 days, and with 10 g L−1 of soybean concentrations.



Fermentation 2023, 9, 200 12 of 15

Several studies have used RSM for optimizing enzyme production from different
microorganisms. However, the present study claimed that RSM is not the best prediction
model for optimizing the production process due to the high SE. The machine learning
model might be more accurate and flexible to achieve high enzyme production because
these models depend on the training process of the data with high frequencies repeated to
achieve the best prediction model.

3.3. Purification and Stability

The results of enzyme purification revealed that the best concentrations of (NH4)2SO4
required to precipitate L-asparaginase were 60%, at which the enzyme concentrations were
138.7 IU mL−1 compared to 55.44 IU mL−1 in the supernatant (Table 3). The concentration
of L-asparaginase in the cell-free extract was 249 IU mL−1, while there was 172 IU mL−1 in
the partially purified crude enzyme (Table 4). The crude enzyme exhibited high stability at
pH 8 and 30 ◦C (Figure S1).

Table 3. Enzyme concentration in supernatant and precipitate after adding (NH4)2SO4.

Supernatant Precipitation

(NH4)2SO4% Mean O.D Crude Enzyme
(IU mL−1) Mean O.D Crude Enzyme

(IU mL−1)

20 0.845 134.2 0.254 37.6
40 0.751 119.3 0.457 70.6
60 0.359 55.44 0.873 138.7
80 0.596 93 0.684 106.7

Supernatant 0.914 142.5 N.D N.D
Positive control 0.899 140.18 N.D N.D

Table 4. Enzyme activity during the purification of L-asparaginase from A. arenarioides EAN603 in SmF.

Purification
Procedure

Enzyme
Activity (IU)

Protein
(mg)

Specific Activity
(IU mg−1)

Fold
Purification Yield (%)

Cell-Free Extract 249 117 11.29 1.0 100
Crude enzyme 172 79 20.9 2.08 74

3.4. Prediction Models Using Machine Learning

The results of the hybrid model RBFNNGA are summarized in Figure 4A–E and
Table 5. The model stated above was utilized to create a logic rule that examines the
link between the candidate’s features and helps to properly predict the production of
L-asparaginase over time. The model helps not only to properly predict the production
of L-asparaginase more effectively but also to enhance the production of L-asparaginase.
The best model, according to the experimental findings, is RBFNNGA, which can classify
data according to logic mining using the lowest possible values of RMSE, MAE, MAPE,
SEP, and AIC. Basically, Figure 4 showed the comparison of the actual value vs. predicted
values. In this case, we can see that the forecast is a good fit. The model has the skill and a
forecast that looks sensible according to the lowest possible values of RMSE, MAE, MAPE,
SEP, and AIC. As shown in Figure 4, increasing the complexity of the model by increasing
the number of input neurons led to an increase in time, RMSE, MAE, MAPE, SEP, and AIC.
These findings indicate that the RBFNNGA model behaves well on the L-asparaginase data
it has already seen. On the other hand, Figure 4 showed that it is clear that the increase in
the complexity of the model led to improved predicted values in addition to the evaluations
of RMSE, MAE, MAPE, SEP, and AIC evaluations; we can say that the RBFNNGA model
is the optimal model to predict L-asparaginase data. Based on the findings in Table 5,
the hybrid RBFNNGA model is the optimum model for establishing the logical rule and
categorizing the relationship between the candidate’s attributes. This helps to achieve
a greater level of accurate anticipating changes for L-asparaginase data. According to



Fermentation 2023, 9, 200 13 of 15

the results, the RBFNNGA is the best model in logic mining, as a long-term relationship
between the variables provided was confirmed, demonstrating that all the independent
factors were crucial in determining the behavior or movement of the L-asparaginase data.
This result demonstrated that temperature (x1), pH (x2), incubation time (x3), and substrate
concentration (x4) had a benefit and an effect on the L-asparaginase, with a correlation
coefficient of R = 0.94, and can classify 91.67% of the test data samples with a better degree
of accuracy, as shown in the Figures where the actual values are higher than the forecasted
values for the L-asparaginase data.
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Table 5. Shows the best accuracy, correlation coefficient (R), and the most influencing variables. Best
accuracy and correlation coefficient (R).

The Final State after the RBFNNGA Accuracy% R

y = (x1V x2)̂(x3V x4) 91.67 0.94



Fermentation 2023, 9, 200 14 of 15

4. Conclusions

Enhancement of L-asparaginase production from Aspergillus arenarioides EAN603 on
submerged fermentation using the RBFNN-GA and response surface methodology was
successfully conducted. Independent factors used included temperature (x1), pH (x2),
and incubation time (x3), and soybean concentration (x4) was used for optimization using
BBD. The findings indicated that the BBD coefficient was R2 = 0.9079 (p < 0.05), but the
independent factors were not fitted with the quadratic model since the SE of the predicted
model was 11.65. The RBFNN-GA has a correlation coefficient of R = 0.94 and can classify
91.67% of test data samples with a better degree of accuracy; the actual values are higher
than the forecast values for the L-asparaginase data. The primary factors driving enzyme
production are soybean concentration and incubation time.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/fermentation9030200/s1, Figure S1: Enzyme stability as a response
for pH (A); and Temperature (B); Table S1: Comparison between the experimental and prediction
data for producing L-asparaginase by A. arenarioides EAN603 in SmF process with soybean as a
production substrate. Table S2. Analysis of the variance (ANOVA) of the quadratic model for
producing L-asparaginase by A. arenarioides EAN603 in SmF process with soybean.
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