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Abstract: Sentinel-2 images at 10-m resolution were used for modeling crop coefficients and biomass
production with the application of the so-called SAFER (Simple Algorithm for Evapotranspiration
Retrieving) and Monteith model for biomass production in an area nearby the city of Águas
de Santa Bárbara, in the central-western part of São Paulo State, Brazil, which presents a vast
agricultural landscape mosaic, to analyze the effects of the end of the recent ENSO’s (El Niño-Southern
Oscillation) most active period (2016/2017) and its posteriori effects on vegetation (until early
2018). Surface albedo, temperature, net radiation, and NDVI (Normalized Difference Vegetation Index)
from the main land uses were extracted to process microclimatic comparisons. Crop coefficient
(dimensionless) and biomass production (kg.ha−1.day−1) ranges for the period studied were
0.92–1.35 and 22–104 kg·ha−1·day−1 (in the area occupied by sugarcane crop), 0.56–0.94 and
15–73 kg·ha−1·day−1 (pasture), 1.17–1.56 and 25–210 kg·ha−1·day−1 (silviculture), and 1.05–1.36
and 30–134 kg·ha−1·day−1 (forest). According to the spatial and temporal consistencies, and after
comparison with previous point and large-scale studies with similar climatic and thermal conditions,
the SAFER and Monteith modelsshowed the ability to quantify and differentiate the large-scale crop
coefficients and biomass production of different land uses in the southeast Brazil region. The SAFER
algorithm with Sentinel-2 images obtained crop coefficients that indicated plant growth stages and
local thermohydrological conditions at a 10-m resolution. The results are important for land use,
crop yield and reforestation planning, and for water management plans for actual and future water
demand scenarios, and this methodology is useful for monitoring rural and water parameters, and
for precision agriculture applications.

Keywords: Evapotranspiration; crop coefficient; primary production of biomass; remote sensing;
Sentinel-2

1. Introduction

The multiple uses of water (agriculture, public supply, industry, etc.) and their scarcity are
variables in water resource management for urban and rural areas, using the watershed as the
unit for hydrological studies, as provided in Brazilian legislation. Therefore, the quantification
of evapotranspiration (ET) is indispensable for water management in irrigated crops, since it
represents the water demand of crops, and knowledge of it avoids both water and energy waste
and productivity losses. ET is strongly influenced by vegetation type, agricultural management,
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environmental management, and climatic parameters [1], including solar radiation, wind, temperature,
and relative humidity.

According to the 2016 Brazilian National Water Agency’s (ANA) irrigation water use compilation,
between 1960 and 2015, the irrigated area in Brazil increased significantly, from 462,000 hectares to
6.95 million hectares (Mha), and is predicted to expand by 45% by 2030, reaching 10 Mha [2]. In Brazil,
irrigated agriculture is responsible for the withdrawal of 969,000 L of water per second (969 m3·s−1),
and the consumption of 745,000 L per second (745 m3·s−1); considering the other consumptive uses,
these values correspond to 46% of the total withdrawal (2105 m3·s−1) and 67% of the consumption
flow (1110 m3·s−1). These amounts match those of the United States where 59% of the withdrawal
flow is for irrigation, and the global average of about 70% of consumption [2,3].

For these reasons, accurately estimating the amount of water withdrawals and actual consumptive
use of water for irrigation at a regional scale is necessary; however, it is a difficult task. Usually, the
amount of irrigation water is calculated based on actual evapotranspiration (ETa) using a reference
evapotranspiration (ET0) multiplied by a crop coefficient (Kc) [1]. Kc curves have been established
according to their correspondence to the growth stage of the crop [1,4], leaf area index (LAI) [5],
accumulated days-degrees (DDac) [6,7], and as a function of time [8]. However, this method, because
of its simplicity, disregards the influence of spatial factors in determining ETa. Therefore, obtaining ET
by satellite imagery providing spatially distributed information at low cost is promising [9].

Over the last two decades, remote sensing techniques have enabled monitoring at different spatial
and temporal scales in the various biomes of the world to determine the biophysical parameters at
the surface and the ETa at different spatial and temporal scales, for example, SEBAL (Surface Energy
Balance Algorithm for Land), elaborated by Bastiaanssen et al. [10]; S-SEBI (Surface Energy Balance
Index) by Roerink et al. [11]; and SEBS (Surface Energy Balance System) by Su [12]. A combination of
these methodologies is SAFER (Simple Algorithm for Evapotranspiration Retrieving) developed by
Teixeira et al. [13], which models the ratio between actual (ETa) and reference (ET0) evapotranspiration,
which is equivalent to the crop coefficient (Kc), or the so-called evaporative fraction (ETr) by some
authors [6,7,9,13,14].

SAFER is a simplified algorithm that has shown good results in the estimation of large-scale
ET. Hernandez et al. [14] compared the SAFER and SEBAL algorithms to apply the crop coefficient
approach [1] in the northwestern part of São Paulo State, Brazil on corn, beans, and sugarcane crops
irrigated by center pivots. In that study, SAFER presented better performance than SEBAL under
the conditions of low soil cover by the canopies and similar performance under high soil cover by
canopies, which indicates that the SAFER model is better suited to monitor crops from early (with
lower soil cover) to near-harvest stages (higher soil cover), as has been reported [6,7]. This algorithm
has the advantage of avoiding the use of the thermal band, requiring only the measured reference
evapotranspiration (ET0), global radiation (RG), and average air temperature (Ta), and radiometric data
from remote sensing tools, to reach the energy balance including the ETa, which can be used as a tool
to help irrigation management in different crops by spatially defining the ETr ratio or crop coefficient.

Linked to ET, there is the production of biomass, which is fundamental for understanding
the dynamics of energy and carbon fluxes in soil [15] in agroecosystems with varied land uses.
The relationship between radiometric data obtained from a canopy or vegetated field and parameters
that categorize the growth stages of plants is the principle used for the study of biomass production by
remote sensing. The combination of measurements of electromagnetic radiation reflected by vegetation
in some spectral bands results in vegetation indices (VI). Using vegetation indexes, it is possible
to reduce the dimensionality of the data and to highlight the spectral response of the vegetation
when related to the soil [16]. Additionally, it is necessary to study the production of biomass in an
agroecosystem context, where several uses of the land interact. For Rezende et al. [17], the scarcity
of information on the primary production of biomass in the Cerrado is mainly related to the great
diversity of species and also to the high variability of the shape of the tree trunk and crown, even of
trees of the same species. The model of biomass production proposed by Monteith [18], from the
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quantification of solar radiation, can be applied in conjunction with satellite data for predictions of
biomass growth and crop productivity [18–21].

The availability of freely moderate-to-high spatial resolution satellite imagery stimulated the
use of remote sensing solutions in spatial modeling, especially after the launch of the Landsat-8
satellite in 2013 [22]. While Landsat-8 imagery (at 30 m spatial resolution) has been widely used for ET
mapping [6,7,23–25], other remote sensing imagery, like RapidEye [26] and MODIS [27], with higher
and lower spatial resolution than the Landsat-8, respectively, began to be used successfully. A new
option is the Sentinel-2 satellite, launched in June 2015, which provides multi-spectral images in
13 bands at different spatial resolutions, including three visible (RGB) and one near infrared (NIR)
bands at 10 m spatial resolution, six red-edge and shortwave infrared (SWIR) bands at 20 m, and three
atmospheric correction bands at 60 m [28] acquired at a swath width of 290 km and a five-day
temporal resolution.

The Sentinel-2 and Landsat-8 satellites have similar band configurations, highlighting that the
bands referring to the visible and the near infrared have near wavelength ends in the two satellites
(Figure 1), which allows the use of both for the same objectives [22,28]. However, Sentinel-2 gathers a
higher spatial and temporal resolution, which is an advantage.
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Figure 1. Comparison of spectral bands of Landsat 7 ETM+, Landsat-8, and Sentinel-2 (source:
https://eros.usgs.gov/sentinel-2).

The main goals of the current research were to apply the SAFER and Monteith modelsusing
Sentinel-2 images together with agrometeorological data, covering different seasons from
March 2017 to March 2018. Thus, this study aimed to quantify the large-scale crop coefficient and
biomass production in an area near the city of Águas de Santa Bárbara, in the central-western part of
São Paulo State, Brazil (which presents a vast agricultural landscape mosaic) during the end of the
recent ENSO’s (El Niño-Southern Oscillation) most active period (2016/2017) and verify its posteriori
effects on vegetation (until early 2018).

2. Materials and Methods

2.1. Data Used

The dates of cloudless images (and their corresponding day of year, DOY) were: 16 March 2017
(DOY 75), 15 May (135), 24 June (175), 23 August (235), 27 September (270), 24 February 2018 (55),
6 March (65), 11 March (70), and 16 March (75). In 2018, the temporal resolution of the Sentinel-2
satellite went from 15 to 5 days. Bands in the visible region of the electromagnetic spectrum (2–4) and
infrared (8) were used. Digital image processing was done using the software, R 3.5.0 [29], a statistical
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software composed of a language and an environment focused on numerical and statistical calculations.
The packages used were ‘raster’, ‘sp’, and ‘rgdal’. Final maps were made using the GIS-software,
ArcMap™ 10.4.1 [30].

For each DOY, land use classification was performed to make zonal statistics consistent with land
use dynamics. The technique used was the Multivariate Maximum Likelihood Classification to identify
the thematic classes. This technique uses the mean and covariance of samples to calculate the statistical
probability of an unknown pixel belonging to a given field-recognized class. After this probabilistic
evaluation, the pixel is assigned to the category with the highest probability of compatibility [31].

2.2. Study Area

Watersheds located at 24◦48′ S, 49◦13′ E, in the municipality of Águas de Santa Bárbara, in the
central-western part of São Paulo State, Brazil, were studied. The agrometeorological station within
this area has a reference surface where the albedo is 0.23 and the LAI is 2.88. The land use of these
watersheds in this research (based on DOY 75/2017), which is presented in Figure 2, are varied:
natural vegetation (Cerrado biome) (67 km2), silviculture (Eucalyptus) (22 km2), sugarcane crops
(25 km2), urban area (2 km2), regenerating fields (5 km2), roads (0.4 km2), and pasture (40 km2).
The northern region of the study area is largely occupied by silviculture. The western region is
occupied by agriculture (sugarcane). During the year, there is harvesting of Eucalyptus and sugarcane
in these areas, increasing the area of bare soil. In the southern region, there is an urban area and
the pasture and forest areas are in the central and eastern region of the study area. Considering this
dynamic spatial configuration of land uses, remote sensing tools are suitable for evaluating the water
and vegetation conditions for developing policies for agricultural water management.
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Figure 2. Basic land use of watersheds, from the day of year (DOY) 75/2017.

According to the Köppen classification, the climate of the Águas de Santa Bárbara region is
tropical subhumid (Cwa-warm climate with dry winter). For all months of the year (except July),
the monthly average temperature exceeds 18 ◦C, with the warmest and coldest months being February
(average of 24.6◦ C) and July (average of 17.9 ◦C), respectively. The average total annual rainfall is
1353 mm, with the wettest and driest months being January (average of 196.4 mm) and July (average
of 41.4 mm) [32], respectively.

Spatially understanding large-scale microclimatic relationships between silviculture (Eucalyptus),
pasture, natural vegetation, and sugarcane crops is important for the rational use of natural resources,
and the consequent reduction of negative environmental impacts, supporting policy planning and
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decision-making on natural resources. The difficulties of measuring and analyzing these components
only by field measurements have highlighted the importance of remote sensing coupling and
agrometeorological data.

2.3. Simple Algorithm for Evapotranspiration Retrivieng (SAFER)

All the regression coefficients of the parameters in Figure 3 and equations below were determined
in different areas of Brazil with digital images from different satellites, like Landsat [6,7,13,14,23–25],
RapidEye [26], and MODIS [9,27], with field measurements for calibration involving strong contrasting
agroecosystems, and under different thermohydrological conditions throughout several years as
semiarid areas [9,13,25], wetlands [27], tropical [23], and subtropical areas [6,7,14]. Most of the
regressions performed from Landsat-8 were used in this work due to their similarity to the radiometric
data on the visible (RGB) and near infrared (NIR) range of the Sentinel-2 satellite [22,28].
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Figure 3. Flowchart for the large-scale radiation balances (net radiation, RN), crop coefficient (ETa/ET0),
and biomass production (BIO) by applying the SAFER (Simple Algorithm for Evapotranspiration
Retrieving) and Monteith method using Sentinel-2 images together with agrometeorological data (solar
radiation, RG; average air temperature, TA; and reference evapotranspiration, ET0).

Albedo is defined as the ratio between reflected and incident sunlight, and is an important
parameter in the study of climate change, desertification, fires, and environmental impacts [33].
For retrieving surface albedo (α0), as shown in Figure 2, firstly, the planetary albedo for the entire solar
spectrum (αP) was calculated as the total sum of the different narrow-band reflectances (rband) values
according to weights for each band (wband), according to Equation (1):

αP = ∑ wbandrband (1)

The weights for the different bands were computed as the ration of the amount of the incoming
shortwave radiation from the sum in a particular band and the sum of incoming shortwave radiation
for all the bands at the top of the atmosphere (TOA). The daily α0 values were obtained according to
Equation (2):

α0 = aαP + b (2)



Horticulturae 2018, 4, 44 6 of 20

where a and b are regression coefficients, which, for a 24-h period, were considered as 1.70 and 0.13,
obtained from field and satellite measurements [6,34,35].

The NDVI (Normalized Difference Vegetation Index) is an indicator related to the land cover [36]
obtained from a satellite image according to Equation (3):

NDVI =
rNIR − rRED
rNIR + rRED

(3)

where rNIR and rRED represent the reflectance over the range of wavelengths in the near infrared (NIR)
and red (RED) regions of the solar spectrum, respectively.

Net radiation (RN , W·m−2.sr−1.µm−1) was obtained by Slob’s equation [23,37] in Equation (4),
which was derived by Teixeira et al. [34], considering four energy balance field experiments involving
different thermohydrological conditions in Brazil:

RN = (1− α0)RG − aLτsw (4)

where τsw is the shortwave atmosphere transmissivity defined as 44% of RG to the incident solar
radiation at the top of atmosphere [27] and the aL coefficient from Equation (5) can be explained by
variations in 24-h TA values [6] by Equation (8):

aL = cTA − d (5)

where TA is the average air temperature, RG is the 24-h values of global solar radiation, and c and d
are regression coefficients equal to 6.99 and 39.93 [6], respectively. Bastiaanssen et al. [10] applied a
constant value of aL = 110 without considering the local thermal conditions.

The residual method for retrieving the surface temperature (TS) was proposed by
Teixeira et al. [27] according to Equation (6):

TS =
4

√
RG − α0RG + εAσT4

A − RN

εSσ
(6)

where RG is the solar radiation, RN is the net radiation, TA is the average air temperature, εA and εS
are the atmospheric and surface emissivities, respectively, and σ is the Stefan-Boltzmann constant
(5.67× 10−8 Wm−2 K−4).

The denominator of the fraction of Equation (6) is a model of the long-wave atmospheric
radiation [23]. We reduced the equation by applying Equation (4) in Equation (6), resulting in
Equation (7), which depends only on the second term of Equation (4), without an uncertainty increase:

TS =
4

√
εAσT4

A + aLτsw

εSσ
(7)

where εA and εS are the atmospheric and surface emissivities, respectively, and σ is the
Stefan-Boltzmann constant (5.67× 10−8 Wm−2 K−4).

Emissivity is the ability of a surface to emit absorbed energy [13]. A dark land surface absorbs
more RG, and has a higher RN than a bright one. Teixeira et al. [6,37] performed regression
analyzes for atmospheric (εA) and surface (εS) emissivity through transmissivity and NDVI values in
Equations (8) and (9), respectively:

εA = aA(−ln τsw)
bA (8)

εS = aS ln NDVI + bS (9)

where aA, bA, aS, and bS are regressions, which, from Teixeira et al. [34], were considered, respectively,
as 0.94, 0.10, 0.06, and 1.00. The application of this methodology for surface temperature retrieval
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provides 10-m resolution results, while the SEBAL requires the use of thermal bands, which in
Sentinel-2, has a spatial resolution of 1 km.

The net radiation was also evaluated in this work as an indicator of the energy supply to the
soil [25]. It was decided that the residual method would be used to obtain the surface temperature to
preserve the spatial resolution, since the thermal bands have a resolution of 1 km, which increases the
uncertainty in the modeling [38].

The crop coefficient (Kc) or the ratio between actual ET (ETa) and potential ET (ET0), the so-called
evaporative fraction (ETr), was calculated according to Equation (10):

ETr =
ETa

ET0
= exp

[
e + f

(
TS

α0·NDVI

)]
(10)

where e and f are regression coefficients, 1.8 and −0.008, respectively. An advantage of Equation (9),
compared with Bastiaanssen et al. [10], is the possibility of application in any environment according
to the thermal conditions without the need for an anchor pixel (so-called “hot pixel” and “cold pixel”
in the SEBAL model, which requires two points with extreme and opposite thermal conditions in the
same analysis, so SAFER, different from SEBAL, allows good analysis in totally irrigated or totally
dry locations [7,9,13]). Teixeira [39] has demonstrated that there are no significant differences between
the daily and satellite overpass values of the ETr ratio. The average ETr values in sugarcane irrigated
areas gave Kc, allowing modelling of their values with DDac (accumulated days-degrees, ◦C·day−1)
using the basal temperature of 18 ◦C [40] and a regression polynomial equation determined by the
joint use of agrometeorological and satellite data [6]. According to Teixeira [13], the advantage of the
use of this relationship is the transfer of Kc values to different thermal conditions.

2.4. Monteith Model of Biomass Production

The Absorbed Photosynthetically Active Radiation (APAR) was approximated directly from PAR
according to Equation (11):

APAR = fPARPAR (11)

where fPAR was estimated from the NDVI values [13,41] according to Equation (12):

fPAR = i NDVI + j (12)

where the coefficients, i and j, were considered, respectively, to be 1.257 and −0.161 [6,14,24,26,41],
and the BIO was quantified according to Equation (13) [6,14,24]:

BIO = εmaxETr APAR 0.864 (13)

where εmax is the maximum light use efficiency, which was considered as 2.5 g·MJ−1 for the majority
of C4 species [35], and 0.864 is a unit conversion factor [13].

3. Results and Discussion

3.1. Weather Drivers

Weather conditions influence the photosynthetic activity of crops and water fluxes. For this reason,
soil moisture is essential to maintain yields at optimum levels, as water stress can harm vegetative
growth and crop development of Eucalyptus (silviculture) [42], sugarcane [43], and pasture [44].
Solar radiation (RG), considered the directed and undirected radiation from the sun, was integrated
over all wavelengths in the shortwave interval. Rainfall considered the total daily precipitation.
Average temperature considered the mean value of air temperature at a 24 h scale.

Figure 4 shows the rainfall, average temperature, and solar radiation in the studied period.
The variable with the greatest variation was precipitation. Between March and June 2017, there were
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high-intensity precipitations (with rainfall over 100 mm in March and over 50 mm between April
and June) followed by long dry periods and solar radiation levels above 30 MJ·day−1, while between
July 2017 and April 2018, there were lower intensity precipitations and less rainfall spacing with lower
levels of solar radiation (between 8 and 20 MJ·day−1). The delay and concentration of rains in 2017 are
effects of the El Niño-Southern Oscillation [45]. DOY 75, 135, and 175/2017 occurred in a period of
intense precipitation and high solar radiation; DOY 235 and 270/2017 followed days of intense rainfall
and low solar radiation, while the DOY of 2018 followed days of low intensity rain, more uniform
distribution, and less incident solar radiation.Horticulturae 2018, 4, x 8 of 20 
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3.2. Input Parameters of SAFER Algorithm

The spatial results are presented in the form of maps, and in mean values with standard deviation
for each land use. In this way, it is possible to analyze spatially and numerically, thus making the
analysis more easily assimilated and self-connected. The areas of sugarcane, pasture, silviculture,
and forest were considered as relevant land uses. Areas of exposed soil (mainly areas of sugar cane
and silviculture after harvest), fields in regeneration, roads, and water bodies were not accounted for.
The results have a spatial resolution of 10 m.

Figure 5 shows the spatial distribution of the surface albedo for each DOY and Table 1 presents
the mean values and standard deviation for each DOY and relevant land use.

Table 1. Mean values and standard deviations at a daily scale of surface albedo between 2017 and 2018
by land use and day of year (DOY).

DOY Sugarcane Crop Pasture Silviculture Forest

75/2017 0.18 ± 0.001 0.23 ± 0.001 0.17 ± 0.001 0.16 ± 0.001
135/2017 0.17 ± 0.01 0.22 ± 0.001 0.16 ± 0.001 0.15 ± 0.001
175/2017 0.17 ± 0.01 0.21 ± 0.001 0.17 ± 0.01 0.14 ± 0.001
235/2017 0.16 ± 0.001 0.19 ± 0.01 0.17 ± 0.001 0.16 ± 0.001
270/2017 0.17 ± 0.001 0.20 ± 0.001 0.18 ± 0.001 0.17 ± 0.01
55/2018 0.23 ± 0.01 0.20 ± 0.01 0.17 ± 0.01 0.16 ± 0.001
65/2018 0.20 ± 0.001 0.21 ± 0.001 0.18 ± 0.001 0.16 ± 0.001
70/2018 0.20 ± 0.001 0.21 ± 0.03 0.11 ± 0.06 0.12 ± 0.001
75/2018 0.21 ± 0.001 0.21 ± 0.001 0.14 ± 0.001 0.13 ± 0.001
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The albedo presented low spatial variability and was associated with land use and the
heterogeneous vegetation cover, while the temporal variation was affected by the local climatic
changes besides the presence of the anthropic action by the management of the adjacent agricultural
areas. The albedo was larger and had less temporal variation in the pasture, while the lowest values
were found in the forest, also with a low temporal variation. In the areas of sugar cane and silviculture,
the tendency of albedo values was to increase with the development of the crop due to the increase
of the soil cover, being evident in the relation between the albedo and the leaf area as reported by
André et al. [46], which found the average albedo value for the whole cycle of the sugarcane crop
as 0.20 ± 0.029. Giongo and Vettorazzi [47] diagnosed higher albedo in pasture areas, compared to
sugarcane, due to its smaller leaf area. Giongo et al. [48] obtained the albedo in a sugarcane area,
with values ranging from 0.13 to 0.23. Cabral et al. [49] reported values between 0.12 and 0.32 for
non-irrigated sugarcane depending on the growth stage of the crop, corroborating results obtained in
this research for areas of sugarcane. The area with Eucalyptus presented albedo values between 0.16
and 0.19, a low amplitude of the values. This reflects the small modification in characteristics because it
is a perennial system of culture and can be compared to areas of forest or dense vegetation, which have
presented similar behavior, registering values between 0.12 and 0.17. Boegh et al. [50], in Denmark,
using TM-Landsat 5 images in areas of dense vegetation in summer, when the climate in Denmark
is similar with autumn and spring in Brazil, a value of 0.18 for albedo measurement was obtained.
Another cause for seasonal variations of surface albedo is the surface moisture during the rainy season,
when the leaves were alternatively wet and dry due to water interception. Many authors [6,34,35,51–53]
have found linear relationships between albedo and surface moisture.

Figure 6 shows the spatial distribution of the net radiation for each DOY and Table 2 presents the
mean values and standard deviation for each DOY and relevant land use.
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Table 2. Mean values and standard deviations at a daily scale of surface albedo between 2017 and 2018
by land use and day of year (DOY).

DOY Sugarcane Crop Pasture Silviculture Forest

75/2017 12.61 ± 0.21 12.70 ± 0.23 12.79 ± 0.18 12.84 ± 0.19
135/2017 15.49 ± 0.29 15.62 ± 0.25 15.74 ± 0.21 15.86 ± 0.21
175/2017 9.53 ± 0.17 9.60 ± 0.18 9.70 ± 0.15 9.80 ± 0.15
235/2017 11.32 ± 0.24 11.45 ± 0.18 11.59 ± 0.15 11.65 ± 0.15
270/2017 10.66 ± 0.30 10.83 ± 0.19 11.02 ± 0.17 11.01 ± 0.26
55/2018 14.86 ± 0.24 14.97 ± 0.27 15.17 ± 0.23 15.24 ± 0.22
65/2018 9.21 ± 0.16 9.25 ± 0.21 9.38 ± 0.13 9.41 ± 0.18
70/2018 10.91 ± 0.85 10.94 ± 0.94 10.90 ± 1.29 11.02 ± 1.16
75/2018 13.67 ± 0.17 13.73 ± 0.22 13.88 ± 0.16 13.94 ± 0.17

Net radiation is strongly dependent on solar radiation (RG), and the capacity to differentiate
between land uses through this variable is low, as already diagnosed by Teixeira et al. [25,27]. However,
there was a tendency for a higher radiation balance in the areas occupied by Eucalyptus and forest
and lower values in pasture and sugarcane. Menezes et al. [54] found the same behavior and obtained
values of radiation balance for areas of Eucalyptus and forest in Southeastern Brazil that corroborate
this tendency and also the dependence of net radiation with incident solar radiation, since the authors
measured a value corresponding to twice the solar radiation of our study and also reported double the
balance of radiation obtained here. Gomes et al. [55] found average values of net radiation for sugarcane
crops, native vegetation (Cerrado), and Eucalyptus of 10.3, 11.4, and 10.8 MJ·day−1, respectively.
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Figure 7 shows the spatial distribution of the surface temperature for each DOY and Table 3
presents the mean values and standard deviation for each DOY and relevant land use.Horticulturae 2018, 4, x 11 of 20 
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Table 3. Mean values and standard deviation at a daily scale of surface albedo between 2017 and 2018
by land use and day of year (DOY).

DOY Sugarcane Crop Pasture Silviculture Forest

75/2017 307.87 ± 1.85 307.73 ± 1.18 306.63 ± 1.59 306.98 ± 1.43
135/2017 297.05 ± 1.95 296.98 ± 1.15 295.67 ± 1.53 295.05 ± 1.35
175/2017 289.23 ± 1.41 289.42 ± 0.93 287.95 ± 1.27 288.42 ± 1.01
235/2017 292.71 ± 2.25 291.80 ± 1.40 289.44 ± 1.99 290.01 ± 2.02
270/2017 302.50 ± 1.80 301.46 ±1.47 299.59 ± 2.04 299.91 ± 2.61
55/2018 302.88 ± 1.72 302.73 ± 1.35 301.75 ± 1.50 301.87 ± 1.39
65/2018 305.62 ± 1.97 305.32 ± 1.35 304.26 ± 1.48 304.50 ± 1.39
70/2018 304.23 ± 1.64 304.02 ± 1.25 303.27 ± 1.89 303.48 ± 1.95
75/2018 304.68 ± 1.97 304.30 ± 1.16 303.35 ± 1.38 303.55 ± 1.30

The use of the residual method for surface temperature retrieval (Equation (7)), without the use
of the thermal bands currently available by the Sentinel-3 satellite that has a spatial resolution of
1 km, allowed the spatial analysis to be performed with 10 m of spatial resolution as well as the other
input parameters. Silviculture and forest presented surface temperatures around 1 K smaller than
pasture and sugarcane, agreeing with Meneses et al. [54], which also verified the decrease of surface
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temperature with the expansion of Eucalyptus. Surface temperature is mainly dependent on the
absorbed solar radiation, which is converted into heat energy by the transfer of long-wave radiation
from their surfaces to the lower atmosphere.

Figure 8 shows the spatial distribution of the NDVI for each DOY and Table 4 presents the mean
values and standard deviation for each DOY and relevant land use.
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Table 4. Mean values and standard deviation of NDVI between 2017 and 2018 by land use and day of
year (DOY).

DOY Sugarcane Crop Pasture Silviculture Forest

75/2017 0.63 ± 0.05 0.33 ± 0.01 0.68 ± 0.05 0.63 ± 0.03
135/2017 0.56 ± 0.07 0.30 ± 0.01 0.69 ± 0.07 0.62 ± 0.03
175/2017 0.59 ± 0.07 0.28 ± 0.01 0.68 ± 0.07 0.60 ± 0.02
235/2017 0.54 ± 0.04 0.24 ± 0.09 0.58 ± 0.08 0.49 ± 0.03
270/2017 0.57 ± 0.01 0.23 ± 0.08 0.52 ± 0.06 0.48 ± 0.05
55/2018 0.55 ± 0.05 0.22 ± 0.01 0.65 ± 0.06 0.62 ± 0.03
65/2018 0.58 ± 0.06 0.28 ± 0.01 0.62 ± 0.05 0.58 ± 0.03
70/2018 0.56 ± 0.08 0.27 ± 0.02 0.58 ± 0.02 0.54 ± 0.09
75/2018 0.59 ± 0.06 0.32 ± 0.01 0.64 ± 0.05 0.61 ± 0.02

Other authors obtained similar NDVI values in southeast Brazil, such as Fernandes et al. [43],
who found average values of NDVI for sugarcane between 0.4 and 0.7; Pereira et al. [56], who found
average values of NDVI for sugarcane between 0.4 and 0.75; and Castanheira et al. [57], who found
an average value of 0.67 for silviculture. Data normalization has made vegetation features and
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characteristics more discernible in comparison to other input parameters. After rainy days with
low levels of solar radiation, NDVI values decreased in all land uses compared to dry days with
high levels of solar radiation, as was also reported in Lucas and Schuler [58] and Pereira et al. [56].
Thus, by analyzing the surface albedo, NDVI, and surface temperature simultaneously, spatial
variations can be mainly attributed to variations in RG and soil moisture [6].

3.3. Crop Coefficient

Figure 9 shows the spatial distribution of the crop coefficient for each DOY and Table 5 presents
the mean values and standard deviation for each DOY and relevant land use.
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Figure 9. Crop coefficient between 2017 and 2018 in watersheds with varied land use (DOY = day of year).

Table 5. Mean values and standard deviation of the crop coefficient between 2017 and 2018 by land use
and day of year (DOY).

DOY Sugarcane Crop Pasture Silviculture Forest

75/2017 0.95 ± 0.18 0.59 ± 0.14 1.19 ± 0.21 1.05 ± 0.31
135/2017 1.21 ± 0.41 0.65 ± 0.25 1.30 ± 0.35 1.15 ± 0.25
175/2017 1.35 ± 0.43 0.94 ± 0.29 1.56 ± 0.39 1.25 ± 0.24
235/2017 1.24 ± 0.29 0.81 ± 0.26 1.45 ± 0.27 1.17 ± 0.25
270/2017 1.11 ± 0.21 0.61 ± 0.15 1.29 ± 0.32 1.16 ± 0.19
55/2018 0.95 ± 0.21 0.62 ± 0.21 1.26 ± 0.35 1.11 ± 0.21
65/2018 0.92 ± 0.22 0.56 ± 0.26 1.19 ± 0.29 1.05 ± 0.25
70/2018 0.93 ± 0.24 0.69 ± 0.32 1.19 ± 0.34 1.07 ± 0.26
75/2018 0.89 ± 0.29 0.68 ± 0.25 1.17 ± 0.35 1.12 ± 0.31
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DOYs 135, 175, and 235 presented the highest ETr values because they are after intense
precipitations and occur during the phenological stages of sugarcane and Eucalyptus with the highest
water consumption. ETr characterizes the water status in the root zones [59]. The most important reason
for the highest ETr values were prior rainy days, which make the soil more moist, but it also depends
on stomatal regulation and plant adaptation to water scarcity conditions [60]. Zhou and Zhou [61]
concluded that air humidity, air temperature, and the available energy were the most important
variables for the Kc variations in a reed marsh located in Northeast China. The region in the north of
the study area occupied by silviculture reaches the highest ETr values in DOY 175, before the beginning
of the harvest season. The sugarcane areas located in the west of the study area have their highest ETr

in DOY 175, before harvest, when ETr decreases in this region, as seen in DOY 235. Forest and pasture
areas show ETr stability.

The crop coefficient of Eucalyptus varied between 1.17 and 1.56, following the crop coefficient
presented by Queiroz et al. [42]. The crop coefficient of the pasture varied between 0.56 and 0.81,
close to that of Capim-Elefante (Pennisetum purpureum) as described by Muniz et al. [62], which
obtained an average Kc between 0.45 and 0.78, and also close to Capim-Tanzânia (Panicum maximum) as
described by Bueno et al. (2009), which obtained an average Kc between 0.5 and 0.98 in the southeast
Brazil region. Lima et al. [63] found crop coefficient values for forest (“Cerrado”) between 1.00 and 1.10.

Figure 10 shows the relationship between mean values of crop coefficient (ETr) and accumulated
degree-days (DDac) in the sugarcane crops in the studied period.
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ETr is a measurement of the soil moisture conditions and can indicate the impact of a water 
deficit on the crop. Its trend was also quantified throughout a generalized growing season as a 
function of DDac (Figure 8). ETr at different sugarcane crop stages was between 0.2 and 1.25. This 
range agrees with the values in the standard work of FAO (Food and Agriculture Organization) [1], 
which justified the confidence in using the SAFER algorithm for the Kc approach. Also, it could be 
concluded that in most of the critical periods of water use during the sugarcane crop stages, between 
DDac of 750 and 1750 °C·day−1, the ETr values were above 0.80 and even higher than 1.00 because of 
the additional energy supply by horizontal heat advection, as indicated by Teixeira et al. [6,35]. 

Figure 10. Variation of the mean values of the crop coefficient (ETr) with the accumulated degree-days
(DDac) in the sugarcane crops of watersheds in the municipality of Águas de Santa Bárbara,
the central-western part of São Paulo State, Brazil. A basal temperature of 18 ◦C was considered,
following Doorenbos, Kassan (1979).

ETr is a measurement of the soil moisture conditions and can indicate the impact of a water deficit
on the crop. Its trend was also quantified throughout a generalized growing season as a function of
DDac (Figure 8). ETr at different sugarcane crop stages was between 0.2 and 1.25. This range agrees
with the values in the standard work of FAO (Food and Agriculture Organization) [1], which justified
the confidence in using the SAFER algorithm for the Kc approach. Also, it could be concluded that in
most of the critical periods of water use during the sugarcane crop stages, between DDac of 750 and
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1750 ◦C·day−1, the ETr values were above 0.80 and even higher than 1.00 because of the additional
energy supply by horizontal heat advection, as indicated by Teixeira et al. [6,35].

3.4. Biomass Production

Figure 11 shows the spatial distribution of the biomass production (BIO) for each DOY and Table 6
presents the mean values and standard deviation for each DOY and relevant land use.
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Table 6. Mean values and standard deviation of the crop coefficient between 2017 and 2018 by land use
and day of year (DOY).

DOY Sugarcane Crop Pasture Silviculture Forest

75/2017 36.72 ± 29.34 26.78 ± 22.91 74.45 ± 42.10 46.10 ± 24.67

135/2017 69.91 ± 58.11 46.42 ± 35.27 139.88 ±
73.77 87.43 ± 42.47

175/2017 104.70 ± 74.30 73.10 ± 47.74 210.96 ±
98.53

134.04 ±
57.47

235/2017 22.28 ± 36.70 17.98 ± 22.25 137.42 ±
83.06 72.94 ± 46.89

270/2017 25.15 ± 1.25 15.63 ± 5.45 25.15 ± 7.25 30.45 ± 8.96
55/2018 45.28 ± 42.15 37.19 ± 29.14 79.68 ± 42.15 63.67 ± 34.94
65/2018 30.10 ± 31.36 24.83 ± 22.45 59.46 ± 36.80 43.50 ± 26.24
70/2018 26.40 ± 29.76 22.81 ± 23.23 51.28 ± 40.38 37.41 ± 28.80
75/2018 32.20 ± 29.15 27.96 ± 23.67 63.78 ± 38.25 46.53 ± 25.55
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The standard deviation was high, indicating low uniformity. The biomass production was
dependent on RG, local vegetation, and water available in the soil [27], and there was a relationship
between ETr and BIO in Equation (13); the periods with the highest BIO were the same as those for ETr.
Santana et al. [64] found evidence of the correlation of production in coniferous forests with available
water in the soil. High rainfall providing good moisture levels in the root zone, together with large
RG levels, increase photosynthetic activity and favors large biomass production rates. Between days
235 and 270, there was a decrease in ETr and NDVI values due to the withdrawal and, consequently,
a reduction of areas occupied by silviculture and sugarcane, this being evident in DOY 270, in which
there were no pixels with a value greater than 45.2 kg·ha−1·day−1.

Oliver and Singels [65] reported strong BIO declines on sugarcane crops under irrigation
conditions, when water application was reduced by around 50%. Andrade et al. [66] obtained average
BIO of sugarcane crops values between 100 and 160 kg·ha−1·day−1 during several crop periods
and also affirmed that the soil moisture effects on BIO vary according to planting and harvesting
dates. In South Africa, Donaldson et al. [67] reported seasonal variations affecting BIO in a number of
sugarcane cultivars in the ranges between 90 and 184 kg·ha−1·day−1.

BIO is directly related to the product harvested through the harvest index (HI), the percentage of
biomass effectively harvested and transformed into the final product [6,14,24–27], and the fraction of
carbon in the biomass [25–27]. The HI depends on whether the property is mechanized or not, and
economic and topographical factors [9]. ETr and BIO modeling, besides comparing different land uses
as made in this paper, can compare different pasture managements [68], the effect of irrigation on
crops [9,14,23], and the impact of drought on large areas [69]. ETr and BIO at a 10-m resolution are
suitable for precision agriculture applications [70,71].

Despite not having simultaneous field measurements for validations during the years of 2017 and
2018, because the study area was not yet equipped with lysimeters or eddy covariance, the similarities
of the current results with those from the literature provide confidence for the application of the joint
use of the SAFER algorithm and Monteith model to Sentinel-2 images without the thermal band in
southeast Brazil, assuring a spatial resolution of 10 m for all components, showing that the calibrations
made in other papers present consistent results for the study area. In future work, new calibrations and
validations can be performed using simultaneous eddy covariance data for actual evapotranspiration
(following the regression methodology of Teixeira [39]) or lysimeters to calibrate Equation (9) to the
study area, and also other regression equations when needed.

4. Conclusions

The innovation of this paper was the joint use of Sentinel-2 and agrometeorological data in the
application of the SAFER model, without thermal bands, which allowed quantification and spatial
analyses of the crop coefficient and biomass production in watersheds with varied land uses located
in southeastern Brazil at a 10 m resolution. This was done by first modeling the ratio of the actual
(ETa) and the reference (ET0) evapotranspiration, analogous to Kc, at the satellite overpass time by the
so-called SAFER algorithm, and then modeling the biomass production using the Monteith model,
calibrated to use the crop coefficient found in the previous step of this methodology. This methodology
captures both the characteristics of the phenological phases of the plants and the soil moisture
conditions, allowing, in a resolution of 10 m, monitoring of the evapotranspiration and use of water by
the crop in a precision scale. The surface albedo values, NDVI, net radiation, and surface temperature
obtained in this work were corroborated by other studies done in southeastern Brazil and in other
places, with characteristics that justify their comparison.

The ranges of the mean values of crop coefficient (dimensionless) and biomass production
(kg·ha−1·day−1) for the period studied were 0.92–1.35 and 22–104 kg·ha−1·day−1 (in
the area occupied by sugarcane), 0.56–0.94 and 15–73 kg·ha−1·day−1 (pasture), 1.17–1.56
and 25–210 kg·ha−1·day−1 (silviculture), and 1.05–1.36 and 30–134 kg·ha−1·day−1 (forest).
The application of this methodology was advantageous considering local thermal aspects and the
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vegetation index. The crop coefficients indicated that the soil moisture conditions and plant growth
stages occurred simultaneously, something that most common methodologies, such as “FAO 56”,
do not. The quantification of biomass production was consistent with the harvesting periods, as well
as the microclimatic conditions that affected photosynthetic activity

According to the spatial and temporal consistencies, and after comparison with previous point
and large-scale studies, the SAFER and Monteith modelsdemonstrated the capability of quantifying
and comparing large-scale crop coefficients and biomass production in different land uses in
southeastern Brazil.
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