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Abstract: 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is a rate-limiting enzyme in terpene
synthesis that can affect the accumulation of secondary metabolites in plants. In this study, three DXS
gene family members were identified in the tomato genome-wide database. Using bioinformatics
methods, we analyzed the gene structure, evolutionary affinities, and cis-acting elements of the
SlDXS gene family members. Promoters of SlDXS genes contain plant hormone-responsive elements
such as the CGTCA-motif, TGACG-motif, ABRE, TCA-element, TGA-element, ERE, CAT-box, and
AACA-motif, which suggested that the SlDXS gene family may play an important role in hormone
response. The RT-qPCR analysis showed that the tomato DXS2 gene was able to respond upon
exposure to methyl jasmonate (MeJA). The construction of a virus-induced gene silencing (VIGS)
vector for the SlDXS gene showed that the SlDXS2 gene was also able to respond to MeJA in silenced
plants, but the induction level was lower relative to that of wild-type plants. The SlDXS1 gene
is associated with the synthesis of photosynthetic pigments. This study provides a reference for
the further elucidation of the DXS gene’s biological function in the terpenoid synthesis pathway
in tomatoes.

Keywords: tomato; DXS; expression analysis; gene silencing

1. Introduction

Terpenoids are the most common and diverse class of secondary metabolites in plant
volatiles; they can be produced by almost all plant organs, including roots, stems, leaves,
flowers, fruits, and seeds [1], and they play important roles in the growth and develop-
ment of plants themselves. Terpenoids have isoprene as their structural unit and mainly
include monoterpenes, sesquiterpenes, diterpenes, and triterpenes [2,3]; monoterpenes
and sesquiterpene compounds are the main volatile substance components produced by
plants. Terpenoids can act as signaling molecules to mediate plant defense responses to
phytophagous insect feeding and play an important role in the resistance to pathogenic
microbial attacks, among other roles [4,5].

There are two pathways that are important for the synthesis of plant terpenoids: the
mevalonate (MVA) pathway located in the cytoplasm and the methylerythritol-4-phosphate
(MEP) pathway located in the plastid [6]. 1-deoxy-D-xylulose-5-phosphate synthase (DXS)
is the first key enzyme of the MEP pathway that converts pyruvate and 3-phosphoglycerol
aldehyde to produce the first key intermediate, 1-deoxy-xylulose-5-phosphate (DXP). This
is considered to be the rate-limiting step in the synthesis of isopentenyl pyrophosphate
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(IPP) and dimethylpropenyl pyrophosphate (DMAPP) via the MEP pathway [7,8]. The
overexpression of the DXS gene in Arabidopsis leads to a significant increase in the terpene
content [9,10]. The Ginkgo DXS gene is expressed in all trophic organs, and it is induced
and regulated by methyl jasmonate, whereas the synthesis of ginkgolides is positively
correlated with DXS expression [11]. These observations confirm that the DXS gene is an
important regulatory site in the terpene metabolic pathway and can effectively influence
the accumulation of secondary metabolites in plants.

Tomatoes (Solanum lycopersicum L.), belonging to the tomato genus of the Solanaceae
family, are an important vegetable crop around the world, widely cultivated in the north
and south of China. Tomatoes are rich in soluble sugar, organic acids, vitamins, and other
nutrients, and consumers love their rich flavor. Tomatoes can be infested by phytophagous
insects during growth, resulting in a decrease in the yield and quality of tomatoes [12].
Plants stimulate their own defense mechanisms when attacked by phytophagous insects.
For example, plants can produce physical barriers and secondary metabolites, and they can
induce the expression of relevant genes for direct defense [13,14]. Flavonoids are important
secondary metabolites and are phenolic compounds. They are capable of hindering the
feeding of pests and of affecting their growth, development, and reproduction [15,16].
Additionally, plants release volatile organic compounds as an indirect defense after an
infestation to attract natural enemies to feed on or parasitize the pest [17]. Using the plants’
own defense mechanisms to control pests is an environmentally friendly approach. It
has been found that all tissue parts of a tomato are rich in terpenoids. Terpenoids are
not only able to participate in the plant’s defense response, acting directly or indirectly
against phytophagous insects, but they can also act against disease infiltration [18,19]. The
expression of the tomato DXS gene and the regulation of the synthesis of volatile terpenoids
may influence a tomato’s defense response to adversity.

The DXS gene encodes the first key enzyme in the terpenoid MEP pathway in tomatoes.
In this study, we identified the DXS family members and bioinformatically analyzed three
SlDXS gene-encoded proteins. We also explored the effects of different abiotic stresses
on the expression of the tomato DXS gene. A virus-induced gene silencing (VIGS) vector
was constructed for the silencing of a SlDXS gene, and the content of photosynthetic
pigments in the silenced plants was analyzed. Real-time fluorescence quantification PCR
(RT-qPCR) was used to analyze its induction of exogenous MeJA on silenced plants. This
study provides a basis for an in-depth investigation of terpenoid metabolic pathways and
molecular regulatory mechanisms in tomatoes in addition to a theoretical basis for further
research on tomatoes’ resistance to external stress.

2. Materials and Methods
2.1. Identification of the DXS Gene Family in Tomatoes

The tomato genome-wide data files and genome annotation files (ITAG4.0) were down-
loaded from the tomato genome website (https://solgenomics.net/organism/Solanum_
lycopersicum/genome, accessed on 14 August 2022), and the Arabidopsis genome files
were downloaded from the official Arabidopsis website (https://www.arabidopsis.org/,
accessed on 14 August 2022). The protein sequences of the three identified AtDXS fam-
ily members in Arabidopsis were compared with those of tomatoes using BLASTP to
screen candidate genes. The hidden Markov model (HMM) of the DXS gene-specific
Lyase aromatic structural domain (PF13292) [20] was downloaded from the Pfam database
(http://pfam.sanger.ac.uk/, accessed on 14 August 2022). SlDXS family members were
screened from the tomato genome database using the HMMER3.0 [21] software with the
screening criterion of an E-value of ≤1 × 10−5. The redundant sequences between the
HMM search and BLASTP were removed, and candidate members were submitted to
the online website SMART (http://smart.embl-heidelberg.de/, accessed on 14 August
2022) and the NCBI Conserved Structural Domain Database CDD (https://www.ncbi.nlm.
nih.gov/Structure/cdd, accessed on 14 August 2022) [22] to verify the integrity of the
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conserved structural domains of the candidate gene proteins. Finally, we obtained the
SlDXS gene family members.

2.2. Physicochemical Analysis of Proteins of the DXS Gene Family in Tomatoes and Prediction of
Their Subcellular Localization

The protein physicochemical properties of SlDXS were analyzed using the online web-
site expasy (https://web.expasy.org, accessed on 18 August 2022). The NovoPro website
(https://www.novopro.cn, accessed on 18 August 2022) was utilized for protein signal pep-
tide prediction. A subcellular localization prediction analysis was performed using Plant-
mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/, accessed on 18 August 2022).

2.3. Prediction of Secondary and Tertiary Structures of Tomato DXS Gene Family Members

The DXS protein’s secondary structure was predicted using Prabi (https://npsa-prabi.
ibcp.fr, accessed on 5 October 2022) (Supplementary Table S5). The tertiary structure was
structurally modeled using Swiss-model (https://swissmodel.expasy.org, accessed on 5
October 2022).

2.4. Phylogenetic Analysis of the Tomato DXS Gene

MEGA7 software was used to conduct a multiple sequence comparison of the DXS
gene families of 13 species, including Solanum lycopersicum, Arabidopsis thaliana, Zea mays,
Oryza sativa, Populus trichocarpa, Capsella rubella, Ricinus communis, Medicago truncatula,
Nicotiana tabacum, Ginkgo biloba, Hevea brasiliensis, Salvia miltiorrhiza, and Pinus densi-
flora, and a phylogenetic tree was constructed using the neighbor-joining (NJ) method.
The parameters were set as the Poisson correction, pairwise deletion, and bootstrap test
(1000 repetitions), and the phylogenetic tree was beautified using the iTOL webpage (https:
//itol.embl.de/itol.cgi, accessed on 3 October 2023) to embellish the evolutionary tree.

2.5. Gene Structure and Conserved Motif Analysis of DXS Gene Family in Tomatoes

The gene structure information of the tomato DXS gene family members was analyzed
using the Tbtools software v1.098775 [23], and the SlDXS gene structure was analyzed
using the NCBI’s online website (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.
cgi, accessed on 3 April 2023). The conserved motifs of proteins encoded by SlDXS
gene family members were analyzed using the MEME website (https://meme-suite.org,
accessed on 3 April 2023), and the gene structure and conserved motifs were mapped
using Tbtools.

2.6. Analysis of Promoter Cis-Acting Elements of the DXS Gene Family in Tomatoes

The 2000 bp sequences upstream of the transcription start site of the SlDXS gene were
extracted using TBtools, and the cis-acting elements in the promoter regions were pre-
dicted using PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/,
accessed on 26 October 2023), and the prediction results were visualized through TBtools.

2.7. Abiotic Stress Treatment of Plant Materials

A ‘Micro Tom’ tomato was used as the material for stress treatment. The tomatoes
were subjected to abiotic stress until they reached the six-leaf stage under normal con-
ditions (light/dark for 16 h/8 h, 25 ◦C/20 ◦C, photosynthetic photon flux density of
200 µmol·m−2·s−1). The tomato leaves were sprayed with concentrations of 100 µmol/L
of methyl jasmonate, gibberellin, and abscisic acid and 100 mmol/L of NaCl. The fifth and
sixth true leaves at 0 h, 1 h, 3 h, 6 h, 12 h, 24 h, and 48 h were taken for quantitative analysis.
After liquid nitrogen quick-freezing, the leaves were stored in the refrigerator at −80 ◦C,
and three biological replicates were performed.
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2.8. Expression Analysis of the DXS Gene in Tomatoes

The total RNA of tomato was extracted using the Vazyme FastPure® Plant Total
RNA Isolation Kit (https://www.vazyme.com/product/164.html, accessed on 18 February
2023), and the first-strand cDNA was synthesized with the FastKing One-Step Reverse
Transcription Kit from TIANGEN (https://www.tiangen.com/content/details_40_21180
.html, accessed on 18 February 2023). RT-qPCR was performed with GenStar’s 2×RealStar
Fast SYBR qPCR Mix. Detection was performed using a LightCycler96 Real-Time PCR
instrument with three biological replicates and three technical replicates set up for each
sample. Primers were designed using the Primer 5.0 software (Supplementary Table S1),
and the specificity of the primers was tested using the NCBI tool (https://www.ncbi.nlm.
nih.gov/tools/primer-blast/, accessed on 10 February 2023). The expression of the SlDXS
gene was verified using Actin as an internal reference gene, and the relative expression
level of the gene was calculated using the 2−∆∆ct method [24].

2.9. Cloning the SlDXS Gene and Constructing the VIGS Silencing Vector

SnapGene was used to design primers specific to the SlDXSs gene (Supplementary
Tables S2 and S4), and tomato cDNA was used as a template to amplify the target gene. The
PCR program was as follows: pre-denaturation at 95 ◦C for 3 min, denaturation at 95 ◦C
for 15 s, annealing at 59 ◦C for 15 s, and extension at 72 ◦C for 30 s, for a total of 34 cycles.

The KpnI and EcoRI restriction endonucleases were selected to double digest the
pTRV2 vector plasmid, and the SlDXS fragment was inserted into the pTRV2 silencing
vector. The pTRV2-SlDXS recombinant vector was verified through digestion. pTRV1
and the pTRV2-SlDXS recombinant vector were transformed into Agrobacterium GV3101.
The single colonies containing pTRV1 and recombinant vector pTRV2-SlDXS were picked
and inoculated into 400 µL of LB liquid medium (Kan 100 mg/L, Rif 50 mg/L), and
then incubated for 6 h at 28 ◦C at 200 rpm. An amount of 200 µL of the above bacterial
solution was added into 10 mL of LB liquid medium (Kan 100 mg/L, Rif 50 mg/L),
and then incubated for 12 h at 28 ◦C at 200 rpm. The bacterial cells were collected by
centrifugation at 8000 rpm for 10 min, the bacteria were resuspended in a VIGS infiltration
solution (10 mmol/L of MgCl2; 10 mmol/L of MES; 200 µmol/L of AS), and the OD600 was
adjusted to about 0.8. The cells were allowed to stand at room temperature for 4 h, and the
resuspension of pTRV1 with pTRV2-SlDXS was mixed at a volume ratio of 1:1 and injected
into tomato cotyledons. The inoculum was aspirated with a 1 mL syringe and gently
injected into the dorsal surface of the plants’ cotyledons, which were protected from light
for 24 h. After that, the plants were transferred to a light incubator for further incubation.

2.10. Treatment of Silencing Plant Materials

A ‘Micro Tom’ tomato was used as the material for the silencing treatment, and the
infested plants were cultured in a light incubator (photoperiod: 16 h/8 h light/dark cycle;
temperature: 25 ◦C/20 ◦C day/night; PPFD: 200 µmol·m−2·s−1) for three weeks. RT-PCR
was performed on the silenced plants to validate the transcription of TRV2 in order to obtain
the positive plants. The expression level of the SlDXS2 gene was measured using Actin
as an internal reference gene, and the relative expression level of the gene was calculated
using the 2−∆∆ct method. The content of photosynthetic pigments in tomato leaves was
determined by the ethanol extraction colorimetric method [25]. The leaves of the positive
plants were treated with MeJA, and the samples were collected 6 h later. Flavonoids were
determined using a kit from Comin Biotechnology (Suzhou, China). Three biological
replicates were set up.

3. Results
3.1. Identification and Physicochemical Analysis of the DXS Gene Family in Tomatoes

Three members of the DXS gene family in tomatoes were identified using bioinformat-
ics methods, and according to the existing nomenclature of Arabidopsis and phylogenetic
developmental analyses, they were sequentially named SlDXS1, SlDXS2, and SlDXS3. Pro-

https://www.vazyme.com/product/164.html
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tein characterization revealed (Table 1) that the amino acid lengths of the proteins encoded
by the family members were 719, 714, and 709aa, and the molecular weights ranged from
77,605.63 to 77,172.8 Da. The theoretical pI values of the SlDXS family members were
all less than 7, and all of them were acidic proteins. SlDXS proteins do not have a signal
peptide for any of the amino acids and are non-secretory proteins, and both SlDXS1 and
SlDXS2 are hydrophilic, with a hydrophobicity of less than 0. The instability index was
greater than 40, which made them unstable acidic proteins. An analysis of the subcellular
localization of the proteins showed that SlDXS proteins are all predicted to be localized in
the chloroplasts [26].

Table 1. Sequence characteristics of the SlDXS proteins.

Gene Name Gene ID AA 1

(aa)
Mw 2

(kDa) pI 3 II 4 Gravy 5 Subcellular
Localization

SlDXS1 01g067890 719 77.60 6.32 40.36 −0.063 chloroplast
SlDXS2 11g010850 714 77.08 6.61 40.85 −0.094 chloroplast
SlDXS3 08g066950 709 77.17 5.85 35.56 0.041 chloroplast

1 AA, amino acid; 2 Mw, molecular weight; 3 pI, theoretical isoelectric point; 4 II, instability index; 5 GRAVY, grand
average of hydrophobicity.

3.2. Secondary and Tertiary Structure Analyses of the DXS Gene Family in Tomatoes

A predictive analysis of the secondary structures of tomato DXS proteins revealed
(Table 2) that all three proteins consisted of α-helices, extended strands, β-turns, and
random coiling in their secondary structures. The number of amino acid residues accounted
for was dominated by α-helices and random coils, followed by extended chains, and β-
turns. Further analysis of the tertiary structure (Figure 1) showed that the templates for
SlDXS1, SlDXS2, and SlDXS3 proteins were all 7bzx.1.A, and the sequence identities were
88.75%, 73.93%, and 58.24%, respectively.

Table 2. Secondary structures of proteins in the tomato DXS gene family.

Gene Name α-Helix/% Extended Strand/% β-Turn/% Random Coil/%

SlDXS1 38.94 15.30 7.51 38.25
SlDXS2 38.10 16.25 7.70 37.96
SlDXS3 41.47 14.67 7.19 36.67
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3.3. Phylogenetic Analysis of the DXS Gene Family in Tomatoes

The SlDXS proteins were combined with the sequences of proteins encoded by the
DXS genes of 12 species, including Arabidopsis thaliana, Oryza sativa, Zea mays, Nicotiana
tabacum, Salvia miltiorrhiza, and Ricinus communis, to perform phylogenetic analyses and
construct a phylogenetic tree using the neighbor-joining (NJ) method (Figure 2). The results
of the phylogenetic analysis showed that the DXS gene family members in all plants co-
clustered into three branches, and the three tomato DXS genes were located in different
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groups. The DXS I branch had the largest number of members, including AtDXS1 and
AtDXS2 in Arabidopsis, and SlDXS1 was more closely related to NtDXS1 and SmDXS1.
SlDXS1 and NtDXS2 clustered into one branch, suggesting a high degree of affinity. There
were fewer members in the DXS III branch, including species such as Arabidopsis thaliana,
Oryza sativa, Populus trichocarpa, Zea mays, Ricinus communis, and Capsella bursa-pastoris,
whereas the tomato SlDXS3 was closer to AtDXS3. Therefore, it was hypothesized that the
SlDXS1, SlDXS2, and SlDXS3 genes may have different functions.
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3.4. Analysis of the Gene Structure and Conserved Motifs of the DXS Gene Family in Tomatoes

In order to further analyze the structural characteristics of the SlDXS gene family,
three genes of the tomato DXS gene family were subjected to relevant intron and exon
analyses (Figure 3A), and the results showed that the SlDXS1, SlDXS2, and SlDXS3 genes
all have 10 exons and 9 introns. The tomato DXS protein’s conserved motifs were analyzed
using the online MEME software, and eight motifs were used to analyze the gene sequences
(Supplementary Table S3). There were eight motifs for all three genes, and the ranking
order was fixed (Figure 3B). This indicates that there are highly conserved motifs in the
DXS protein family and that the DXS gene family is highly conserved. A predictive analysis
of the structural and functional domains of the tomato DXS proteins revealed that all three
proteins had DXS structural domains (Figure 3C), indicating that the SlDXS1, SlDXS2, and
SlDXS3 proteins all belong to the DXS superfamily.
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3.5. Analysis of Cis-Acting Elements in Promoters of the DXS Gene Family in Tomatoes

The promoter sequences of the first 2000 bp of the tomato SlDXS genes were obtained
using the TBtools software, and the promoter cis-acting elements of the SlDXS genes were
analyzed using the PlantCARE online website. The results showed that the promoter
regions of the SlDXS gene family contain a variety of cis-acting elements with different
roles, indicating that the three SlDXS genes may be involved in different physiological
and metabolic regulatory pathways. A total of 121 cis-acting elements were detected in
the 2000 bp region of the upstream promoter of the tomato SlDXS gene family. They were
classified into four categories: hormone-responsive elements, light-responsive elements,
growth and development elements, and stress-related cis-acting elements (Figure 4). The
results showed that there were 6 hormone-related regulatory elements, including 4 methyl
jasmonate regulatory elements (CGTCA-motif and TGACG-motif), 10 ABA-responsive
regulatory elements (ABRE), 2 salicylic acid-responsive regulatory elements (TCA-element),
1 growth hormone-responsive element (TGA-element), and 19 gibberellin-responsive reg-
ulatory elements (ERE). There were two elements related to growth and development,
including meristematic tissue expression (CAT-box) and endosperm expression (AACA-
motif). A total of 43 stress-related response regulatory elements were found, including
MYC, ARE, and W-box. There were 11 different elements related to light response reg-
ulation, such as the 1-box, GA-motif, and ATCT-motif. Light-responsive elements were
present in each gene family member, suggesting that expression of the SlDXS gene may
be induced or repressed by light. The SlDXS gene family members contain hormone-
responsive elements, and it is hypothesized that tomato SlDXS genes play an important
role in hormone responses. The SlDXS2 gene contains two methyl jasmonate regulatory
elements (TGACG-motif), which presumably respond to MeJA expression.
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3.6. Analysis of the Induced Expression Pattern of the Tomato DXS Gene Family

To examine the expression levels of the SlDXS gene family members, the tomato leaves
were treated with MeJA, GA, ABA, and salt stress factors, respectively. The results showed
that, after the tomato leaves were treated with MeJA, the expression levels of SlDXS1 and
SlDXS3 showed decreasing trends, which were minimized at 24 h and 6 h, respectively. The
expression level of SlDXS2 increased at 3 h and 24 h, and it peaked at 3 h (Figure 5A). This
indicates that MeJA was able to induce the expression of the SlDXS2 gene and significantly
increase its expression level. After the GA treatment was applied, the expression of SlDXS2
increased from 1 h to 9 h, and it peaked at 1 h; its expression was 4.22 times higher than
that of the control group. The expression of SlDXS3 increased rapidly at 1 h and peaked at
1 h, and its expression was more than 2.23 times higher than that of the control group. The
expression of SlDXS1 showed a decreasing tendency (Figure 5B). This indicates that GA
induced the expression of SlDXS2 and SlDXS3, while SlDXS1 was not responsive to GA.
After the tomato leaves were treated with ABA, the expression levels of both SlDXS1 and
SlDXS2 showed decreasing trends, which were minimized at 12 h and 1 h. The expression
of SlDXS3 increased at 1 h and 9 h, and its expression levels were 1.55 and 1.51 times higher
than that of the control, respectively (Figure 5C). This indicates that SlDXS3 responded
slower to ABA. Under different hormone treatments, SlDXS1, SlDXS2, and SlDXS3 had
different responses and presumably different functions. After the salt stress treatment was
applied, the expression of SlDXS1 increased transiently at 1 h and decreased from 3 h to
48 h. The expression of SlDXS2 increased at 1 h, 6–12 h, and 48 h; peaked at 6 h; and was
7.64 times higher than that of the control group. The expression of SlDXS3 increased at
3 h and 48 h and peaked at 48 h (Figure 5D). The expression levels of SlDXS1 and SlDXS2
increased rapidly at 1 h, indicating that they had more rapid responses to NaCl.
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as the reference gene, and the expression data were used for the RT-qPCR. The data represent the
mean of triplicates with three biological replicates (Supplementary Materials, Figure S1).

3.7. Cloning the SlDXS Genes and Constructing the VIGS Silencing Vector in Tomatoes

To further investigate the biological function of SlDXS genes, VIGS technology was
utilized to silence SlDXS genes in tomatoes. Fourteen days after the Agrobacterium in-
fection of tomato cotyledons, photobleaching appeared on the leaves of tomato seedlings
injected with the pTRV2-SlDXS1 infection solution (Figure 6B). One month after inocula-
tion, photobleaching appeared in most leaves of the plants infected with pTRV2-SlDXS1
(Figure 6F). In contrast, the albino phenotype was not presented in wild-type plants and the
plants injected with pTRV2-SlDXS2 and pTRV2-SlDXS3 infection solutions (Figure 6F–H).
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Figure 6. Analysis of silenced tomato plants. (a) Phenotype of plants silenced by tomato SlDXS
genes. (A–D) are phenotypes from 7 d after infestation and (E–H) are phenotypes from one month
after infestation. (b) Analysis of tomato TRV2-SlDXS gene expression. (c) Content of chlorophyll
a. (d) Content of chlorophyll b. (e) Carotenoid content. The Actin gene was used as the reference
gene for (b), and the expression data for the RT-qPCR. The data represent the mean of triplicates with
three biological replicates. Error bars represent the standard errors (SEs). Different lowercase letters
represent significant differences (p < 0.05).

The expression levels of the SlDXS genes in plants that underwent different treatments
were detected through an RT-qPCR using Actin as an internal reference gene, and the
results showed that pTRV2-SlDXS resulted in a significant decrease in the expression of the
SlDXS genes compared to the control group (Figure 6b).

The content of photosynthetic pigments was determined in wild-type and silent plants.
As shown in Figure 6c–e, the content of photosynthetic pigments was reduced in all silenced
plants compared to the wild type. Silenced plants injected with pTRV2-SlDXS1 showed
significant reductions in chlorophyll a, chlorophyll b, and carotenoids by 46.63%, 38.99%,
and 46.02%, respectively. Silenced plants injected with the pTRV2-SlDXS3 infection solution
showed a reduction of 16.14% and 15.84% in chlorophyll a and chlorophyll b, respectively,
whereas there was no significant difference in carotenoid content. There was no significant
difference in the photosynthetic pigment content of tomato plants silencing the SlDXS2
gene. It was shown that the SlDXS1 gene is associated with the synthesis of chlorophyll
and carotenoids, and the silencing of the SlDXS1 gene can cause a decrease in the content
of photosynthetic pigments in tomatoes.

3.8. Analysis of TRV2-SlDXS2 Gene Response to MeJA

As shown in Figure 5A, MeJA increased the expression of the tomato SlDXS2 gene.
The following procedures were conducted in order to further investigate the response of
SlDXS2 to MeJA and its biological function.

The tomato leaves were treated with MeJA, and the samples were collected after 6 h
for a gene expression analysis and the determination of physiological indices. The tomato
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SlDXS2 gene was analyzed using an RT-qPCR after MeJA treatment. The results showed
that the expression of the SlDXS2 gene was increased in both the wild-type and silenced
plants, but MeJA promoted the expression of the SlDXS2 gene at a lower level in the
silenced plants compared with the wild-type plants (Figure 7A). This indicates that MeJA
reduced the induction of SlDXS2 in the silenced plants.
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Flavonoids are important secondary metabolites that help plants resist pests and
diseases, whereas terpenoids have a role in helping plants avoid pests [27,28]. The flavonoid
content was determined after the MeJA treatment was applied to silenced and wild-type
tomato plants, and the results showed that the flavonoid contents of both the wild-type
and silenced plants were elevated after the MeJA treatment; however, compared with the
wild-type plants, the MeJA-induced synthesis of flavonoids was lower in the silenced plants
(Figure 7B). This suggests that MeJA’s promotion of secondary metabolism in tomatoes
was reduced after SlDXS2 silencing.

The physiological indicators and the results of the gene expression analyses indicated
that MeJA was able to significantly induce the expression of the tomato SlDXS2 gene and
promote the synthesis of secondary metabolites; they also indicated that the SlDXS2 gene
was capable of responding to MeJA in silenced plants, but at a lower level of induction
relative to that of wild-type plants.

4. Discussion

Terpenoids play important roles as chemical signaling substances during indirect
defense responses, such as by helping plants avoid pests and natural enemies, and they are
involved in plant-to-plant and plant–insect interactions [27]. The DXS enzyme is the first
key enzyme in the MEP pathway, which is one of the terpene synthesis pathways, and the
DXS gene is also the rate-limiting enzyme gene in the MEP synthesis pathway [29]. It was
shown that the tissue expression pattern of the DXS gene in C. blini was positively correlated
with the tissue accumulation pattern of the diterpene substance artemisinin, suggesting
that the overexpression of the DXS gene may increase the synthesis of artemisinin in
C. blini [30]. The overexpression of the DXS2 gene in the hairy roots of S. miltiorrhiza was
able to significantly promote the accumulation of tanshinones [31]. It was also demonstrated
that the DXS gene is important for terpenoid synthesis.

DXS is currently confirmed to be a small gene family in several species, such as
A. thaliana [32], Z. mays [33], and A. annua [34], usually containing between two and four
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members. In this study based on the tomato genome, three tomato DXS genes were
identified, which is the same number of DXS gene family members as in A. thaliana, O.
sativa, and Z. mays, and DXS gene family members have similar gene structures and
conserved motifs in many species. It was found that AtDXS3 is not involved in primary
and secondary metabolism [35]. It was found that the SlDXS3 protein does not have the
same conserved residues as SlDXS1 and SlDXS2. Therefore, the SlDXS3 protein may not
be able to bind to TPP cofactors [26]. An analysis of the subcellular localization of the
proteins showed that SlDXS proteins are all predicted to be localized in the chloroplasts.
This is consistent with the fact that the three DXS genes of Morus notabilis are located in
chloroplasts [36]. The MEP pathway occurs in plastids, so it is reasonable that the SlDXS
genes are located in chloroplasts [36]. It was found that the DXS gene family contains
three subfamilies, namely DXS I, DXS II, and DXS III, each with different functions [33].
Specifically, type I DXS genes are mostly housekeeping genes and may be involved in
plants’ primary metabolism, type II DXS genes mostly encode for proteins that participate
in plants’ secondary metabolism, and type III genes may be involved in the biosynthesis of
related substances on which the survival of plants depends [37]. Through a phylogenetic
analysis of tomatoes with A. thaliana, Z. mays, and O. sativa species, the SlDXS genes were
divided into three different branches, and it was hypothesized that DXS enzymes have
different functions. SlDXS1 was in the same branch as the AtDXS1 and SmDXS1 species,
which indicated that SlDXS1 might play the role of housekeeping genes [38]. Additionally,
SlDXS2 was in the same branch as the SmDXS2 and MtDXS2 species [39], and SlDXS3 is a
type III gene that may be involved in the synthesis of MEP pathway derivatives, which is
consistent with the function of AaDXS4 in artemisinin.

Photosynthetic pigments are important substances for primary production in plants
and their levels are related to plant growth and development [40]. When subjected to ad-
versity stress, the chlorophyll content decreases [41]. The CrDXS1 gene in Citrus reticulata is
positively correlated with the accumulation of carotenoid content [42]. The overexpression
of the AtDXS1 gene from Arabidopsis thaliana increased the chlorophyll and carotenoid
content [43]. The overexpression of the GmDXS gene of Glycine max significantly increased
the photosynthetic pigment content [44]. Silencing the SlDXS genes in tomato leaves using
VIGS technology showed that silencing the SlDXS1 gene resulted in the photobleaching
of plant leaves. Meanwhile, silencing SlDXS2 and SlDXS3 did not show a bleaching
phenotype. This indicates that the SlDXS1 gene is involved in chlorophyll synthesis.

The results of the prediction and analysis of the tomato DXS gene family promoter’s cis-
acting elements showed that DXS may respond to a variety of abiotic stresses and hormones.
After the salt stress treatment, SlDXS1, SlDXS2, and SlDXS3 peaked in expression at
different times, suggesting that the expression of the tomato DXS gene can be increased by
salt stress. The expression levels of both the AaDXS2 and AaDXS3 genes were significantly
increased in Artemisia annua after salt stress treatment [34]. Populus trichocarpa seedlings
showed an increased expression of the PtDXS gene after NaCl treatment [45]. The PmDXS
gene showed an upward trend after salt stress in Pinus massoniana [46]. Under the treatment
of different exogenous hormones, the expression of the tomato SlDXS genes varied and
showed different patterns, which may be related to the different functions of the SlDXS
gene family. After the tomato leaves were treated with ABA, the expression levels of both
SlDXS1 and SlDXS2 showed decreasing trends, whereas SlDXS3 was responsive to ABA.
After the GA treatment, the expression levels of SlDXS2 and SlDXS3 increased rapidly,
indicating that they had more rapid responses to GA. After the exogenous GA treatment
of Camellia sinensis, the expression of the CsDXS gene reached its maximum at 4 h, which
was 1.3 times of that of CK [47]. In the process of regulating a plant’s metabolism, different
stress conditions can have inducing, promoting, or inhibiting effects, thus affecting the
formation and accumulation of secondary metabolites in plants.

It was found that exogenous MeJA could significantly regulate the accumulation of
secondary metabolites, and exogenous MeJA induced the accumulation of volatile monoter-
penes in grape pericarp [48]. WRKY transcription factors in P. grandiflorus can regulate the
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synthesis of triterpenoid compounds in response to MeJA [49]. Exogenous MeJA treatment
significantly increases lavender’s monoterpene and sesquiterpene contents [50]. Applying
exogenous MeJA treatment to Goosegrass rhizomes leads to an increase in the triterpenoid
saponin content [51]. It was found that the expression of MnDXS2A and MnDXS2B is
up-regulated by the exogenous MeJA treatment of mulberry seedling leaves, which was
hypothesized to be possibly related to certain metabolites in the plant and plant defense
system [36]. In this study, where MeJA was used to treat tomato leaves, SlDXS1 and SlDXS3
were not responsive to MeJA, whereas the expression of SlDXS2 was up-regulated to the
maximum at 3 h, indicating that SlDXS2 can be significantly induced by exogenous MeJA.
This may be related to the presence of a cis-acting element (TGACG-motif) in the tomato
SlDXS2 gene in response to methyl jasmonate, which may explain why the MeJA treatment
significantly induced the expression of the key SlDXS2 gene in tomatoes.

As a common signaling substance in plants, methyl jasmonate (MeJA) induces the
production of volatiles to help plants avoid pests, thus reducing the damage caused
to plants [52]. The silencing of the SlDXS2 gene in tomato leaves using VIGS technol-
ogy showed that SlDXS2 was able to respond to an exogenous MeJA expression in si-
lenced plants. However, the induction level was low. It was found that SlDXS2 was
trauma-responsive in RNAi plants, but the expression level was significantly reduced [53].
Flavonoids are important secondary metabolites synthesized by plants, that help them to
develop insect resistance. After plants are infested by insect pests, flavonoids are synthe-
sized and accumulated in a plant’s body, and the higher their content, the higher the plant’s
ability to resist insects [28]. The flavonoid content of tomato leaves increased significantly
after their treatment with MeJA. However, MeJA induced the synthesis of flavonoids at
lower levels in the silenced plants compared to the wild-type plants. This indicates that
MeJA promotes secondary metabolism in tomato plants less after SlDXS2 silencing. This
study lays the foundation for future studies.

5. Conclusions

In this study, three members of the tomato DXS gene family were identified, and their
physicochemical properties, gene structures, phylogenetic relationships, and cis-acting
elements were analyzed using bioinformatics. An RT-qPCR was used to analyze the expres-
sion patterns of the DXS genes under different stresses, and it was found that the expression
of the SlDXS2 gene was increased by an exogenous MeJA treatment. The silencing of the
SlDXS gene verified that SlDXS1 is associated with the accumulation of photosynthetic
pigments through a virus-induced gene silencing (VIGS) method study. The silencing
gene known as pTRV-SlDXS2 was also verified to be capable of responding to an exoge-
nous MeJA expression. This study provides a reference for the further elucidation of the
biological function of SlDXS genes from the terpenoid synthesis pathway in tomato plants.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/horticulturae10030304/s1: Figure S1: Expression patterns of
tomato DXS gene under abiotic stress; Table S1: Primer sequences used for RT-qPCR amplification of
SlDXS; Table S2: Sequences of RT-PCR primers; Table S3: Consensus sequence of predicted SlDXS
motifs in tomato; Table S4: SlDXS nucleotide sequences of tomato; Table S5: SlDXS protein sequences
of tomato.
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