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Abstract: Nitrogen is a crucial element for the growth and development of plants, directly affecting
crop growth and yield. To investigate the physiological and molecular mechanism of nitrogen-
deficiency stress, we conducted an investigation into the effects of different nitrogen levels on the
growth, photosynthetic characteristics, and gene transcription levels of banana seedlings. Compared
with the control group with normal nitrogen levels (NN), the height of plants receiving Reduced-N
(NR), Low-N (LN), and N-Free (NF) treatments was decreased by 0.45 cm, 2.5 cm, and 3.25 cm,
respectively. Their dry weight was reduced by 1.63 g, 2.99 g, and 2.88 g, respectively. Conversely,
the dry weight of the underground plant part in the LN and NF treatment groups exhibited an
increase of 0.13 g and 0.16 g, respectively. Regarding photosynthetic characteristics, the Specialty
Products Agricultural Division (SPAD) values of the NR, LN, and NF treatments showed reductions
of 15.5%, 30.4%, and 35.9%, respectively, compared with those of the control treatments. The
values of maximum photosynthetic efficiency (Fv/Fm), actual photosynthetic efficiency (Y(II)), and
relative electron transfer (ETR) of the banana seedlings decreased to different degrees after NR, LN,
and NF treatment, and their values were positively correlated with N levels. Gene transcription
analysis showed that N transport-related proteins, including NRT1.7, NRT2.3a, NRT2.3b, and NRT2.5,
were significantly up-regulated to increase the nitrogen absorption capacity of plant roots. On
the other hand, various transcription factors including GRAS, MYB, and WRKY were notably up-
regulated, facilitating root growth and the expanding root absorption area, thereby enhancing
nitrogen uptake. Furthermore, genes associated with endogenous hormone metabolic pathways
such as gibberellin (GA), strigolactone (SL), and brassinosteroids (BR) were activated in banana
plants subjected to low nitrogen stress, enhancing the plant’s ability to adapt to nitrogen-deficient
conditions. These findings offer valuable insights into understanding the transcriptional regulatory
mechanisms governing banana responses to low nitrogen stress and breeding new varieties with
improved nutrient utilization.

Keywords: banana; nitrogen deficiency; photosynthetic parameters; transcription level; phytohormone

1. Introduction

Nitrogen (N) is necessary for maintaining the vital physiological processes of plants. It
engages in diverse biochemical reactions, serving as a crucial constituent of proteins, amino
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acids, and chlorophyll [1,2]. With the exception of the symbiotic nitrogen fixation of legu-
minous plants with rhizobium, the majority of terrestrial plants acquire inorganic N such as
nitrate N (NO3

−) and ammonium N (NH4
+) from the soil via the root system. Plants have

evolved to develop diverse transport mechanisms. The nitrate transport proteins (NRTs) of
plants are crucial for the uptake and transportation of nitrate. In Arabidopsis, AtNRT2.1, At-
NRT2.2, AtNRT2.4, and AtNRT2.5 participate in the response to N deficiency [3,4]. AtNRT2.4
and AtNRT2.5 are responsible for nitrate transport from the root cortex to epidermal cells
and from the phloem to leaves [5]. OsNRT2.1, OsNRT2.2, OsNRT2.3a, and OsNAR2.1 from
rice are involved in the nitrate uptake of roots [6,7]. Overexpression of OsNPF8.9/NRT1
promotes rice growth under low-N conditions [8]. Additionally, ammonium transporters
(AMTs) are classified as a high-affinity transport systems for the utilization of NH4

+ [9].
Arabidopsis AMT genes such as AtAMT1.1, AtAMT1.3, and AtAMT1.5 are directly involved
in the uptake of ammonium N (NH4

+). The expression level of OsAMT1.3 was up-regulated
in response to low N levels [10,11].

Transcription factors play a significant role in a plant’s response to low N stress. Under
N-deficient conditions, overexpression of MdNAC4 induced the transcription of MdNCED2
in the ABA biosynthesis pathway of apple [12]. BnaA9.WRKY47 regulates the expression of
BnaC7.SGR1, BnaA2.NRT1.7, and BanA9AAP1 to alleviate N deficiency in rape plants [13].
In foxtail millet, SiMYB3 promotes root development by regulating IAA synthesis under
low-N conditions [14]. ZmNF-YA13 enhances N uptake by increasing the N transport of
roots [15]. The expression of ZmDof1 facilitates N absorption by up-regulating organic
acid metabolism [16]. Overexpression of GmZFP7 increased the contents of isoflavones in
soybean root [17].

Phytohormones such as auxin (IAA) and cytokinin (CTK) play a crucial role in the
signal transduction of root development and N response [18–21]. IAA activates the gene
expression of high-affinity nitrate transporter 2 (NRT2s) to accelerate root development
under low N stress [22]. The auxin transporter ZmPIN1a enhanced the transport of IAA
from the stem to root in maize, promoting the formation of lateral roots [23]. CKT is
responsible for N signal transfer in rice. The presence of NO3

− can influence the level
of CTK in the phloem [24,25]. Exogenous CTK or overexpression of IPF promoted CTK
synthesis to inhibit the elongation of roots. Reversely, overexpression of CKX promoted
root growth [26–28]. Additionally, exogenous ethylene (ETH) has a detrimental effect on
plant root elongation [29–31]. In maize roots, N deficiency leads to a reduction in ETH
production but an increase in root sensitivity to ETH, ultimately resulting in the formation
of aerenchyma [32,33]. Abscisic acid (ABA) is a crucial phytohormone in the response of
plants to abiotic stress including low N stress. In Arabidopsis, the addition of NO3

− resulted
in an elevation of ABA levels in the root tip. High levels of ABA are attributed to the
activation of ABA-GE induced by NO3

− [34].
Banana (Musa acuminata) is a significant fruit grain crop and holds the largest trade

volume of fresh fruit globally. Its tall plant height and high fruit yield causes the sub-
stantial requirement of N nutrition. Consequently, the cultivation method of “big water
and big fertilizer” is extensively employed in banana production. However, the excessive
application of N fertilizer to improve banana yield results in 20–30% utilization efficiency.
This inefficiency causes considerable fertilizer waste and environmental pollution [35,36].
Current research mainly focuses on N nutrient utilization in banana physiological character-
istics. The elucidation of key genes and regulatory mechanism remains elusive. Hence, our
study aims to compare the effects of different N levels on the plant growth, photosynthetic
parameters, and other pertinent indicators of banana seedlings. An analysis of differentially
expressed genes will be carried out to elucidate the underlying mechanism in response to
low N stress. The findings offer a theoretical reference for the enhancement of fertilization
efficiency and nutrient utilization in banana production.
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2. Materials and Methods
2.1. Treatment and Sampling

The experiment was conducted in a greenhouse (temperature: 28 ± 5 ◦C; relative hu-
midity: 60–70%) located at the Chinese Academy of Tropical Agricultural Sciences, Haikou,
Hainan China. Tissue culture seedlings with three leaves (Baxi cv. Musa acuminata) that had
rooted for 30 days were chosen and transplanted into cylindrical pots (diameter × height:
13 cm × 11 cm) containing washed sand. The nitrogen concentration required to meet the
normal growth of seedlings was set as the control (Normal-N, NN) [37]. Four different
levels of N were established, namely NN (16 mM), Reduced-N (NR, 11.2 mM), Low-N
(LN, 3.2 mM), and N-Free (NF, 0 mM). Each treatment was replicated 50 times. For each
plant, 300 mL of nutrient solution of different nitrogen concentrations was added per week
(Table S1). After 28 d, the root samples collected were immediately frozen in liquid nitrogen
and stored at −80 ◦C. The experiment was repeated with three biological replicates.

2.2. Determination of Chlorophyll SPAD Value

Specialty Products Agricultural Division (SPAD) is a common index of chlorophyll
content in leaves that is usually used to evaluate the level of chlorophyll content in plant
leaves. The SPAD values of banana seedling leaves were assessed using a portable SPAD-
502 chlorophyll detector (KonicaMinolta, Tokyo, Japan) at the indicated time points (0, 3, 7,
14, and 28 d) after exposure to different N levels. In total, ten banana seedlings were chosen
for analysis, specifically targeting the second fully expanded leaf from the apex.

2.3. Determination of Dry Weight and Plant Height

The plant height of the banana seedlings was determined after growth for 28 d. In total,
10 seedlings were randomly chosen for each treatment. The aboveground and underground
tissues of seedlings were collected. The samples were subjected to a temperature of 105 ◦C
for 30 min to terminate biological activity, followed by drying at 75 ◦C until a constant
weight was observed. The dry weight was then measured.

2.4. Determination of Chlorophyll Fluorescence Parameters

In intervals of 0, 7, 14, and 28 d under different N treatments, the second fully unfolded
leaf of the banana plant was carefully chosen for chlorophyll determination. The chloro-
phyll fluorescence parameters were assessed using the IMAGING-PAM-MAXI chlorophyll
fluorescence analyzer (WALZ, Effeltrich, Germany). We set the parameters of Meas-Light
and Act-Light so that the fluorescence value of the AOI region was maintained between
0.1 and 0.2. Each treatment was repeated 3 times. The samples were collected from 9:00 to
14:00 on a sunny day and were kept in the dark for 20 min.

2.5. Transcriptome Sequencing and Data Analysis

The extraction of total RNA from banana seedling roots was carried out using the
Quick RNA Isolation Kit (Huayueyang, Beijing, China). DNase I was added to eliminate
genomic DNA contamination. The integrity and concentration of total RNA were assessed
through 1.2% agarose gel electrophoresis and using NanoDrop One (Thermo, Waltham,
MA, USA). For cDNA library construction, 3 µg of total RNA was utilized. The library was
sequenced by BioMarker Technologies Company (Beijing, China), employing the Illumina
6000 platform for sequencing.

FastQC (v0.11.9) software was used to compute Q20, Q30, and GC contents. fastp
(v0.20.0) software was employed to filter out adapters, ploy-N, and low-quality readings
based on quality control measurements. The clean data were aligned against those for
the banana reference genome (v4) obtained from the Banana Genome Center (https://
banana-genome-hub.southgreen.fr, accessed on 10 August 2022). The genome coverage
and mapping rate were analyzed using Hisat2 (v2.1.0) and QualiMap (v.2.2.1), respectively.
Furthermore, htseq-count (v1.99.2) was employed to calculate the gene expression level,
which was converted into FPKM (the expected number of fragments per kilobase of

https://banana-genome-hub.southgreen.fr
https://banana-genome-hub.southgreen.fr
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transcript sequence sequenced per million base pairs). In accordance with the criteria, log2
(FC) ≥ 1, FDR < 0.01, and p < 0.05, the DESeq2 R package (v1.32.0) was applied to identify
differentially expressed genes (DEGs). Gene function was annotated using the following
databases: NR (NCBI non-redundant protein sequences), EggNOG (evolutionary genealogy
of genes: non-supervised orthologous Groups) and Uniprot (https://www.uniprot.org/,
accessed on 12 August 2022).

2.6. Data Analysis and Mapping

Statistical analysis was conducted using SPSS 22.0 software. ANOVA was used for
analyzing the variance in the statistical analysis. Bar charts were drawn using Origin
2017 and Illustrator software. Wayne charts and GO enrichment analysis were conducted
through online platforms (https://www.chiplot.online/, accessed on 15 August 2022);
http://www.bioinformatics.com.cn/, accessed on 15 August 2022. We drew a heat map
using Tbtools software (1.075) [38].

2.7. RNA Extraction and qRT-PCR Analysis

Total RNA was extracted and detected as described above. The first-strand cDNA was
synthesized through reverse transcription using RevertAid First Strand cDNA Synthesis
Kit (Thermo Fisher Scientific, Waltham, MA, USA). qRT-PCR analysis was conducted
using SYBR Green qPCR Master MIX Kit (Thermo Fisher Scientific, Waltham, MA, USA).
The MaActin gene served as the internal reference. Information and primer sequences of
selected genes are detailed in Supplementary Table S2. Relative expression was determined
using the 2−∆∆Ct method. Each sample set was replicated three times.

3. Results
3.1. Effects of Different N Treatments on Plant Height and Dry Weight of Banana Seedlings

To assess the effect of various N treatments on the growth of banana seedlings, plant
height and dry weight were determined for aboveground and underground samples. After
28 d, the plant heights of banana seedlings subjected to Low-N (LN) and N-Free (NF)
treatments was lower than those in the Normal-N (NN) and Reduced-N (NR) treatments.
Specifically, the plant height under LN and NF treatments decreased by 2.5 cm and 3.25 cm,
respectively, in comparison with that under the NN treatment. No significant difference was
observed in the NR treatment group. This suggests that low N stress significantly inhibited
the growth of banana plants (Figure 1A). Both LN and NF treatments had a significant
inhibitory effect on the dry matter accumulation of banana seedlings. Specifically, the
dry weight decreased by 33.8% (2.99 g) in the LN treatment and 32.6% (2.88 g) in the
NF treatment in comparison with that in the NN treatment. Moreover, the dry weight
of banana seedlings in the NR, LN, and NF treatments was significantly lower than the
normal level, and no significant difference was observed among three treatments (Figure 1B).
Additionally, the aboveground part of banana seedlings in the NR, LN, and NF treatments
exhibited a significant decrease, while LN and NF treatments show a more pronounced
decrease (Figure 1D). Compared with that under the NN treatment, the root-to-shoot
ratio of banana seedlings under the NR treatment was significantly reduced (p < 0.05),
while there was no significant difference between LN and NF treatments for this ratio
(Figure 1E).

https://www.uniprot.org/
https://www.chiplot.online/
http://www.bioinformatics.com.cn/
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Figure 1. Effects of different N treatments on plant growth. (A) Plant growth morphology; plant
height; bars = 12.2 cm. (B) Root dry weight, (C) shoot dry weight, (D) and root/shoot ratio (E) in
banana seedlings. NN: Normal-N treatment (16 mM); NR: Reduced-N treatment (11.20 mM); LN,
Low-N treatment (3.20 mM); NF: N-Free treatment (0 mM). The different letters indicate significant
differences (Duncan’s test, p < 0.05).

3.2. Effects of Different N Treatments on Chlorophyll Content of Banana Seedlings

The SPAD value is usually used to assess the chlorophyll content in plant leaves,
and the relative concentration of chlorophyll is directly related to the nitrogen content of
leaves [39]. No obvious differences were observed during the whole growth periods in the
NN treatment. The SPAD values of the LN and NF treatments showed a significant decline
from the third day, reaching their lowest point on the 28th day. The SPAD value of the
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NR treatment began to decrease after 7 d. The SPAD values under LN and NF treatments
exhibited a statistically significant decrease compared with those under the NN and NR
treatments. Specifically, on the 28th day, the SPAD values under the NR, LN, and NF
treatments were 15.5%, 30.4%, and 35.9%, respectively (Figure 2).
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Figure 2. Changes in SPAD value in banana leaves after treatment with different N levels. Data are
means ± SE (n = 10), and the different letters indicate significant differences (Duncan’ test, p < 0.05).

3.3. Different N Treatments’ Effects on Leaf Chlorophyll Fluorescence Parameters

We further evaluated photosynthetic efficiency through the determination of plant
chlorophyll fluorescence parameters. The PSII maximum photochemical efficiency (Fv/Fm)
is the maximum efficiency at which the light energy absorbed by the photosynthetic
center is used in the photochemical reaction, and can effectively reflect the degree of plant
stress [40]. In our study, the Fv/Fm value of NN leaves exhibited a gradual increase after
14 days of treatment (Figure 3B). The Fv/Fm values of banana seedlings in the NR, LN,
and NF treatments were lower than those under the NN treatment, falling below 0.80. In
Figure 3C, Y(II) represents the photosynthetic efficiency of PSII. Following the treatment,
the Y(II) value of NN leaves remained relatively stable at approximately 0.12. Conversely,
the Y(II) values of NR, LN, and NF leaves showed different degrees of decrease. In contrast,
the reduction in N content had a direct correlation with the decrease in the Y(II) value
observed in banana leaves (Figure 3C). The previous study showed that the relative electron
transport rate of Photosystem II (ETR) is a crucial indicator of photosynthetic capacity [41].
Although the alteration pattern of ETR was consistent with that of Y(II), the ETR value
of banana leaves was pronouncedly decreased (Figure 3F). This suggests that energy loss
or a non-photochemical dissipation of light energy was found during the photosynthetic
process of banana leaves under low N stress.

Additionally, the quantum yield of the regulatory energy dissipation of PSII (Y(NPQ))
is often used to evaluate the dissipation of excess excitation energy [42]. After 7 d of NF, LN,
and NR treatment, the Y(NPQ) values of banana leaves exhibited a statistically significant
increase in comparison with those of leaves in the NN treatment. Following a duration of
28 d of treatment, the leaf Y(NPQ) values in the NN and NR treatments remained relatively
stable, ranging from 0.65 to 0.70. Conversely, the LN and NF treatment maintained more
than 0.70 of Y(NPQ) (Figure 3D). The Y(NO) parameter serves as an indicator of the self-
protection mechanism of plants in response to intense light exposure. Specifically, the
Y(NO) value of banana seedling leaves subjected to LN treatment was significantly higher
level compared with that of those treated with the other three treatments on day 28, as
depicted in Figure 3E. In conclusion, under low nitrogen stress, the excitation energy of
banana seedlings showed higher activity, indicating that the plants were in the process of
adaptation and regulation of light energy use.
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Figure 3. Changes in chlorophyll fluorescence parameters in banana seedling leaves subjected to
different N treatments. (A) Chlorophyll fluorescence map; (B) PSII maximum photochemical efficiency
(Fv/Fm); (C) actual photosynthetic efficiency of PSII (Y(II)); (D) quantum yield of regulatory energy
dissipation of PSII [Y(NPQ)]; (E) Quantum yield of non-regulatory energy dissipation by PSII (Y(NO));
(F) relative electron transport rate of PSII (ETR). Data are means ± SE (n = 9), and the different letters
indicate significant differences (Duncan’s test, p < 0.05).

3.4. Screening and Annotation of Differentially Expressed Genes in Banana Roots after Exposure to
Low N Stress

In order to identify the crucial genes involved in the response to low N stress, tran-
scriptome analysis was conducted on banana roots after treatment with different N con-
centrations. DEGs were analyzed using the criteria log2 (FC) ≥ 1 and FDR < 0.01. In total,
541 DEGs were identified. Fifteen DEGs were detected at the intersection of NR vs. NN,
LN vs. NN, and NF vs. NN (Figure 4A). Specifically, NR vs. NN analysis showed 28 DEGs,
consisting of 4 up-regulated genes and 24 down-regulated genes. LN vs. NN analysis re-
vealed 112 DEGs in banana roots, including 34 up-regulated genes and 78 down-regulated
genes. Additionally, NF vs. NN analysis revealed 401 DEGs in the roots, consisting of
129 up-regulated genes and 272 down-regulated genes (Figure 4B). The results depicted in
Figure 4C–E demonstrate that a higher degree of nitrogen reduction is associated with a
greater number of differentially expressed genes compared with those in the control (NN).
The number of down-regulated genes in comparisons, such as NN vs. NR, NN vs. LN, and
NN vs. NF, exceeded the number of up-regulated genes. These findings suggest a positive
correlation between the extent of nitrogen decline and the abundance of differentially
expressed genes, implying the involvement of complex pathways and mechanisms in the
response to low nitrogen stress.

GO enrichment analysis was employed to examine the enrichment of DEGs in terms
of biological process, cellular component, and molecular function. The set of 112 DEGs ob-
tained from LN vs. NN were involved in light and chemical signal transduction, transport
processes, membrane and plasma membrane components, and transport activity, as well as
other functions. The 401 DEGs obtained from NF vs. NN showed and enrichment in the
cellular composition, response to chemical signals, stress response, secondary metabolism,
membrane and plasma membrane components, and transport activity (Figure S1).
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The DEGs in the top 20 pathways of LN vs. NN and NF vs. NN contained car-
bohydrate, lipid, amino acid, cysteine and methionine, starch, and sucrose, as well as
other secondary metabolic pathways. Additionally, these genes were found to be involved
in protein folding, sorting and degradation processes, membrane transport, cytochrome
P450, chaperone and folding catalysis, and transduction and transport processes. DEGs
between NF and NN were primarily exhibited in various metabolic processes such as
those of enzymes, carbohydrates, amino acids, amino and nucleotide sugars, flavonoids,
galactose, tyrosine, N, isoquinoline alkaloids, carotenoids, and phenylpropanoids, as well
as other secondary metabolic processes. Additionally, transcription factors, transporters,
cytochrome P450, and signal transduction processes were also found to be enriched. Partic-
ularly, this enrichment was notable for N metabolism, carbohydrate metabolism, flavonoid
metabolism, and transcription factors (Figure S2).
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3.5. Expression Characteristics of DEGs Related to N Transport and N Metabolism

A comprehensive analysis of gene expression was conducted to investigate the effects
of different N concentrations on N absorption, assimilation, and signal perception. Among
the 541 DEGs identified, 28 genes were directly associated with the metabolism processes.
These genes clustered into various functional categories, including 6 nitrate transporters,
2 ammonium salt transporters, 6 genes involved in N metabolism and 14 other transporters
(Figure 5A). The gene expression and qRT-PCR results indicated that the 28 N-related
genes showed notable expression differences. Specifically, the members of the NRT gene
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family, such as Nitrate transporter protein1.7 (NRT1.7), NRT2.3a, NRT2.3b, and NRT2.5,
exhibited significant up-regulation characteristics under low N stress. The expression
levels of NRT1.7 and NRT2.5 in NF were approximately 13-fold higher than those under
the NN treatment 0at 28 d. AMTs (AMT1.2 and AMT3.1) also exhibited up-regulation in
response to low N stress. Furthermore, CYCLOPS (IPD3) related to arbuscular mycorrhizal
symbiosis increased 5.3-fold. Additionally, several genes, including S-adenosylmethionine
synthetase 1 (SAM1), Vacuolar iron transporter homolog 3 (VITH3), Ureide permease 2 (UPS2),
GABA transporter 1 (GAT1), Oligopeptide transporter 3 (OPT3), EamA-like transporter family
(EamA), and Probable aquaporin PIP1-5b (PIP1-5b), were also up-regulated (Figure 5A). The
findings from qRT-PCR analysis revealed a significant increase in the expression levels
of NRT2.3a, NRT2.5, AMT3.1, IPD3, OPT3, and VITH3 genes in response to decreasing
nitrogen concentrations over a 28 day treatment period. The result were consistent with
the broader trends observed in the transcriptome analysis, suggesting the reliability of the
gene expression data. Overall, this study indicates that the up-regulation of DEGs is closely
linked to nitrogen uptake, transport, and metabolism processes, which play a crucial role
in meeting the nitrogen requirements of banana plants under low nitrogen conditions.
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3.6. Expression Characteristics of DEGs Related to Phytohormones

Additionally, a comprehensive examination revealed the identification of 33 genes asso-
ciated with plant hormones, involving GA, SL, JA, IAA, SA, ABA, BR, and other metabolic
pathways (Figure 6). Under low-N conditions, the expression levels of five genes encoding
proteins that respond to SL (specifically, Carotenoid cleavage dioxygenase 7 (CCD7), Carotenoid
cleavage dioxygenase 8B (CCD8B), Cytochrome P450 711A1 (CYP711A1), Beta-carotene isomerase
D27 (D27), and AT4g36470 (C7A10.890)) were significantly up-regulated. Gene D27 had a
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low expression level in the NN treatment, but a rapid increase in expression in both LN
and NF treatments. Among the three genes involved in the GA pathway, Cytochrome P450
714B2 (CYP714B2) and Gibberellin stimulated transcript related protein 1 (GASR1) were signifi-
cantly up-regulated, whereas Phytohormone-binding protein CSBP (CSBP) showed significant
down-regulation. Furthermore, low N stress resulted in the significant up-regulation of
IAA-related genes, including Peroxidase 52a (PER52a), PER52d, PER52e, and PER52f, as well
as ABA-related genes such as NDR1/HIN1-like protein 6 (NHL6b) and Abscisic acid receptor
PYL4 (PYL4). However, Protein TIFY 9 (TIFY9) (JA), Protein SAR DEFICIENT 1 (SAED1)
(SA), Brassinosteroid-responsive RING protein 1a (BRH1a), BRH1b, and Remorin 4.1 (REM4.1)
(BR) were significantly down-regulated (Figure 6A). The findings from qRT-PCR analysis
confirmed an increase in the expressions of D27 and GASR1 in response to decreasing
nitrogen concentrations after 28 days of treatment (Figure 6B). Conversely, the qRT-PCR
results for C7A10.890 exhibited slight discrepancies compared with the transcriptome data,
suggesting the potential involvement of these genes in the morphological adaptation of
banana roots to nitrogen deficiency.
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3.7. Analysis of Expression Characteristics of Plant Growth-Related Genes

In the presence of inadequate N availability, plants will modulate the growth status
of their roots and leaves in order to acclimate to the N supply alteration. Root absorption
serves as the primary mechanism for plants to acquire nutrients. Root absorption surface
area directly influenced the rate of nutrient uptake by plants. From the identified DEGs, in
total, 31 genes associated with plant growth were found, including 10 up-regulated genes
and 21 down-regulated genes. The findings indicated a significant up-regulation of Cellulose
synthase A catalytic subunit 4 (CesA4), Protein trichome birefringence-like 19 (TBL19), Protein
TRACHEARY ELEMENT DIFFERENTIATION-RELATED 7A (TED7), UDP- arabinopyranose
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mutase 1 (UAM1), and xyloglucan endotransglucosylase/hydrolase (XTH) (specifically
XTH7, XTH30a, and XTH32), as well as other cell wall synthesis-related genes under low
N stress. Lateral-boundary-domain (LBD) proteins play a crucial role in the control of plant
lateral organ primordium initiation and subsequent lateral organ development. In our
study, three identified LBDs were significantly down-regulated in response to low N stress.
The lipid transfer protein DIR1 (DIR1), the Tubulin beta-7 chain (TUBB7), and leaf senescence
genes were induced by low N treatment. Conversely, Protein EXORDIUMa (EXOa) and
EXOb, responsible for inducing leaf growth, showed a significant reduction (Figure 7).
Moreover, the results of qRT-PCR experiments on DEGs such as AGAL2, GRAM, LBD37a,
and XTH7 were in agreement with those from the transcriptome, indicating the reliability of
the findings (Figure 7B). Hence, banana seedlings exhibited an adaptive reaction to nitrogen
deficiency via the up-regulation of genes related to cell wall synthesis and modifications to
control root elongation and leaf growth.
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3.8. Expression Characteristics of Transcription Factors Involved in Low N Stress

Transcription factors play a crucial role in the regulation of gene expression within
various signaling pathways, thereby influencing N absorption, N transport, and overall
plant growth. A comprehensive analysis identified 54 transcription factors in total, classified
into 9 distinct families, namely AHL, bHLH, ERF, F-box, GRAS, MYB, NAC, WRKY, and
Zinc finger (Figure 8A). Some transcription factors were up-regulated, such as AHL20 from
the AHL family, NSP2 from the GRAS family, MYB4a, MYB4b, and PHL6 from the MYB
family, WRKY43 from the WRKY family, WRI1 from the ERF family, and ATL17, FLZ5
and GIS3 from the Zinc finger family. Notably, the expression of NSP2, a transcription
factor responsible for regulating SL, showed a gradual increase along with a reduction in
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N levels (Figure 8). In contrast, a significant number of transcription factors were down-
regulated, such as bHLH (bHLH111), F-box (SKP2A, F-box protein, and SKIP2), GRAS (SCL8
and GRAS29), MYB (MYB14, MYB59, MYB73, and MYB78), NAC (NAC2 and NAC19),
WRKY (WRKY24, WRKY40, WRKY41a/b, and WRKY45), ERF (ERF4a/b, ERF5a/b, ERF9a/b,
ERF10, ERF24, ERF59, ERF71, and RAP2-4a/b) and Zinc finger (ATL40, C3H3a/b/c, RDUF1a/b,
RING-H2, SAP4/5a/5b, and ZAT10a/b) (Figure 8A). The qRT-PCR findings revealed that
the expression levels of PHL6, SNP2, and WRKY43 increased as nitrogen concentrations
decreased after 28 days of treatment, while the expression of ERF5 decreased gradually
(Figure 8B). The results of qRT-PCR are in alignment with the broader transcriptome
outcomes, suggesting the reliability of the gene expression analysis.
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4. Discussion

Nitrogen is a fundamental component for the growth, development, and metabolic
processes of plants. The majority of plants exhibit discernible alterations in response to N
insufficiency or N deficiency [43,44]. Under conditions of low N stress, the plant height of
banana seedlings under LN and NF treatments exhibited a notable decrease in comparison
with that of those under NN and NR treatments. The above-ground dry weights were
also significantly impeded, suggesting that low N stress inhibited the normal growth of
banana plants (Figure 1). The root system of plants serves as the primary organ for nutrient
absorption and plays a crucial role in response to abiotic stress [45]. When N supply is
inadequate, plants decrease their growth rate and prompt root growth to adapt to the
low-N environment [46,47]. Similar results were observed in our study. In the LN and
NF treatments, low N stress impeded the growth and biomass accumulation of banana
seedlings. These treatments stimulated root growth, thereby augmenting the surface area
available for root absorption and diminishing the demand for nutrients above the ground.

The chlorophyll fluorescence characteristics of plant leaves serve as a direct indi-
cator for evaluating the effect of environmental factors on photosynthesis. A previous
study showed that the structural integrity of chloroplasts was compromised, leading to
a reduction in photosynthetic activity and the development of yellowing in plant leaves,
ultimately inhibiting plant growth under low N stress [48–50]. We found that the SPAD
values of banana leaves were decreased in the NR, LN, and NF treatments, exhibiting a
strong correlation with the severity of N deficiency (Figure 2). Fv/Fm serves as a measure
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of the light energy conversion efficiency in the PSII system, assessing the impact of pho-
toinhibition or environmental stress on photosynthesis. This parameter exhibits a minimal
fluctuation under non-stressful circumstances, but it experiences a substantial decline under
stressful conditions [51]. In comparison with the NN treatment group, the chlorophyll
fluorescence parameters, namely Fv/Fm, Y(II), and ETR, exhibited a gradual decline in the
banana seedling leaves under the NR, LN, and NF treatments (Figure 3). Insufficient N
supply inhibited various indicators of Y(II) and ETR. This may be attributed to the damage
caused by the active center of PSII. The transmission of electrons was disrupted from the
reaction center of the sink and source. The excitation energy absorbed by PSII, denoted
as Y(NPQ), was dissipated as heat through the regulatory photoprotection mechanism.
Where N supply is inadequate, the Y(NPQ) level in leaves is elevated, suggesting that
plants experience limitations or stress during the process of photosynthesis [52]. In this
study, the Y(NPQ) value of banana leaves in the NF, LN, and NR treatments exhibited a
statistically significant increase. The NF treatment demonstrated a sustained high Y(NPQ)
value (Figure 3D). These findings suggested that banana seedling leaves have a heightened
non-photochemical dissipation mechanism under low N stress to adapt and regulate light
energy utilization.

The response of banana seedlings to low N stress involves perception and transmission.
In order to elucidate the molecular mechanism, a total of 541 DEGs were identified via
RNA-seq in our study. Among these DEGs, 167 were up-regulated and 374 were down-
regulated (Figure 4). In the context of inadequate N availability, alterations occur in
the N absorption and transportation processes [46,53]. Plants have developed nitrate
transporters (NRT) and ammonium salt transporters (AMT) in the N absorption system.
NRT1 predominantly consists of low-affinity nitrate transporters, and NRT2 belongs to
high-affinity nitrate transporters [54,55]. Under conditions of low N stress, the expression
levels of AtNRT2.1, AtNRT2.4, and AtNRT2.5 in Arabidopsis thaliana were significantly
increased [3,4]. In rice, OsNRT2.1, OsNRT2.2, and OsNRT2.3a were involved in the process
of root nitrate uptake [6,7]. Here, a total of 28 DEGs related to N were identified. Four
nitrate transporters (NRT1.7, NRT2.3a, NRT2.3b, and NRT2.5) and two ammonium salt
transporters (AMT1.2 and AMT3.1) exhibited significant up-regulation (Figure 5A). After
28 days of treatment, up-regulation of NRT2.3a, NRT2.5, and AMT3.1 gene expression was
observed in response to decreasing nitrogen concentrations (Figure 5B), as evidenced by
both transcriptomic and qRT-PCR results.

About 95% of land plants obtain nutrients such as nitrogen and phosphorus by form-
ing symbiotic relationships with arbuscular mycorrhizal fungi (AMF) [56,57]. Banana
roots can also help plants absorb nitrogen and respond to low nitrogen stress by forming
arbuscular mycorrhiza [58]. In this study, the expression of IPD3, a gene associated with
AMF, showed a significant increase as the N concentration decreased (Figure 5B). This
may be attributed to the formation of a symbiont between AMF and the plant under
low N stress [59,60]. Therefore, inadequate N supply in banana seedlings led to an
up-regulation of NRTs and AMTs, promoting N uptake. This mechanism enhanced
the tolerance of banana seedlings toward N-deficient conditions and improved their
adaptability to the surrounding environment.

Plant hormones are crucial for regulating plant growth and development, and their
response to abiotic stress [61,62]. They possess the ability to initiate signal transduction
pathways in response to external abiotic stress [63,64]. We identified 33 genes associated
with plant hormones, involving GA, SL, JA, IAA, SA, ABA, BR, and other plant hormones
(Figure 6A). For example, SL is a pivotal hormone responsible for regulating plant growth
during nutrient stress. The biosynthesis of SL was activated in response to inadequate
N supply [65–67]. Our investigation revealed a significant up-regulation of positive reg-
ulatory genes CCD7, CCD8B, CYP711A1, C7A10.890, and D27 in the SL pathway under
low N stress (Figure 6). Additionally, low N stress also induced the production of GA
and other hormones. In rice, GA could stimulate the biosynthesis of SL in regulating N
utilization [68,69]. We also found that CYP714B2 and GASR1 in GA pathway, PER52a/d/e/f
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in the IAA pathway, and NHL6b and PYL4 in the ABA pathway exhibited different degrees
of up-regulation in response to N deficiency. Additionally, qRT-PCR results indicated
that the expression levels of D27 and GASR1 genes also increased with the decrease in
nitrogen concentration after 28 days of treatment, (Figure 6B). These findings suggest that
phytohormones such as SL, IAA, ABA, and GA may play a crucial role in the morphological
adaptation of banana roots to nitrogen stress.

The participation of transcription factors in the signaling network of plant stress is
crucial for nitrogen response factors, ultimately influencing the regulation of target gene
expression to modulate root growth [70,71]. Notably, prominent transcription factors,
including WRKY, GRAS, MYB, and Zinc finger, have been demonstrated to govern root
development in Arabidopsis and rice [72–76]. In Arabidopsis, AtMYB59 controlled the cell
cycle of root tip cells, AtWRKY46 modulated lateral root development through ABA signal,
AtWRKY23 influenced roots by modifying auxin distribution, and AtZFP5 played a role
in root hair development and elongation by mediating cytokinin and ethylene signaling
pathways [77–80]. The GRAS family expressed in roots played pivotal roles in the regulation
of the GA signal and plant growth [81,82]. Here, a total of 54 transcription factors belonging
to 9 distinct classes were identified, namely AHL, bHLH, ERF, F-box, GRAS, MYB, NAC,
WRKY and Zinc finger. Among the 10 transcription factors up-regulated (Figure 8A), NSP2
belonging to the GRAS family participated in the biosynthesis of SL. In addition, the
AHL family (AHL20), ERF family (WRI1), MYB family (MYB43a, MYB43b, PHL6), WRKY
family (WRKY43), and Zinc finger family (ATL17, FLZ5, GIS3) exhibited a tendency of up-
regulation after treatment with low N. However, it is noted that the modes of action of these
transcription factors may vary. The analysis of qRT-PCR results reveals that the expression
levels of PHL6, SNP2, and WRKY43 increase with decreasing nitrogen concentrations after
28 days of treatment, whereas the expression of ERF5 decreases gradually (Figure 8B). In
summary, a combination of transcription factors collaboratively govern the transcription of
specific genes to enhance nitrogen absorption and transportation, and growth in banana
seedlings in response to nitrogen deficiency.

5. Conclusions

In the current investigation (Figure 9), it was observed that banana seedlings exhibited
a response to low nitrogen stress characterized by the inhibition of shoot growth and dry
matter accumulation. Root growth was facilitated by enhancements in the root uptake
variable area and a reduction in nutrient demand in shoots. Insufficient nitrogen led to
a decrease in SPAD value in leaves, thereby impeding photosynthetic efficiency. Low
nitrogen stress also triggered the up-regulation of genes associated with plant hormones
including GA, SL, IAA, and ABA, as well as the activation of transcription factors such
as AHL, GARS, WRKY, and Zinc fingers. The enhanced nitrogen absorption of plants was
facilitated by the up-regulation of nitrate transporters (NRT1.7, NRT2.3a, NRT2.3b, and
NRT2.5) and ammonium transporters (AMT1.2 and AMT3.1). Additionally, the regulation
of structural genes such as CesA and XTH can promote root growth, expanding the nutrient
uptake area and enhancing the adaptability of banana plants to low-nitrogen environments.
Furthermore, the establishment of a symbiotic relationship with arbuscular mycorrhizal
fungi (AMF) can further enhance nutrient uptake, as evidenced by the up-regulated ex-
pression of IPD3. Therefore, plants respond to low nitrogen stress by modulating plant
hormone levels and inducing the expression of crucial transcription factors.
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